
Bilevel programming for analysis of low-complexity control of linear
systems with constraints

Henrik Manum†, Colin N. Jones‡, Johan L̈ofberg⋆, Manfred Morari‡, and Sigurd Skogestad†,∗

Abstract— In this paper we use bilevel programming to
find the maximum difference between a reference controller
and a low-complexity controller in terms of the infinity-
norm difference of their control laws. A nominal MPC for
linear systems with constraints, and a robust MPC for linear
systems with bounded additive noise are considered as reference
controllers. For possible low-complexity controllers we discuss
partial enumeration (PE), Voronoi/closest point, triangulation,
linear controller with saturation, and others. A small difference
in the norm between a low-complexity controller and a robust
MPC may be used to guarantee closed-loop stability of the
low-complexity controller and indicate that the behaviour or
performance of the low-complexity controller will be similar
to that of the reference one. We further discuss how bilevel
programming may be used for closed-loop analysis of model
reduction.

Index Terms— bilevel programming, closed-loop analysis,
optimal control

I. INTRODUCTION

Bemporad et. al. [1] introduced an explicit solution of the
model predictive control (MPC) problem for control oflinear
systems with constraintsusing a quadratic performance in-
dex. Later these results have been extended to cover a broader
class of systems and performance objectives, see [2] for a
survey.

The main drawback of explicit MPC is that the control
law, due to the combinatorial nature of the problem, can grow
exponentially with the size of the optimal control problem
[3].

Alessio and Bemporad [2] proposed to reduce complexity
of explicit MPC by either storing only theL regions with
the highest Chebysev radius (if a full explicit solution is
available), or to run extensive simulations of closed-loop
MPC and collect theL most recurrent combinations of active
constraints for implementation, similar to [4]. (Storing only
a subset of the possible regions of a MPC and using them
for implementation is called partial enumeration (PE).)

Pannocchia et. al. [4] recently reported that by using a PE
policy on an industrial example with more than 250 states,
32 inputs and a 25-sample control horizon, small look-up
tables with only 25-200 entries gave a control that was less
than 0.01% suboptimal compared to the full model predictive

†H. Manum and S. Skogestad are with Department of Chemical Engineer-
ing, Norwegian University of Science and Technology, N-7491 Trondheim,
Norway.

‡C. Jones and M. Morari are with ETH Zürich, Automatic Control
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controller (MPC) for the same example. The MPC could
theoretically enter3800 = 4.977 × 10381 regions.

In this paper we use bilevel programming to investigate
the PE-schemes described above, but also more general
low-complexity policies. The main idea is to calculate the
maximum difference between a either a nominal or a robust
MPC and the low-complexity policy, and then, based on
this difference, draw conclusions about the proposed low-
complexity controller.

In addition to guarantees of feasibility and stability the
method can be used to give bounds on the sub-optimality
of the low-complexity scheme, by using the value of the
objective function of the reference controller as a difference-
metric of the reference and low-complexity controller.

II. NOTATION AND PRELIMINARIES

A polyhedron is the intersection of a finite number of
halfspaces and apolytope is a bounded polyhedron. Given
two setsS1, S2 ⊆ R

n the Minkowski sum is defined as
S1 ⊕ S2 , {s1 + s2|s1 ∈ S1, s2 ∈ S2}, and the Pontryagin
difference asS1 ⊖ S2 , {s1|s1 + s2 ∈ S1, s2 ∈ S2}. Bold-
facex andu means the sequencesx = (x0, x1, . . . , xN ) and
u = (u0, u1, . . . , uN−1), while boldface1 is a vector of1’s
of appropriate length.

We consider control of the following discrete-time linear
system

x+ = Ax + Bu, (1)

wherex ∈ R
nx are the states andu ∈ R

nu are the inputs, and
x+ above is a short-hand notation forxk+1 = Axk + Buk.
In addition we have constraints such thatx ∈ X andu ∈ U,
whereX = {x | Fx ≤ f} ⊂ R

nx andU = {u | Gu ≤ g} ⊂
R

nu are polytopic sets.
The solution of an explicit MPC with quadratic objective,

linear process and polytopic constraints, can be written
as a piecewise affine function of the state. A piecewise
affine function u(x) : X 7→ R

nu , where X ⊂ R
nx is

a polyhedral set, is piecewise affine if it is possible to
partitionX into convex polyhedral regions,CRi, andz(x) =
Kix + ci, ∀x ∈ CRi [1]. In this paper “region” denotes
CRi, written “region i”, and (Ki, ci) is the corresponding
optimal control law, i.e. the part ofu(x) that belongs to
CRi. In order to conform with notation used in [2], we use
Li =

{
x ∈ R

nx | Aix ≤ bi
}

in the place ofCRi.

III. BILEVEL OPTIMIZATION

The main focus of this paper is the application of bilevel
optimization for analysis of low-complexity controllers.Here
we give an introduction to bilevel optimization and solution
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methods, following [5]. For more background details the
reader is referred to a recent survey [6].

Bilevel problems are hierarchical in that the optimization
variables(y, z) are split into uppery and lower z parts,
with the lower level variables constrained to be an optimal
solution to a secondary optimization problem:

min
y

VU (y, z)

subject toGU (y, z) ≤ 0

z = arg min
z

VL(y, z)

subject toGL(y, z) ≤ 0

(2)

In this paper we will only consider problems where the
lower-level problem has an unique optimizer. Moreover, we
will usually have two low-level problems, one for the refer-
ence controller and one for the low-complexity controller.

A. Solution methods

If the lower level problem is convex and regular, then it
can be replaced by its necessary and sufficient Karush-Kuhn-
Tucker (KKT) conditions, yielding a standard single-level
optimization problem [5]:

min
y,z,λ

VU (y, z)

subject toGU (y, z) ≤ 0

GL(y, z) ≤ 0

λ ≥ 0

λTGL(y, z) = 0

∇zL(y, z, λ) = 0

(3)

whereL(y, z, λ) := GL(y, z)+λTGL(y, z) is the Lagrangian
function associated with the lower-level problem. For the
special case of linear constraints and a quadratic cost, all
constraints of (3) are linear and the complimentary condition
λTGL(y, z) = 0 is a set of disjunctive linear constraints,
which can be described using binary variables, and thus leads
to a mixed-integer linear problem.

B. Bilevel optimization for analysis of controllers

In this paper we use bilevel programming to find the
maximal difference between a reference controller and a low-
order controller. Hence, for a subsetX ⊂ R

nx , we solve

max
x∈X

d(uref, ulow-complexity)

subject toKKT(reference controller)

KKT(low-complexity controller)

(4)

Typically, X is the intersection of the feasible states for the
reference and the low-complexity controller.

Note that explicit solutions of neither the reference nor the
low-complexity controllers are needed, because the solutions
are implicitly given by the KKT conditions.

The distance measured(uref, ulow-complexity) can be, for
example, the difference between the next state,

d(uref, ulow-complexity) =

‖x+
ref(x, uref) − x+

low-complexity(x, ulow-complexity)‖∞ =

‖Buref − Bulow-complexity‖∞,

(5)

but also differences between trajectories of either statesor
inputs.

Remark 1:We observe that (5) renders (4) non-convex
due to the termmax ‖t‖∞ (where t is a convex function
of (uref, ulow-complexity)) . However, the problem may be
converted into a mixed integer linear program (MILP) using
a standard technique (e.g. [7]), in which we introduce binary
variablesni, pi for each element oft and add the condition
that the binary variablepi is one if ‖t‖∞ = ti and ni is
one if ‖t‖∞ = −ti. The method adds only linear and binary
conditions to (4) and therefore the overall problem remains
a MILP [5].

IV. APPLICATIONS OF BILEVEL PROGRAMMING
FOR ANALYSIS OF LOW-COMPLEXITY

CONTROLLERS

We first present a nominal MPC policy based on opti-
mizing a quadratic performance objective subject to a linear
model of the process at and a set of polytopic constraints on
both states and inputs. We thereafter present a robust MPC,
where the process is subject to bounded disturbances on the
states. Both these schemes fit into the bilevel problem as a
reference controller.

The choice of which reference controller to use depends on
the problem at hand, as this defines a benchmark for control
of the process. The robust MPC scheme can be used to give
a feasibility and stability certificate of the low-complexity
scheme. However, in some cases the robust MPC can be
quite conservative, and the nominal MPC may be a better
benchmark.

Thereafter we show how several low-complexity polices
can be expressed in the bilevel framework. The main “tool”
we use here is to represent any logic and bilinear terms in
the KKT-conditions with mixed integer linear constraints in
order to let the resulting problem be a MILP.

A. Nominal MPC as reference controller

Consider the following semi-infinite horizon optimal con-
trol problem [5]:

min
x,u

J(x,u) =
1

2
xT

NPxN + . . .

+
1

2

N−1∑

i=0

uT
i Rui + xT

i Qxi,

subject toxi+1 = Axi + Bui, ∀i = 0, . . . , N − 1,

xi ∈ X, ∀i = 1, . . . , N − 1,

ui ∈ U, ∀i = 0, . . . , N − 1,

xN ∈ XN ,

x0 = x.

(6)

HereXN = {x | Hx ≤ h} ⊂ X is a polytopic invariant set
for the systemx+ = Ax+Bµ(x) for some given control law
µ : R

nx 7→ R
nu . FurtherP ∈ R

nx×nx and Q ∈ R
nx×nx

are positive definite matrices andR ∈ R
nu×nu is a positive

semi-definite matrix. We defineX ⊂ R
nx to be the set of

statesx for which there exists a feasible solution to (6).



If u
∗(x) is the optimal input sequence of (6) for the state

x, and u∗
0(x) is the resulting control law, then stability of

the systemx+ = Ax+Bu∗
0(x) can be established under the

assumption thatVN (x) = xTPx is a Lyapunov function for
the systemx+ = Ax+Bµ(x) and that the decay rate ofVN

is greater than the stage costl(u, x) = uTRu+xTQx within
the setXN [5].

By using xk = Akx0 +
∑k−1

j=0 AjBuk−1−j the MPC
problem (6) can be rewritten as [1]:

V (x0) =
1

2
xT

0Y x0 + . . .

+ min
U

{
1

2
UTHU + xT

0FU,

subject to GU ≤ W + Ex0},

(7)

whereUT =
[
uT

0 uT
1 · · · uT

N−1

]
.

We want to use (7) as a lower-level problem in bilevel
programming. The following equations define the KKT con-
ditions for this problem:

HU + F Tx0 + GTλ = 0

GU − W − Ex0 ≤ 0

λ ≥ 0

λ ≤ Ms

GU − W − Ex0 ≥ −M(1 − s)

(8)

Here s ∈ {0, 1}
nW , wherenW is the number of inequality

constraints in (7). The two last equations in (8) correspondto
the complementary conditionλTGL(y, z) = 0 in the general
bilevel problem, here described with binary variabless. M

is a constant that is large enough such that the solution to (8)
corresponds to the solution of (7). (This is called a “big-M ”
formulation.)

B. Robust MPC as reference controller

In this subsection the results are from Mayne et. al. [8]
unless otherwise noted.

Consider control of the linear system (1) withadditive
disturbancesw on the states:

x+ = Ax + Bu + w. (9)

The disturbance is assumed to be bounded,

w ∈ W, (10)

whereW is compact and contains the origin (but may not
have an interior).

SupposeK ∈ R
nu×nx is such thatAK , A + BK is

stable. LetZ be a disturbance invariant set for the controlled
uncertain systemx+ = AKx + w satisfying, therefore

AKZ ⊕ W ⊆ Z. (11)

We use the following proposition as a basis for the robust
MPC:

Proposition 1: SupposeZ is disturbance invariant for
x+ = AKx + w. If x ∈ x̄⊕Z andu = ū + K(x− x̄), then
x+ ∈ x̄+ ⊕ Z for all w ∈ W wherex+ = Ax + Bu + w

and x̄+ = Ax̄ + Bū.

Proposition 1 states that the feedback policyu = ū +
K(x − x̄) keeps the statesx of the uncertain system (9)
close to the states̄x of the so-called nominal system̄x+ =
Ax̄ + Bū.

We can now define the robust MPC problem:

min
x̄,ū

J(x̄, ū) =
1

2
x̄T

NP x̄N + . . .

+
1

2

N−1∑

i=0

ūT
i Rūi + x̄T

i Qx̄i,

subject tox̄i+1 = Ax̄i + Būi, ∀i = 0, . . . , N − 1,

x̄i ∈ X ⊖ Z, ∀i = 1, . . . , N − 1,

ūi ∈ U ⊖ KZ, ∀i = 0, . . . , N − 1,

x̄N ∈ Xf ,

x̄0 = x ⊕ Z.

(12)

In order to achieve closed loop robust stability, the ter-
minal constraint setXf must satisfy the following axioms
[8]:

A1 : AKXf ⊂ Xf , Xf ⊂ X ⊖ Z, KXf ⊂ U ⊖ KZ

A2 : Vf (Akx) + l(x,Kx) ≤ Vf (x), ∀x ∈ Xf ,
(13)

whereVf (v) = vTPv and l(v, z) = vTQv + uTRu in the
scope of this paper.

Assume that Z is a polytopic set such that
{v ∈ R

nx | Hzv ≤ kz}.
As for the nominal MPC, we can rewrite the robust MPC

problem as:

min
(U,x̄0)

[
UT

x̄T
0

]T [
H F T

F 2Y

]

︸ ︷︷ ︸

H̃

[
U

x̄0

]

subject to

[
G −E

0 −Hz

]

︸ ︷︷ ︸

G̃

[
U

x̄0

]

≤

[
W

kz

]

︸ ︷︷ ︸

W̃

+

[
0

−Hz

]

︸ ︷︷ ︸

Ẽ

x

(14)

Let v = (U, x̄0). The KKT-conditions corresponding to (14)
are

H̃v + G̃λ = 0

G̃v ≤ W̃ + Ẽx

λ ≥ 0

λ ≤ Ms

G̃v ≥ W + Ex − M(1 − s)

(15)

Note that the KKT conditions in (8) are a special case of
the KKT-conditions above, since abovēx0 is included as a
degree of freedom. For both nominal and robust MPC the
current statex is a parameter driving the controller, but for
the nominal MPC we have substituted this withx0, asx0 = x

is a constraint in the nominal MPC formulation.
The main motivation for using robust MPC as a reference

rather than nominal MPC is because the robust MPC can be
used to prove feasibility and stability of the low-complexity



scheme. Both properties can be established using the follow-
ing proposition:

Proposition 2: Consider the linear system for which ro-
bust stability and feasibility are guaranteed by the robust
MPC:

x+ = Ax + Bu + w, w ∈ W,

and that
W = {w ∈ R

nx | ‖w‖∞ ≤ ε}

Let ul-c be the control input from the low-complexity
controller, andurMPC the input from the robust MPC. The fol-
lowing holds for the system controlled by the low-complexity
controller:

x+ = Ax + Bul-c

= Ax + Bul-c − BurMPC + BurMPC

= Ax + BurMPC + B(ul-c − urMPC).

(16)

Hence, if
‖B(ul-c − urMPC)‖∞ ≤ ε, (17)

the low-complexity controller is both feasible and stable.

C. Low-complexity controllers as low-level problems in
bilevel programming

In this section we describe various low-complexity con-
trollers that fit into the bilevel programming framework. Sev-
eral more are possible, but not included for space restrictions.

1) Linear quadratic regulator with saturation:A simple
low-complexity control policy is the linear quadratic regu-
lator (LQR) with saturation. In the “unconstrained region”
this is optimal, and its behaviour can be modelled using
few binary variables. First, we definêuLQR = −Kx. For
simplicity we assume that the constraints onu may be written
as

ul
i ≤ ui ≤ uh

i , i = 1, . . . , nu (18)

Now, for each row in (18), we define a corresponding binary
vector di ∈ {0, 1}

3. The saturation can now be modelled
using

ui ≤ uh
i + Mdi

1,

ui ≥ ul
i − Mdi

3,

di
1 + di

2 + di
3 = 1,

−M(1 − di
k) ≤ sat(ui) − {ui}k ≤ M(1 − di

k),

k = 1, 2, 3,

(19)

where{ui} =
{
uh

i , ui, u
l
i

}
, and {ui}k is the k’th element

of {ui}.
2) Partial enumeration (PE):Here we follow the ideas of

[4] and [2], and we store only a subset of the possible active
sets. The controller implementation is here to first locate the
closest region to the current statex, and then use the control
law from the corresponding region. In order to satisfyu ∈ U,
we saturate the input before applying the input to the plant.

Here we use theminimal-violation distancefrom Christo-
phersen et. al. [9] to find the closest region for a setL of
stored polytopes.

Definition 1: (Minimal-violation distance [9]) Let the
collection L be the setL = {Li}

NL
i=1, where Li :=

{
x ∈ R

nx | Aix ≤ bi
}

are full-dimensional polyhedra in
R

nx . We assume thatAix ≤ bi are on Hessian normal form,
i.e. each row[Ai]r of Ai is normalized with‖[Ai]r‖2 = 1.

The minimal-violation distancedMV of x to L is given by

dMV := min
i

{α∗
i (x)} , (20)

where

α∗
i (x) = arg min

{
αi ∈ R | Aix ≤ bi + αi1

}
, (21)

for all i = 1, . . . , NL and1 = [1 · · · 1]T.
The solution of the LP (21) can be found using the KKT

conditions:

1 − 1
Tλi = 0,

0 ≤ λi ≤ Msi,

0 ≤ b + αi1 − Aix ≤ M(1 − si),

(22)

wheresi ∈ {0, 1}
n

bi is a vector of binary variables of length
corresponding to the number of faces in the polytopeLi =
{
x ∈ R

nx | Aix ≤ bi
}

.
Let β ∈ {0, 1}

nL be binary variables such that

βi = 1 ↔ αi ≤ αj ∀j 6= i, (23)

which implies that
∑

βi = 1. We can then define the PE
control law as

û = sat

{
nL∑

i=1

βi

(
Kix + ci

)

}

, (24)

where (Ki, ci) is the optimal feedback in regioni, and
sat {·} is a normal saturation function. Equation (24) is
bilinear in the optimization variablesβi, x, and can be
implemented in the bilevel framework with the following
equations (added as constraints in the problem):

−M(1 − βi) ≤ û − (Kix + ci) ≤ M(1 − βi). (25)

Remark 2:The proposed PE-scheme, which follows from
[9], can be implemented on-line as follows:

αi = max
{
Aix − bi

}
, i = 1, . . . , L

i∗ = arg min
i

{αi}
(26)

3) Delaunay triangulation:Assume that for some points
(x1, . . . , xnL

) we precompute a Delaunay triangulation. In
addition we store the optimal input(u∗

1, . . . , u
∗
nL

) at those
points. A Delaunay triangulation can be understood by the
empty circle method [10]: Consider all triangles formed by
the points such that the circumcircle of each triangle is empty
of other sites, where the sites in this case are the stored points
(x1, . . . , xnL

).
The Delaunay triangulation of the points(x1, . . . , xnD

)
can be used to find an interpolated control law:

• Denote the triangles from the Delaunay triangulation by
L1, . . . , LnD

.
• For a given statex:

1) Find the current triangleLi that containtsx.



2) Expressx as a convex combination of the vertices
of Li, x =

∑
λkxi

k, wherexi
k denotes the vertices

of Li

• Implement the following interpolated control law:

uDelaunay=
∑

λku
∗,i
k , (27)

whereu
∗,i
k are the optimal inputs corresponding to the

pointsxi
k.

The Delaunay triangulation itself can be implicitly defined
using the following set of equations, which can be added as
mixed-integer linear constraints to the overall problem:

x =
∑

λixi, , λi ≥ 0,
∑

λi = 1,

λ ≤ σi,
∑

σi = n + 1

‖c − xi‖
2
2 ≤ ‖c − xj‖

2
2 + Mσj + M(1 − σi),

(28)

where the last equation can be rewritten as

�
�cTc−2xT

i
︸ ︷︷ ︸

aT
i

c + xT
i xi

︸︷︷︸

bi

≤�
�cTc−2xT

j
︸ ︷︷ ︸

aT
j

c + xT
j xj

︸︷︷︸

bj

+ . . .

· · · + Mσj + M(1 − σi)

aT
i c + bi ≤ aT

j c + bj + Mσj + M(1 − σi)

(29)

Herec ∈ R
nx is an extra optimization variable,σ ∈ {0, 1}

nL

is a vector of binaries andM is a large constant.
We note that the last equation of (28) is an expression for

the “empty-circle method”.

V. EXAMPLES

In this section we show two examples where we use
the bilevel programming to identify the worst-case dis-
tance between a reference controller and a proposed low-
complexity controller. The calculations where done using
ILOG CPLEX R© and the problems were written in YALMIP

[7]. Set calculations and explicit solution of MPC’s were
done using Multi-Parametric Toolbox (MPT) [11].

Example 1: Double integrator with nominal MPC as refer-
ence controller and PE as low-complexity controller

In this example we consider the double integrator de-
scribed in [1], example 7.3, but with a sample time of
Ts = 0.1 in order to match the conditions in [2]. The process
is hence

x+ =

[
1 0.1
0 1

]

︸ ︷︷ ︸

A

x +

[
0

0.1

]

︸ ︷︷ ︸

B

u, −1 ≤ u ≤ 1
(30)

The control parameters areN = 8, Q = [ 1 0
0 0 ] and R =

0.1. The final weightP corresponding to the LQR controller
is P = [ 8.98 3.59

3.59 2.86 ]
The nominal MPC problem is now:

min
x,u

xT
8Px8 +

7∑

i=0

xT
i Qxi + Ru2

i

subject toxk+1 = Axk + Buk, k = 0, . . . , 7

x0 = x

−1 ≤ uk ≤ 1, k = 0, 1 . . . , 7

(31)

We do not add any terminal constraint onxN as we want to
compare our results with [2].

We want to compare the nominal MPC to a PE-scheme,
hence we want to solve

max
x∈X

‖B(u∗ − û)‖∞

subject toαi = arg min
α

α

subject toAix ≤ bi + αi1

βi =

{

1, αi ≤ αj ∀j 6= i

0, otherwise

ũ =
∑

i=1,··· ,L

βi(K
ix + ci),

û = sat(ũ)

u∗ = arg min (31)

(32)

This problem can be rewritten to a MILP using (22) for
the minimal violation distance.

The main focus of this paper is to calculate the difference
between two controllers, but we may also use this method
for controller synthesis. This can be achieved by:

• Solve (32) to get the worst point in the state spacex∗

and the worst case norm‖B(u∗ − û)‖∞ = ‖x∗,+ −
x̂+‖∞.

• Add the corresponding region and corresponding opti-
mal control law to the PE-controller.

• Resolve (32) and add the corresponding worst-case
region until the worst-case norm is less than a user-
defined value or the number of regions in the PE is
larger than a user-defined value.

This example can be solved explicitly using MPT. The
full enumeration is shown in the upper right part of figure
1. In order to test our software we started out with an initial
PE controller using the 3 largest regions, shown in the top-
left part of figure 1. The lower part of the figure shows
the maximum difference between the reference controller
(nominal MPC) and the PE-controller. We then performed
iterations as described above, at each iteration we added
the region corresponding to the worst case pointx∗. One
observes that initially the difference is equal to the maximum
possible difference, asB = [ 0

0.1 ] and‖u‖ ≤ 1. However, as
we add regions to the PE controller the difference decreases
to quite low levels.

Note that even though the full enumeration was available
for this example, we do not use this solution while solving
(32), rather we use the KKT-conditions of the corresponding
MPC problem.

Closed-loop simulations, even from the worst case points,
shows very small difference between the nominal MPC and
the PE, also for quite high values of the worst-case norm,
and are not included here for brevity.

Example 2: Double integrator with robust MPC as reference
controller

For the same process as in Example 1, with the same
objectives for the controller, we designed a robust MPC using



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

Initial PE

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

Final PE

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

Full enumeration

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

‖
B

(u
n
o
m

−
u

P
E
)‖

∞

1

Iterations

Fig. 1. Example 1: double integrator.

the method described in section IV-B, and we use this one as
the reference controller. The motivation for using the robust
MPC rather than the nominal MPC is because we can verify
closed-loop stability of the low-complexity scheme, given
that ‖B(urobust− ulow-complexity)‖∞ ≤ ‖w‖∞.

A box constraint onw was used such that‖w‖∞ ≤ 0.01,
and we used the algorithm from Rakovic̀ et. al. [12] to
computeZ, and in order to computeXf we used MPT.
We wanted to use this robust controller to prove closed-
loop nominal stability of the PE-controller from Example
1. However, we observed thatmaxx∈X ‖B(urobust MPC−
unominal MPC)‖∞ was growing faster than‖w‖∞, i.e. the
robust MPC was very conservative with increasing‖w‖∞.
Since the PE-controller from Example 1 is close to the
nominal MPC, it is clear that we cannot use the robust MPC
scheme to prove stability of the PE-scheme, moreover we can
not even use it to prove closed-loop stability of the nominal
MPC.

One reason for why‖B(urobust MPC− unominal MPC)‖∞ is
growing faster than‖w‖∞ is that the scalar inputu can
only act on the process in the directionB, while the vector
w is acting directly on both states (through the identity
transformationI). Changing the formulation of the robust
MPC to restrictw to act only in the directionB is planned
as further work in this project.

VI. CONCLUSIONS

A bilevel framework for closed loop comparison of dif-
ferent control schemes has been presented. Many challenges
still remain, but it seems like this framework will be useful
for proving stability for some “ad-hoc” low complexity
control schemes, and moreover it seems to have potential
in the field of model reduction.
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