1,782 research outputs found

    Bilevel programming for analysis of low-complexity control of linear systems with constraints

    Get PDF
    In this paper we use bilevel programming to find the maximum difference between a reference controller and a low-complexity controller in terms of the infinity-norm difference of their control laws. A nominal MPC for linear systems with constraints, and a robust MPC for linear systems with bounded additive noise are considered as reference controllers. For possible low-complexity controllers we discuss partial enumeration (PE), Voronoi/closest point, triangulation, linear controller with saturation, and others. A small difference in the norm between a low-complexity controller and a robust MPC may be used to guarantee closed-loop stability of the low-complexity controller and indicate that the behaviour or performance of the low-complexity controller will be similar to that of the reference one. We further discuss how bilevel programming may be used for closed-loop analysis of model reduction

    Bilevel programming for analysis of low-complexity control of linear systems with constraints

    Full text link

    Time and Location Aware Mobile Data Pricing

    Full text link
    Mobile users' correlated mobility and data consumption patterns often lead to severe cellular network congestion in peak hours and hot spots. This paper presents an optimal design of time and location aware mobile data pricing, which incentivizes users to smooth traffic and reduce network congestion. We derive the optimal pricing scheme through analyzing a two-stage decision process, where the operator determines the time and location aware prices by minimizing his total cost in Stage I, and each mobile user schedules his mobile traffic by maximizing his payoff (i.e., utility minus payment) in Stage II. We formulate the two-stage decision problem as a bilevel optimization problem, and propose a derivative-free algorithm to solve the problem for any increasing concave user utility functions. We further develop low complexity algorithms for the commonly used logarithmic and linear utility functions. The optimal pricing scheme ensures a win-win situation for the operator and users. Simulations show that the operator can reduce the cost by up to 97.52% in the logarithmic utility case and 98.70% in the linear utility case, and users can increase their payoff by up to 79.69% and 106.10% for the two types of utilities, respectively, comparing with a time and location independent pricing benchmark. Our study suggests that the operator should provide price discounts at less crowded time slots and locations, and the discounts need to be significant when the operator's cost of provisioning excessive traffic is high or users' willingness to delay traffic is low.Comment: This manuscript serves as the online technical report of the article accepted by IEEE Transactions on Mobile Computin

    A new solution algorithm for solving rule-sets based bilevel decision problems

    Full text link
    Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd. Bilevel decision addresses compromises between two interacting decision entities within a given hierarchical complex system under distributed environments. Bilevel programming typically solves bilevel decision problems. However, formulation of objectives and constraints in mathematical functions is required, which are difficult, and sometimes impossible, in real-world situations because of various uncertainties. Our study develops a rule-set based bilevel decision approach, which models a bilevel decision problem by creating, transforming and reducing related rule sets. This study develops a new rule-sets based solution algorithm to obtain an optimal solution from the bilevel decision problem described by rule sets. A case study and a set of experiments illustrate both functions and the effectiveness of the developed algorithm in solving a bilevel decision problem

    Bilevel optimisation with embedded neural networks: Application to scheduling and control integration

    Full text link
    Scheduling problems requires to explicitly account for control considerations in their optimisation. The literature proposes two traditional ways to solve this integrated problem: hierarchical and monolithic. The monolithic approach ignores the control level's objective and incorporates it as a constraint into the upper level at the cost of suboptimality. The hierarchical approach requires solving a mathematically complex bilevel problem with the scheduling acting as the leader and control as the follower. The linking variables between both levels belong to a small subset of scheduling and control decision variables. For this subset of variables, data-driven surrogate models have been used to learn follower responses to different leader decisions. In this work, we propose to use ReLU neural networks for the control level. Consequently, the bilevel problem is collapsed into a single-level MILP that is still able to account for the control level's objective. This single-level MILP reformulation is compared with the monolithic approach and benchmarked against embedding a nonlinear expression of the neural networks into the optimisation. Moreover, a neural network is used to predict control level feasibility. The case studies involve batch reactor and sequential batch process scheduling problems. The proposed methodology finds optimal solutions while largely outperforming both approaches in terms of computational time. Additionally, due to well-developed MILP solvers, adding ReLU neural networks in a MILP form marginally impacts the computational time. The solution's error due to prediction accuracy is correlated with the neural network training error. Overall, we expose how - by using an existing big-M reformulation and being careful about integrating machine learning and optimisation pipelines - we can more efficiently solve the bilevel scheduling-control problem with high accuracy.Comment: 18 page

    Integer Bilevel Linear Programming Problems: New Results and Applications

    Get PDF
    Integer Bilevel Linear Programming Problems: New Results and Application

    Integer Bilevel Linear Programming Problems: New Results and Applications

    Get PDF
    Integer Bilevel Linear Programming Problems: New Results and Application
    • …
    corecore