2 research outputs found

    Method for detection of leads from Sentinel-1 SAR images

    Get PDF
    Source at https://doi.org/10.1017/aog.2018.6.The presence of leads with open water or thin ice is an important feature of the Arctic sea ice cover. Leads regulate the heat, gas and moisture fluxes between the ocean and atmosphere and are areas of high ice growth rates during periods of freezing conditions. Here, an algorithm providing an automatic lead detection based on synthetic aperture radar images is described that can be applied to a wide range of Sentinel-1 scenes. By using both the HH and the HV channels instead of single co-polarised observations the algorithm is able to classify more leads correctly. The lead classification algorithm is based on polarimetric features and textural features derived from the grey-level co-occurrence matrix. The Random Forest classifier is used to investigate the importance of the individual features for lead detection. The precision–recall curve representing the quality of the classification is used to define threshold for a binary lead/sea ice classification. The algorithm is able to produce a lead classification with more that 90% precision with 60% of all leads classified. The precision can be increased by the cost of the amount of leads detected. Results are evaluated based on comparisons with Sentinel-2 optical satellite data

    Bilateral Distance Based Filtering for Polarimetric SAR Data

    Get PDF
    This paper introduces a non-linear Polarimetric SAR data filtering approach able to preserve the edges and small details of the data. It is based on exploiting the data locality in both, the spatial and the polarimetric domains, in order to avoid mixing heterogeneous samples of the data. A weighted average is performed over a given window favoring pixel values that are close on both domains. The filtering technique is based on a modified bilateral filtering, which is defined in terms of spatial and polarimetric distances. These distances encapsulate all the knowledge in both domains for an adaptation to the data structure. Finally, the proposed technique is employed to process a real RADARSAT-2 dataset
    corecore