slides

The adjacency matroid of a graph

Abstract

If GG is a looped graph, then its adjacency matrix represents a binary matroid MA(G)M_{A}(G) on V(G)V(G). MA(G)M_{A}(G) may be obtained from the delta-matroid represented by the adjacency matrix of GG, but MA(G)M_{A}(G) is less sensitive to the structure of GG. Jaeger proved that every binary matroid is MA(G)M_{A}(G) for some GG [Ann. Discrete Math. 17 (1983), 371-376]. The relationship between the matroidal structure of MA(G)M_{A}(G) and the graphical structure of GG has many interesting features. For instance, the matroid minors MA(G)βˆ’vM_{A}(G)-v and MA(G)/vM_{A}(G)/v are both of the form MA(Gβ€²βˆ’v)M_{A}(G^{\prime}-v) where Gβ€²G^{\prime} may be obtained from GG using local complementation. In addition, matroidal considerations lead to a principal vertex tripartition, distinct from the principal edge tripartition of Rosenstiehl and Read [Ann. Discrete Math. 3 (1978), 195-226]. Several of these results are given two very different proofs, the first involving linear algebra and the second involving set systems or delta-matroids. Also, the Tutte polynomials of the adjacency matroids of GG and its full subgraphs are closely connected to the interlace polynomial of Arratia, Bollob\'{a}s and Sorkin [Combinatorica 24 (2004), 567-584].Comment: v1: 19 pages, 1 figure. v2: 20 pages, 1 figure. v3:29 pages, no figures. v3 includes an account of the relationship between the adjacency matroid of a graph and the delta-matroid of a graph. v4: 30 pages, 1 figure. v5: 31 pages, 1 figure. v6: 38 pages, 3 figures. v6 includes a discussion of the duality between graphic matroids and adjacency matroids of looped circle graph

    Similar works

    Full text

    thumbnail-image

    Available Versions