22,863 research outputs found

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Hierarchical video surveillance architecture: a chassis for video big data analytics and exploration

    Get PDF
    There is increasing reliance on video surveillance systems for systematic derivation, analysis and interpretation of the data needed for predicting, planning, evaluating and implementing public safety. This is evident from the massive number of surveillance cameras deployed across public locations. For example, in July 2013, the British Security Industry Association (BSIA) reported that over 4 million CCTV cameras had been installed in Britain alone. The BSIA also reveal that only 1.5% of these are state owned. In this paper, we propose a framework that allows access to data from privately owned cameras, with the aim of increasing the efficiency and accuracy of public safety planning, security activities, and decision support systems that are based on video integrated surveillance systems. The accuracy of results obtained from government-owned public safety infrastructure would improve greatly if privately owned surveillance systems ‘expose’ relevant video-generated metadata events, such as triggered alerts and also permit query of a metadata repository. Subsequently, a police officer, for example, with an appropriate level of system permission can query unified video systems across a large geographical area such as a city or a country to predict the location of an interesting entity, such as a pedestrian or a vehicle. This becomes possible with our proposed novel hierarchical architecture, the Fused Video Surveillance Architecture (FVSA). At the high level, FVSA comprises of a hardware framework that is supported by a multi-layer abstraction software interface. It presents video surveillance systems as an adapted computational grid of intelligent services, which is integration-enabled to communicate with other compatible systems in the Internet of Things (IoT)

    Towards Smarter Management of Overtourism in Historic Centres Through Visitor-Flow Monitoring

    Get PDF
    Historic centres are highly regarded destinations for watching and even participating in diverse and unique forms of cultural expression. Cultural tourism, according to the World Tourism Organization (UNWTO), is an important and consolidated tourism sector and its strong growth is expected to continue over the coming years. Tourism, the much dreamt of redeemer for historic centres, also represents one of the main threats to heritage conservation: visitors can dynamize an economy, yet the rapid growth of tourism often has negative effects on both built heritage and the lives of local inhabitants. Knowledge of occupancy levels and flows of visiting tourists is key to the efficient management of tourism; the new technologies—the Internet of Things (IoT), big data, and geographic information systems (GIS)—when combined in interconnected networks represent a qualitative leap forward, compared to traditional methods of estimating locations and flows. A methodology is described in this paper for the management of tourism flows that is designed to promote sustainable tourism in historic centres through intelligent support mechanisms. As part of the Smart Heritage City (SHCITY) project, a collection system for visitors is developed. Following data collection via monitoring equipment, the analysis of a set of quantitative indicators yields information that can then be used to analyse visitor flows; enabling city managers to make management decisions when the tourism-carrying capacity is exceeded and gives way to overtourism.Funded by the Interreg Sudoe Programme of the European Regional Development Funds (ERDF

    The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey

    Get PDF
    The Internet of Things (IoT) is a dynamic global information network consisting of internet-connected objects, such as Radio-frequency identification (RFIDs), sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future internet. Over the last decade, we have seen a large number of the IoT solutions developed by start-ups, small and medium enterprises, large corporations, academic research institutes (such as universities), and private and public research organisations making their way into the market. In this paper, we survey over one hundred IoT smart solutions in the marketplace and examine them closely in order to identify the technologies used, functionalities, and applications. More importantly, we identify the trends, opportunities and open challenges in the industry-based the IoT solutions. Based on the application domain, we classify and discuss these solutions under five different categories: smart wearable, smart home, smart, city, smart environment, and smart enterprise. This survey is intended to serve as a guideline and conceptual framework for future research in the IoT and to motivate and inspire further developments. It also provides a systematic exploration of existing research and suggests a number of potentially significant research directions.Comment: IEEE Transactions on Emerging Topics in Computing 201

    Development of an integrated remote monitoring technique and its application to para-stressing bridge system

    Get PDF
    Bridge monitoring system via information technology is capable of providing more accurate knowledge of bridge performance characteristics than traditional strategies. This paper describes not only an integrated Internet monitoring system that consists of a stand-alone monitoring system (SMS) and a Web-based Internet monitoring system (IMS) for bridge maintenance but also its application to para-stressing bridge system as an intelligent structure. IMS, as a Web-based system, is capable of addressing the remote monitoring by introducing measuring information derived from SMS into the system through Internet or intranet connected by either PHS or LAN. Moreover, the key functions of IMS such as data management system, condition assessment, and decision making with the proposed system are also introduced in this paper. Another goal of this study is to establish the framework of a para-stressing bridge system which is an intelligent bridge by integrating the bridge monitoring information into the system to control the bridge performance automatically.Peer ReviewedPostprint (published version
    corecore