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We show that the effect of principal pivot transform on the nullity

values of the principal submatrices of a given (square) matrix is de-

scribed by the symmetric difference operator (for sets).We consider

its consequences for graphs, and in particular generalize the recur-

sive relation of the interlace polynomial and simplify its proof.
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1. Introduction

Principal pivot transform (PPT, or simply pivot) is a matrix transformation operation capable of

partially (component-wise) inverting a given matrix. Consider a V × V-matrix A (over some field) for

some finite set V (the columns and rows are indexed by V), and X ⊆ V such that A[X] is nonsingular,
where A[X] is the principal submatrix of Aw.r.t. X . Then the principal pivot transform of A on X , denoted

by A ∗ X , may be defined by the following relation:

A

⎛
⎝ x1

x2

⎞
⎠ =

⎛
⎝ y1

y2

⎞
⎠ iff A ∗ X

⎛
⎝ y1

x2

⎞
⎠ =

⎛
⎝ x1

y2

⎞
⎠

where the vectors x1 and y1 correspond to the elements ofX . Note thatA∗V = A−1. Thepivot operation

is originallymotivatedby thewell-known linear complementarityproblem[20], and is applied inmany

other settings such as mathematical programming and numerical analysis, see [19] for an overview.
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A natural restriction of pivot is to graphs (with possibly loops), i.e., symmetric matrices over F2.

For graphs, each pivot operation can be decomposed into a sequence of elementary pivots. There

are two types of elementary pivot operations, (frequently) called local complementation and edge

complementation. These two graph operations are also (in fact, originally) defined for simple graphs,

however, the definition of local complementation on simple graphs is less restrictive (unlike pivot, it

is defined for all vertices). Local and edge complementation for simple graphs, introduced in [16] and

[5] respectively, were originally motivated by the study of Euler circuits in 4-regular graphs and by

the study of circle graphs (also called overlap graphs) as they model natural transformations of the

underlyingcircle segments.Manyotherapplicationsdomains for theseoperationshavesinceappeared,

e.g., quantumcomputing [21], the formal theoryof geneassembly in ciliates [11] (a researchareawithin

computational biology), and the studyof interlacepolynomials, initiated in [1]. Inmany contextswhere

local and edge complementation have been used, principal pivot transform has originally appeared in

disguise (we briefly discuss some examples in the paper).

In this paper we show that the pivot operation fulfills the following property, which we refer to as

the nullity invariant of pivot. We denote the nullity of a matrix A by n(A) and denote the symmetric

difference of sets X and Y by X ⊕ Y .

Theorem 5. Let A be a V × V-matrix (over some field), and let X ⊆ V be such that A[X] is nonsingular.
Then, for all Y ⊆ V, n((A ∗ X)[Y]) = n(A[X ⊕ Y]).

Hence we find that symmetric difference and pivot play a “similar role” w.r.t. nullity. We subse-

quently apply the nullity invariant to the interlace polynomial. The interlace polynomial for a graph G

is defined as

q(G) = ∑
S⊆V

(y − 1)n(G[S]).

It was shown in [3] that q(G) fulfills a characteristic recursive relation. Using Theorem5,we generalize

the notion of interlace polynomial and its recursive relation to square matrices in general. We show

that the interlace polynomial for a V × V-matrix A defined by

q(A) = ∑
S⊆V

(y − 1)n(A[S])

is invariant under pivot, i.e., q(A) = q(A∗X)whenA∗X is defined, andmoreover satisfies the following

recursive relation (we let A \ u = A[V \ {u}]).
Theorem 14. Let A be a V × V-matrix (over some field), let X ⊆ V with A[X] nonsingular, and let u ∈ X.

We have q(A) = q(A \ u) + q(A ∗ X \ u).

The recursive relation of q(G) in [3] is easily obtained from Theorem 14, see Proposition 16. As

a consequence, we not only generalize the interlace polynomial and its recursive relation, but also

simplify the proof of the (original) recursive relation for interlace polynomials for graphs. Also, in

Section 3we recall amotivation of pivot applied to overlap graphs, and relate it to the nullity invariant.

2. Notation and terminology

A set system (over V) is a tupleM = (V,D)with V a finite set, called the ground set ofM, andD ⊆ 2V

a family of subsets of V . To simplify notation we often write X ∈ M to denote X ∈ D. Moreover, we

often simply write V to denote the ground set of the set system under consideration. We denote by ⊕
the logical exclusive-or (i.e., addition in F2, the field having two elements), and we carry this operator

over to sets, where it is called symmetric difference.

We consider matrices and vectors indexed by a finite set V . For a vector v indexed by V , we denote

the element of v corresponding to i ∈ V by v[i]. Also, we denote the nullity (dimension of the null
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space) and the determinant of a matrix A by n(A) and det(A) respectively. For X ⊆ V , the principal

submatrix of A w.r.t. X is denoted by A[X]. Moreover, for Y ⊆ V , we define A \ Y = A[V \ Y]. In case

Y = {v} is a singleton, to simplify notation, we also write A \ Y = A \ v.

We consider undirected graphs without parallel edges, however we do allow loops. Hence a graph

G = (V, E) can be represented by a symmetric V × V-matrix A = (
au,v

)
over F2: for u ∈ V , {u} ∈ E

(i.e., u has a loop in G) iff au,u = 1, and for u, v ∈ V with u �= v, {u, v} ∈ E iff au,v = 1. We denote the

set of edges of G by E(G). We often make no distinction between G and its matrix representation A.

Thus, e.g., we write n(G) = n(A), and, for X ⊆ V , G[X] = A[X], which consequently is the subgraph of

G induced by X . Note that as G is represented by a matrix A over F2, n(G) is computed over F2. Similar

as for set systems, we often write V to denote the vertex set of the graph under consideration.

3. Background: nullity and counting closed walks

In this section we briefly and informally discuss an application of principal pivot transform where

nullity plays an important role. As the rest of this paper does not depend on this application, the hasty

reader may safely skip this section. In [9] a first connection between counting cycles and the nullity

of a suitable matrix was established. It is shown in that paper that the number of cycles obtained as

the result of applying disjoint transpositions to a cyclic permutation is described by the nullity of a

corresponding “interlace matrix”.

It has been recognized in [18] that the result of [9] has an interpretation in terms of 2-in, 2-out

digraphs (i.e., directed graphs with 2 incoming and 2 outgoing edges for each vertex), linking it to

the interlace polynomial [2]. We discuss now this interpretation in terms of 2-in, 2-out digraphs and

subsequently show the connection to the pivot operation.

Let V = {1, 2, 3, 4, 5, 6} be an alphabet and let s = 146543625123 be a double occurrence string

(i.e., each letter of the string occurs precisely twice) over V . The overlap graph Os corresponding to s

has the letters of s as the set of vertices and an edge {u, v} precisely when u and v overlap: the vertices

u and v appear either in order u, v, u, v or in order v, u, v, u in s. The overlap graph Os is given in Fig. 1.

One may verify that the nullity of Os is n(Os) = 0. Consider now the subgraph Os[X] of Os induced by

X = {3, 4, 5, 6}. Then it can be verified that n(Os[X]) = 2.

We discuss now the link with connected 2-in, 2-out digraphs (only in this section we consider

digraphs). Let G be the 2-in, 2-out digraph of Fig. 2 with V = {1, 2, 3, 4, 5, 6} as the set of vertices.

Fig. 1. The overlap graph of s = 146543625123.

Fig. 2. A 2-in, 2-out digraph.
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Fig. 3. Partition of the edges of a 2-in, 2-out digraph into three closed walks.

Althoughourexamplegraphdoesnothave loopsorparallel edges, there isnoobjection to consider such

“2-in, 2-out multidigraphs”. Notice that the double occurrence string s = 146543625123 considered

earlier corresponds to an Euler circuit C of G. We now consider partitions P of the edges of G into

closedwalks (i.e., cycles where repeated vertices are allowed). Note that there are 2|V | such partitions:

if in a walk passing through vertex v we go from incoming edge e of v to outgoing edge e′ of v, then
necessarily we also walk in P from the other incoming edge of v to the other outgoing edge of v. Hence

for each vertex there are two “routes”. Let P now be the partition of the edges of G into 3 closed walks

as indicated by Fig. 3 using three types of line thicknesses. Then P follows the same route as the Euler

circuit (corresponding to) s in vertices {1, 2}, while in the other vertices X = {3, 4, 5, 6} it follows the

other route. We say that P is induced by X in s.

Theorem 1 in [9] now states (applying it to the context of connected 2-in, 2-out digraphs) that the

number of closed walks of a partition P of edges induced by X in s is n(Os[X]) + 1. In our case we have

indeed |P| = 3 and n(Os[X]) = 2.

The pivot operation, which is recalled in the next section, has the property that it can map Os1
into Os2 for any two double occurrence strings s1 and s2 that correspond to Euler circuits of a 2-in,

2-out digraph G, see, e.g., the survey section of [6]. For example, the partition of edges induced by

{1, 3} in s corresponds to a single closed walk which may be described by the double occurrence

string s′ = 123625146543. It then holds that Os′ is obtained from Os by pivot on {1, 3}, denoted by

Os′ = Os ∗ {1, 3}. We notice that the partition induced by {1, 3} ⊕ {3, 4, 5, 6} = {1, 4, 5, 6} in s′ is
equal to thepartition P inducedby {3, 4, 5, 6} in sdepicted in Fig. 3. Hencen(Os∗Y[Y⊕X]) = n(Os[X])
for X = {3, 4, 5, 6} and Y = {1, 3}. In Theorem 5 below we prove this property for arbitrary X and Y

and for arbitrary square matrices (over some field) instead of restricting to overlap graphs Os.

4. Pivot

In this section we recall principal pivot transform (pivot for short) for square matrices over an

arbitrary field in general, see also [19].

Let A be a V × V-matrix (over an arbitrary field), and let X ⊆ V be such that the corresponding

principal submatrix A[X] is nonsingular, i.e., det A[X] �= 0. The pivot of A on X , denoted by A ∗ X , is

defined as follows. Let A =
⎛
⎝ P Q

R S

⎞
⎠ with P = A[X]. Then

A ∗ X =
⎛
⎝ P−1 −P−1Q

RP−1 S − RP−1Q

⎞
⎠ . (1)

Matrix S − RP−1Q is called the Schur complement of P in A.
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The pivot can be considered a partial inverse, as A and A ∗ X are related by the following equality,

where the vectors x1 and y1 correspond to the elements of X .

A

⎛
⎝ x1

x2

⎞
⎠ =

⎛
⎝ y1

y2

⎞
⎠ iff A ∗ X

⎛
⎝ y1

x2

⎞
⎠ =

⎛
⎝ x1

y2

⎞
⎠ . (2)

Eq. (2) is sufficient to define the pivot operation, see [19, Theorem 3.1]. Note that if det A �= 0, then

A ∗ V = A−1. Also note by Eq. (2) that the pivot operation is an involution (operation of order 2), and

more generally, if (A ∗ X) ∗ Y is defined, then it is equal to A ∗ (X ⊕ Y).

5. Nullity invariant

It iswell knownthat anySchur complement in amatrixAhas the samenullity asA itself, see, e.g., [22,

Section 6.0.1]. See moreover [22, Chapter 0] for a detailed historical account of the Schur complement.

We can rephrase the nullity property of the Schur complement in terms of pivot as follows.

Proposition 1 (Nullity of Schur complement). Let A be a V × V-matrix, and let X ⊆ V such that A[X]
is nonsingular. Then n(A ∗ X[V\X]) = n(A).

The following result is from [20, Theorem 3] and [17, Theorem 1] (the latter strengthened the

original result of the former), see also [10, Theorem 4.1.2].

Proposition 2. Let A be a V × V-matrix, and let X ⊆ V be such that A[X] is nonsingular. Then, for all
Y ⊆ V, det(A ∗ X)[Y] = det A[X ⊕ Y]/ det A[X].

As a consequence of Proposition 2 we have the following result.

Corollary 3. Let A be a V ×V-matrix, and let X ⊆ V be such that A[X] is nonsingular. Then, for all Y ⊆ V,

(A ∗ X)[Y] is nonsingular iff A[X ⊕ Y] is nonsingular.
We will now combine and generalize Proposition 1 and Corollary 3 to obtain Theorem 5 below.

We denote by A�X thematrix obtained from A by replacing every row vTx of A belonging to x ∈ V \X

by iTx where ix is the vector having value 1 at element x and 0 elsewhere.

Lemma 4. Let A be a V × V-matrix and X ⊆ V. Then n(A�X) = n(A[X]).

Proof. By rearranging the elements of V , A is of the following form

⎛
⎝ P Q

R S

⎞
⎠ where A[X] = P. Now

A�X is

⎛
⎝ P Q

0 I

⎞
⎠ where I is the identity matrix of suitable size. We have n(P) = n(A�X). �

We are now ready to prove the following result, which we refer to as the nullity invariant.

Theorem 5. Let A be a V × V-matrix (over some field), and let X ⊆ V be such that A[X] is nonsingular.
Then, for all Y ⊆ V, n((A ∗ X)[Y]) = n(A[X ⊕ Y]).
Proof. We follow the same line of reasoning as the proof in [17] of Proposition 2 (see also [10, Theo-

rem 4.1.1]). Let Ax = y. Then

((A�X)x)[i] =
{
y[i] if i ∈ X,

x[i] otherwise.
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As, by Eq. (2),

((A ∗ X)(A�X)x)[i] =
{
x[i] if i ∈ X,

y[i] otherwise,

we have, by considering each of the four cases depending onwhether or not i in X and i in Y separately,

(((A ∗ X)�Y)(A�X)x)[i] =
{
y[i] if i ∈ X ⊕ Y,

x[i] otherwise.

Thus we have ((A ∗ X)�Y)(A�X) = A�(X ⊕ Y). By Lemma 4, n(A�X) = n(A[X]) = 0, and therefore

A�X is invertible. Therefore n((A ∗ X)�Y) = n(A�(X ⊕ Y)), and the result follows by Lemma 4. �

By Theorem5,we see that the pivot operator∗X onmatrices and the symmetric difference operator

⊕X on sets have an equivalent effect on the nullity values of principal submatrices.

Note that Theorem 5 generalizes Corollary 3 as a matrix is nonsingular iff the nullity of that ma-

trix is 0 (the empty matrix is nonsingular by convention). One can immediately see that Theorem 5

generalizes Proposition 1.

Also note that by replacing Y by V \Y in Theorem 5, we also have, equivalently, n((A∗X)[X⊕Y]) =
n(A[Y]).

The “Nullity Theorem” [13, Theorem 2], restricted to square principal submatrices, states that if A

is an invertible V × V-matrix, then, for Y ⊆ V , n(A−1[Y]) = n(A[V \ Y]). Note that this is implied by

Theorem 5 as A ∗ V = A−1.

Example 6. Let V = {a, b, c} and let A be the V × V-matrix

⎛
⎝
a b c

a 1 2 5

b 1 4 2

c 3 2 1

⎞
⎠ over Q. We see that

A[{b, c}] =
(b c

b 4 2

c 2 1

)
and therefore n(A[{b, c}]) = 1. Moreover, for X = {a, b}, the columns of A[X]

are independent and thus n(A[X]) = 0. We have therefore that A ∗ X is defined, and it is given below.

A ∗ X =
⎛
⎝

a b c

a 2 −1 −8

b − 1
2

1
2

3
2

c 5 −2 −20

⎞
⎠.

By Theorem 5, we have n(A[{b, c}]) = n(A ∗ X[X ⊕ {b, c}]) = n(A ∗ X[{a, c}]). Therefore n(A ∗

X[{a, c}]) = 1. This can easily be verified given A ∗ X[{a, c}] =
( a c

a 2 −8

c 5 −20

)
.

It is easy to verify from the definition of pivot that A ∗ X is skew-symmetric whenever A is. In

particular, if G is a graph (i.e., a symmetric matrix over F2), then G ∗ X is also a graph. Recall that for

graphs, all matrix computations, including the determinant, will be over F2.

Example 7. Let G be the graph given on the left-hand side of Fig. 4. Let X = {1, 2, 3}. Then the X × X-

matrix belonging to G[X] is
⎛
⎝
1 2 3

1 0 0 1

2 0 1 1

3 1 1 1

⎞
⎠. We see that the columns of G[X] are independent (overF2)

and therefore det G[X] = 1. Consequently G ∗ X is defined and the graph is given on the right-hand
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Fig. 4. Graphs G and G ∗ X of Example 7.

side of Fig. 4. Let now Y = {1, 4}. We see that G[Y] is a discrete graph (i.e., the graph has no edges).

Therefore n(G[Y]) = 2. Nowby Theorem5,we have n(G[Y]) = n(G∗X[X⊕Y]) = n(G∗X[{2, 3, 4}]).
One may verify that removing vertex 1 from G ∗ X indeed obtains a graph of nullity 2.

6. Set systems

Let A be a V × V-matrix. Let MA = (V,D) be the set system with X ∈ D iff A[X] is nonsingular.
Set systemMA turns out to fulfill a specific exchange axiom if A is (skew-)symmetric, making it in this

case a delta-matroid [4] (we will not recall its definition here as we do not use this notion explicitly).

Let M = (V,D) be a set system. We define for X ⊆ V , the pivot (often called twist) of M on X ,

denoted M ∗ X , by (V,D ∗ X) where D ∗ X = {Y ⊕ X | Y ∈ M}. By Corollary 3 it is easy to verify,

see [14], that the operations of pivot on set systems and matrices match, i.e., MA ∗ X = MA∗X if the

right-hand side is defined (i.e., if X ∈ MA).

Theorem 5 allows now for a generalization of this result from the set system MA of nullity 0 to a

“sequence of set systems” PA for each possible nullity i. We formalize this as follows.

For a finite set V , we call a sequence P = (P0, P1, . . . , Pn) with n = |V | and Pi ⊆ 2V for all

i ∈ {0, . . . , n} a partition sequence (over V) if the nonempty Pi’s form a partition of 2V . Regarding P as

a vector indexed by {0, . . . , n}, we denote Pi by P[i]. Moreover, we define for partition sequence P and

X ⊆ V , the pivot of P on X , denoted by P ∗ X , to be the partition sequence (P0 ∗ X, P1 ∗ X, . . . , Pn ∗ X).
Also, we call the vector (|P0|, |P1|, . . . , |Pn|) of dimension n+1, denoted by ‖P‖, the norm of P. Clearly,

‖P‖ = ‖P ∗ X‖, i.e., the norm of P is invariant under pivot.

For a V ×V-matrix Awe denote by PA the partition sequence over V where X ∈ PA[i] iff n(A[X]) =
i. As nullity 0 corresponds to a non-zero determinant (this holds also for ∅ as det A[∅] = 1 by

convention), we have MA = (V,PA[0]).
We now have the following consequence of Theorem 5. Note that X ∈ PA[0] iff A ∗ X is defined.

Theorem 8. Let A be a V × V-matrix, and X ∈ PA[0]. Then PA∗X = PA ∗ X.

Proof. ByTheorem5wehave for all i ∈ {0, . . . , n},Y ∈ PA∗X[i] iffn((A∗X)[Y]) = i iffn(A[X⊕Y]) = i

iff X ⊕ Y ∈ PA[i] iff Y ∈ PA[i] ∗ X . �

Since the norm of a partition sequence is invariant under pivot, we have by Theorem 8, ‖PA‖ =
‖PA∗X‖. Therefore, for each i ∈ {0, . . . , n}, the number of principal submatrices of A of nullity i is

equal to the number of principal submatrices of A ∗ X of nullity i.

For X ⊆ V , it is easy to see that PA[X] is obtained from PA by removing all Y ∈ PA[i] containing at

least one element outside X: PA[X][i] = {Z ⊆ X | Z ∈ PA[i]} for all i ∈ {0, . . . , |X|}.
Example 9. For matrix A from Example 6, we have PA = (P0, P1, P2, P3) with P0 = 2V \ {{b, c}},
P1 = {{b, c}}, and P2 = P3 = ∅.

Example 10. For graph G from Example 7, depicted on the left-hand side of Fig. 4, we have PG =
(P0, P1, P2, P3, P4) with

P0 = {∅, {2}, {3}, {1, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 3, 4}},
P1 = {{1}, {4}, {1, 2}, {2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}},
P2 = {{1, 4}}, P3 = P4 = ∅.
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By Theorem 8 we have for G ∗ X with X = {1, 2, 3}, depicted on the right-hand side of Fig. 4,

PG∗X = (P′
0, P

′
1, P

′
2, P

′
3, P

′
4) where

P′
0 = {∅, {2}, {4}, {1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}},

P′
1 = {{1}, {3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3, 4}},

P′
2 = {{2, 3, 4}}, P′

3 = P′
4 = ∅.

We have ‖PG‖ = ‖PG∗X‖ = (8, 7, 1, 0, 0).

Example 11. In the context of Section 3, where matrix A an overlap graph Os for some double occur-

rence string s, we have that ‖POs
‖[i] is the number of partitions of the edges of the 2-in, 2-out digraph

D corresponding to s into closed walks of D, such that the number of closed walks is precisely i + 1.

The value ‖POs
‖[0] is therefore the number of Euler circuits in D.

7. Elementary pivots on graphs

In this section we consider pivot on graphs (i.e., symmetric V × V-matrices over F2), and thus all

matrix computations will be over F2. Hence for graph G,MG = (V,DG) is the set systemwith X ∈ DG

iff det(G[X]) = 1. Also, G can be (re)constructed givenMG . Indeed, {u} is a loop in G iff {u} ∈ DG , and{u, v} is an edge in G iff ({u, v} ∈ DG) ⊕ (({u} ∈ DG) ∧ ({v} ∈ DG)), see [7, Property 3.1]. Therefore,

the functionM(·) assigning to each graph G the set systemMG is an injective function from the family

of graphs to the family of set systems. In this way the family of graphs may be regarded as a subclass

of the family of set systems. Note thatMG ∗ X is defined for all X ⊆ V , while pivot on graphs G ∗ X is

defined only if X ∈ MG (or equivalently, ∅ ∈ MG ∗ X).

In this sectionwe recall from [14] that the pivot operation on graphs can be defined as compositions

of two graph operations: local complementation and edge complementation.

The pivots G ∗ X where X is a minimal element ofMG\{∅} w.r.t. inclusion are called elementary. It

is noted in [14] that an elementary pivot X on graphs corresponds to either a loop, X = {u} ∈ E(G), or
to an edge, X = {u, v} ∈ E(G), where both vertices u and v are non-loops. Thus for Y ∈ MG , if G[Y]
has elementary pivot X1, then Y \X1 = Y ⊕X1 ∈ MG∗X1 . In this way, each Y ∈ MG can be partitioned

Y = X1 ∪ · · · ∪ Xn such that G ∗ Y = G ∗ (X1 ⊕ · · ·⊕ Xn) = (· · · (G ∗ X1) · · · ∗ Xn) is a composition of

elementary pivots. Consequently, a direct definition of the elementary pivots on graphs G is sufficient

to define the (general) pivot operation on graphs.

The elementary pivot G ∗ {u} on a loop {u} is called local complementation. It is the graph obtained

fromG by complementing the edges in the neighbourhoodNG(u) = {v ∈ V | {u, v} ∈ E(G), u �= v} of
u inG: for each v,w ∈ NG(u), {v,w} ∈ E(G) iff {v,w} �∈ E(G∗{u}), and {v} ∈ E(G) iff {v} �∈ E(G∗{u})
(the case v = w). The other edges are left unchanged.

The elementary pivot G ∗ {u, v} on an edge {u, v} between distinct non-loop vertices u and v is

called edge complementation. For a vertex x consider its closed neighbourhood N′
G(x) = NG(x) ∪ {x}.

The edge {u, v} partitions the vertices of G connected to u or v into three sets V1 = N′
G(u) \ N′

G(v),
V2 = N′

G(v) \ N′
G(u), V3 = N′

G(u) ∩ N′
G(v). Note that u, v ∈ V3.

The graph G ∗ {u, v} is constructed by “toggling” all edges between different Vi and Vj: for {x, y}
with x ∈ Vi, y ∈ Vj and i �= j: {x, y} ∈ E(G) iff {x, y} /∈ E(G[{u, v}]), see Fig. 5. The other edges remain

unchanged. Note that, as a result of this operation, the neighbours of u and v are interchanged.

Example 12. Fig. 6 depicts an orbit of graphs under pivot. The figure also shows the applicable ele-

mentary pivots (i.e., local and edge complementation) of the graphs within the orbit.

Interestingly, in many contexts, principal pivot transform originally appeared in disguise. For ex-

ample, PPT was recognized in [15] as the operation underlying the recursive definition of the interlace

polynomial, introduced in [1]. We will consider the interlace polynomial in the next section. Also, e.g.,

the graphmodel defined in [12] within the formal theory of (intramolecular) gene assembly in ciliates
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Fig. 5. Pivoting on an edge {u, v} in a graph with both u and v non-loops. Connection {x, y} is toggled iff x ∈ Vi and y ∈ Vj with i �= j.

Note u and v are connected to all vertices in V3, these edges are omitted in the diagram. The operation does not affect edges adjacent

to vertices outside the sets V1, V2, V3, nor does it change any of the loops.

Fig. 6. The orbit of a graph under pivot. Only the elementary pivots are shown.

turns out to be exactly the elementary pivots, as noted in [8]. Furthermore, the proof of the result from

[9], connecting nullity to the number of cycles in permutations, as mentioned in Section 3, implicitly

uses the Schur complement (which is an essential part of PPT).

8. The interlace polynomial

The interlace polynomial is a graph polynomial introduced in [1,2]. We follow the terminology of

[3]. The single-variable interlace polynomial (simply called interlace polynomial in [2]) for a graph G

(with possibly loops) is defined by

q(G) = ∑
S⊆V

(y − 1)n(G[S]).

It is shown in [3] that the interlace polynomial fulfills an interesting recursive relation, cf. Proposi-

tion 16 below, which involves local and edge complementation. As we consider here principal pivot

transform, which generalizes local and edge complementation, it makes sense now to define the in-

terlace polynomial for V × V-matrices (over some arbitrary field) in general. Therefore, we define the

interlace polynomial for V × V-matrix A as

q(A) = ∑
S⊆V

(y − 1)n(A[S]).
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We may (without loss of information) change variables y := y − 1 in the definition of the interlace

polynomial to obtain

q′(A) = ∑
S⊆V

yn(A[S]).

As q(A) (and q′(A)) deals with nullity values for (square) matrices in general, one can argue that the

nullity polynomial is a more appropriate name for these polynomials.

We see that the coefficient ai of term aiy
i of q′(A) is equal to ‖PA‖[i] (the element of ‖PA‖ cor-

responding to i) for all i ∈ {0, . . . , n}. Therefore, we have for matrices A and A′, q(A) = q(A′) iff

q′(A) = q′(A′) iff ‖PA‖ = ‖PA′ ‖.
Example 13. Let Os be the overlap graph for some double occurrence string s, and let ai be the coeffi-

cient ai of term aiy
i of q′(Os). We have, see Example 11, that ai is equal to the number of partitions of

the edges of the 2-in, 2-out digraph D corresponding to s into closed walks of D, such that the number

of closedwalks is precisely i+1. More specifically, a0 is the number of Euler circuits inD. The interlace

polynomial is originally motivated by the computation of these coefficients ai of 2-in, 2-out digraphs,

see [2].

It is shown in [2] that the interlace polynomial (for graphs) is invariant under edge complemen-

tation. Moreover, by it may be easily deduced from [3, Theorem 6] that the interlace polynomial is

invariant under local complementation as well. Theorem 8 generalizes invariance under edge and

local complementation to invariance under pivot: ‖PA∗X‖ = ‖PA‖ and equivalently q(A ∗ X) = q(A).
Furthermore, we show that q(A) fulfills the following recursive relation.

Theorem 14. Let A be a V × V-matrix (over some field), let X ⊆ V with A[X] nonsingular, and let u ∈ X.

We have q(A) = q(A \ u) + q(A ∗ X \ u).

Proof. Let PA = (P0, P1, . . . , Pn). Since X is nonempty and A[X] is nonsingular, Pn = ∅. Let R =
(P0, P1, . . . , Pn−1). Let Z ∈ Pi for some i ∈ {0, 1, . . . , n − 1}. We have that Z does not appear in PA\u
iff u ∈ Z iff u �∈ Z ⊕ X iff Z ⊕ X does appear in PA∗X\u. Hence ‖R‖ = ‖PA\u‖ + ‖PA∗X\u‖ (point-wise

addition of the two vectors), and the statement holds. �

Example 15. Consider again matrix A from Example 6. By Example 9, ‖PA‖ = (7, 1, 0, 0). Hence
q(A) = (y − 1) + 7 = y + 6.

Given Example 9, we have

PA\b = ( {∅, {a}, {c}, {a, c}}, ∅, ∅ ).

Moreover, {a, b} ∈ PA[0] and
PA∗{a,b}\b = ( {∅, {a}, {c}}, {{a, c}}, ∅ ).

We have thus ‖PA\b‖ + ‖PA∗{a,b}\b‖ = (4, 0, 0) + (3, 1, 0) = (7, 1, 0) which indeed corresponds to

‖PA‖. Moreover, q(A \ b) = 4, and q(A ∗ {a, b} \ b) = y + 2. Consequently, q(A) = q(A \ b) + q(A ∗
{a, b} \ b), as required.

The recursive relation for the single-variable interlace polynomial in [3] is noweasily obtained from

Theorem 14 by restricting to the case of elementary pivots on graphs. 1

Proposition 16 ([3]). Let G be a graph. Then q(G) fulfills the following conditions.

1 We use here the fact observed in [15] that the operations in the recursive relations of [3] are exactly the elementary pivots of

Section 7, assuming that the neighbours of u and v are interchanged after applying the “pivot” operation of [3] on edge {u, v}.
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1. q(G) = q(G \ u) + q(G ∗ {u, v} \ u) for edge {u, v} in G where both u and v do not have a loop,

2. q(G) = q(G \ u) + q(G ∗ {u} \ u) if u has a loop in G, and

3. q(G) = yn if G is a discrete graph with n vertices.

Proof. Conditions (1) and (2) follow from Theorem 14 where A is a graph G, and X is an elementary

pivot (i.e., X = {u} is a loop inG or X = {u, v} is an edge inGwhere both u and v do not have a loop, see

Section 7). Finally, if G is a discrete graph with n vertices, then, for all Y ⊆ V , Y ∈ P|Y |. Consequently,
|Pi| =

(
n

i

)
. Thus, q′(G) = (y + 1)n and therefore q(G) = yn. �

Example 17. Consider again graph G depicted on the left-hand side of Fig. 4. By Example 10, ‖PG‖ =
(8, 7, 1, 0, 0) and hence q(G) = (y − 1)2 + 7(y − 1) + 8 = y2 + 5y + 2.

Vertex 2 of G has a loop. Therefore, we may apply local complementation on 2 to obtain graph

G ∗ {2}. The graph G ∗ {2} \ 2 now has the following partition sequence

PG∗{2}\2 = ( {∅, {4}, {1, 3}, {1, 3, 4}}, {{1}, {3}, {1, 4}, {3, 4}}, ∅, ∅ ).

From PG given in Example 10, we find that

PG\2 = ( {∅, {3}, {1, 3}, {3, 4}}, {{1}, {4}, {1, 3, 4}}, {{1, 4}}, ∅ ).

We have thus ‖PG\2‖ + ‖PG∗{2}\2‖ = (4, 3, 1, 0) + (4, 4, 0, 0) = (8, 7, 1, 0) which indeed cor-

responds to ‖PG‖. Moreover, q(G \ 2) = y2 + y + 2, and q(G ∗ {2} \ 2) = 4y. Consequently,

q(G) = q(G \ 2) + q(G ∗ {2} \ 2).

9. Discussion

We have shown that the pivot operator ∗X on matrices A and the symmetric difference operator

⊕X on sets Y have an equivalent effect w.r.t. the nullity value of the principal submatrices A[Y] of A.
This nullity invariant may be described in terms of partition sequences PA, where each set Y ⊆ V

is arranged according to the nullity value of A[Y]. We notice that interlace polynomial of a graph G

corresponds to the norm ‖PG‖ of the partition sequence of G (where G is considered as a matrix).

Hence we (may) naturally consider interlace polynomials for square matrices in general, and obtain a

recursive relation for these generalized interlace polynomials. As a consequence, we simplify the proof

of the (original) recursive relation for interlace polynomials of graphs.
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