58 research outputs found

    Multilateral inversion of A_r, C_r and D_r basic hypergeometric series

    Full text link
    In [Electron. J. Combin. 10 (2003), #R10], the author presented a new basic hypergeometric matrix inverse with applications to bilateral basic hypergeometric series. This matrix inversion result was directly extracted from an instance of Bailey's very-well-poised 6-psi-6 summation theorem, and involves two infinite matrices which are not lower-triangular. The present paper features three different multivariable generalizations of the above result. These are extracted from Gustafson's A_r and C_r extensions and of the author's recent A_r extension of Bailey's 6-psi-6 summation formula. By combining these new multidimensional matrix inverses with A_r and D_r extensions of Jackson's 8-phi-7 summation theorem three balanced very-well-poised 8-psi-8 summation theorems associated with the root systems A_r and C_r are derived.Comment: 24 page

    Positive trigonometric polynomials for strong stability of difference equations

    Full text link
    We follow a polynomial approach to analyse strong stability of linear difference equations with rationally independent delays. Upon application of the Hermite stability criterion on the discrete-time homogeneous characteristic polynomial, assessing strong stability amounts to deciding positive definiteness of a multivariate trigonometric polynomial matrix. This latter problem is addressed with a converging hierarchy of linear matrix inequalities (LMIs). Numerical experiments indicate that certificates of strong stability can be obtained at a reasonable computational cost for state dimension and number of delays not exceeding 4 or 5

    A Linear Algebra Approach for Detecting Binomiality of Steady State Ideals of Reversible Chemical Reaction Networks

    Full text link
    Motivated by problems from Chemical Reaction Network Theory, we investigate whether steady state ideals of reversible reaction networks are generated by binomials. We take an algebraic approach considering, besides concentrations of species, also rate constants as indeterminates. This leads us to the concept of unconditional binomiality, meaning binomiality for all values of the rate constants. This concept is different from conditional binomiality that applies when rate constant values or relations among rate constants are given. We start by representing the generators of a steady state ideal as sums of binomials, which yields a corresponding coefficient matrix. On these grounds we propose an efficient algorithm for detecting unconditional binomiality. That algorithm uses exclusively elementary column and row operations on the coefficient matrix. We prove asymptotic worst case upper bounds on the time complexity of our algorithm. Furthermore, we experimentally compare its performance with other existing methods

    Arithmetic Levi-Civita connection

    Full text link
    This paper is part of a series of papers where an arithmetic analogue of classical differential geometry is being developed. In this arithmetic differential geometry functions are replaced by integer numbers, derivations are replaced by Fermat quotient operators, and connections (respectively curvature) are replaced by certain adelic (respectively global) objects attached to symmetric matrices with integral coefficients. Previous papers were devoted to an arithmetic analogue of the Chern connection. The present paper is devoted to an arithmetic analogue of the Levi-Civita connection

    Symmetric algebras of modules arising from a fixed submatrix of a generic matrix

    Get PDF
    AbstractWe analyze symmetric algebras which arise from rather ‘bad’ ideals and modules. For example, the ideals are mixed, and every value ≠ 0 occurs as the projective dimension of one of the modules. We are interested in the Cohen-Macaulay property, the canonical module, normality, and the divisor class group. The symmetric algebras under consideration can be defined as residue class rings modulo determinantal ideals covered by the theory of Hochster-Eagon. Part of the results can be regarded as an extension of work of Andrade and Simis

    A new multivariable 6-psi-6 summation formula

    Full text link
    By multidimensional matrix inversion, combined with an A_r extension of Jackson's 8-phi-7 summation formula by Milne, a new multivariable 8-phi-7 summation is derived. By a polynomial argument this 8-phi-7 summation is transformed to another multivariable 8-phi-7 summation which, by taking a suitable limit, is reduced to a new multivariable extension of the nonterminating 6-phi-5 summation. The latter is then extended, by analytic continuation, to a new multivariable extension of Bailey's very-well-poised 6-psi-6 summation formula.Comment: 16 page

    A Graph Theoretical Approach for Testing Binomiality of Reversible Chemical Reaction Networks

    Get PDF
    We study binomiality of the steady state ideals of chemical reaction networks. Considering rate constants as indeterminates, the concept of unconditional binomiality has been introduced and an algorithm based on linear algebra has been proposed in a recent work for reversible chemical reaction networks, which has a polynomial time complexity upper bound on the number of species and reactions. In this article, using a modified version of species--reaction graphs, we present an algorithm based on graph theory which performs by adding and deleting edges and changing the labels of the edges in order to test unconditional binomiality. We have implemented our graph theoretical algorithm as well as the linear algebra one in Maple and made experiments on biochemical models. Our experiments show that the performance of the graph theoretical approach is similar to or better than the linear algebra approach, while it is drastically faster than Groebner basis and quantifier elimination methods
    • 

    corecore