825 research outputs found

    Video enhancement using adaptive spatio-temporal connective filter and piecewise mapping

    Get PDF
    This paper presents a novel video enhancement system based on an adaptive spatio-temporal connective (ASTC) noise filter and an adaptive piecewise mapping function (APMF). For ill-exposed videos or those with much noise, we first introduce a novel local image statistic to identify impulse noise pixels, and then incorporate it into the classical bilateral filter to form ASTC, aiming to reduce the mixture of the most two common types of noises - Gaussian and impulse noises in spatial and temporal directions. After noise removal, we enhance the video contrast with APMF based on the statistical information of frame segmentation results. The experiment results demonstrate that, for diverse low-quality videos corrupted by mixed noise, underexposure, overexposure, or any mixture of the above, the proposed system can automatically produce satisfactory results

    Improving Mix-CLAHE with ACO for Clearer Oceanic Images

    Full text link
    Oceanic pictures have poor visibility attributable to various factors; weather disturbance, particles in water, lightweight frames and water movement which results in degraded and low contrast pictures of underwater. Visibility restoration refers to varied ways in which aim to decline and remove the degradation that have occurred whereas the digital image has been obtained. The probabilistic Ant Colony Optimization (ACO) approach is presented to solve the problem of designing an optimal route for hard combinatorial problems. It\u27s found that almost all of the prevailing researchers have neglected several problems i.e. no technique is correct for various reasonably circumstances. the prevailing strategies have neglected the utilization of hymenopter colony optimization to cut back the noise and uneven illuminate downside. The main objective of this paper is to judge the performance of ANT colony optimization primarily based haze removal over the obtainable MIX-CLAHE (Contrast Limited adaptive histogram Equalization) technique. The experiment has clearly showed the effectiveness of the projected technique over the obtainable strategies

    Comparative Analysis of Image Enhancement Quality Based on Domains

    Get PDF
    First method is spatial domain and the effective of four diverse image spatial techniques (histogram equalization, adaptive histogram, histogram matching, and unsharp masking) produce sharpening and smoothening of image. Secondly, frequency domain technique and the effective of three diverse image spatial techniques (bilateral, homo-morphic and trilateral filter) were examined to achieve low noise image. Finally, SVD,QR,SLANT and HADAMARD was examined whichincreased human visual. For the above techniques, different quality parameters are evaluated. From the above evaluation, the proposed method identifies the best method among the three domains

    Investigation of Different Pre-processing Quality Enhancement Techniques on X-ray Images

    Get PDF
    To maximize the accuracy of classification for medical images especially in chest- X ray, we need to improve quality of CXR images or high resolute images will be needed. Pneumonia is a lung infection caused by organism like bacteria or virus. Mostly Chest X-Ray (CXR) is used to detect the infection, but due to limitation of existing equipment, bandwidth, storage space we obtain low quality images. Spatial resolution of medical images is reduced due to image acquisition time, low radiation dose. Quality in medical images plays a major role for clinical diagnosis of disease in deep learning. There is no doubt that noise, low resolution and annotations in chest images are major constraint to the performance of deep learning. Researchers used famous image enhancement algorithms: Histogram equalization (HE), Contrast-limited Adaptive Histogram Equalization (CLAHE), De-noising, Discrete Wavelet Transform (DWT), Gamma Correction (GC), but it is still a challenging task to improve features in images. Computer vision and Super resolution are growing fields of deep learning. Super resolution is also feasible for mono chromatic medical images, which improve the region of interest. Multiple low-resolution images mix with high resolution and then reconstruct a target input image to high quality image by using Super Convolution Neural Network (SRCNN). The objective evaluation based on pixel difference-based PSNR and Human visual system SSIM metric are used for quality measurement. In this study we achieve effective value of PSNR (40 to 43 dB) by considering 30 images of different category (normal, viral or bacterial pneumonia) and SSIM value varies from 97% to 98%. The experiment shows that image quality of CXR is increased by SRCNN, and then high qualitative images will be used for further classification, so that significant parameter of accuracy will be finding in diagnosis of disease in deep learning
    • …
    corecore