286 research outputs found

    PlinyCompute: A Platform for High-Performance, Distributed, Data-Intensive Tool Development

    Full text link
    This paper describes PlinyCompute, a system for development of high-performance, data-intensive, distributed computing tools and libraries. In the large, PlinyCompute presents the programmer with a very high-level, declarative interface, relying on automatic, relational-database style optimization to figure out how to stage distributed computations. However, in the small, PlinyCompute presents the capable systems programmer with a persistent object data model and API (the "PC object model") and associated memory management system that has been designed from the ground-up for high performance, distributed, data-intensive computing. This contrasts with most other Big Data systems, which are constructed on top of the Java Virtual Machine (JVM), and hence must at least partially cede performance-critical concerns such as memory management (including layout and de/allocation) and virtual method/function dispatch to the JVM. This hybrid approach---declarative in the large, trusting the programmer's ability to utilize PC object model efficiently in the small---results in a system that is ideal for the development of reusable, data-intensive tools and libraries. Through extensive benchmarking, we show that implementing complex objects manipulation and non-trivial, library-style computations on top of PlinyCompute can result in a speedup of 2x to more than 50x or more compared to equivalent implementations on Spark.Comment: 48 pages, including references and Appendi

    Compile-Time Query Optimization for Big Data Analytics

    Get PDF
    Many emerging programming environments for large-scale data analysis, such as Map-Reduce, Spark, and Flink, provide Scala-based APIs that consist of powerful higher-order operations that ease the development of complex data analysis applications. However, despite the simplicity of these APIs, many programmers prefer to use declarative languages, such as Hive and Spark SQL, to code their distributed applications. Unfortunately, most current data analysis query languages are based on the relational model and cannot effectively capture the rich data types and computations required for complex data analysis applications. Furthermore, these query languages are not well-integrated with the host programming language, as they are based on an incompatible data model. To address these shortcomings, we introduce a new query language for data-intensive scalable computing that is deeply embedded in Scala, called DIQL, and a query optimization framework that optimizes and translates DIQL queries to byte code at compile-time. In contrast to other query languages, our query embedding eliminates impedance mismatch as any Scala code can be seamlessly mixed with SQL-like syntax, without having to add any special declaration. DIQL supports nested collections and hierarchical data and allows query nesting at any place in a query. With DIQL, programmers can express complex data analysis tasks, such as PageRank and matrix factorization, using SQL-like syntax exclusively. The DIQL query optimizer uses algebraic transformations to derive all possible joins in a query, including those hidden across deeply nested queries, thus unnesting nested queries of any form and any number of nesting levels. The optimizer also uses general transformations to push down predicates before joins and to prune unneeded data across operations. DIQL has been implemented on three Big Data platforms, Apache Spark, Apache Flink, and Twitter's Cascading/Scalding, and has been shown to have competitive performance relative to Spark DataFrames and Spark SQL for some complex queries. This paper extends our previous work on embedded data-intensive query languages by describing the complete details of the formal framework and the query translation and optimization processes, and by providing more experimental results that give further evidence of the performance of our system

    In-memory caching for multi-query optimization of data-intensive scalable computing workloads

    Get PDF
    In modern large-scale distributed systems, analytics jobs submitted by various users often share similar work. Instead of optimizing jobs independently, multi-query optimization techniques can be employed to save a considerable amount of cluster resources. In this work, we introduce a novel method combining in-memory cache primitives and multi-query optimization, to improve the efficiency of data-intensive, scalable computing frameworks. By careful selection and exploitation of common (sub) expressions, while satisfying memory constraints, our method transforms a batch of queries into a new, more efficient one which avoids unnecessary recomputations. To find feasible and efficient execution plans, our method uses a cost-based optimization formulation akin to the multiple-choice knapsack problem. Experiments on a prototype implementation of our system show significant benefits of worksharing for TPC-DS workloads

    Spontananfragen auf Datenströmen

    Get PDF
    Many modern applications require processing large amounts of data in a real-time fashion. As a result, distributed stream processing engines (SPEs) have gained significant attention as an important new class of big data processing systems. The central design principle of these SPEs is to handle queries that potentially run forever on data streams with a query-at-a-time model, i.e., each query is optimized and executed separately. However, in many real applications, not only long-running queries but also many short-running queries are processed on data streams. In these applications, multiple stream queries are created and deleted concurrently, in an ad-hoc manner. The best practice to handle ad-hoc stream queries is to fork input stream and add additional resources for each query. However, this approach leads to redundant computation and data copy. This thesis lays the foundation for efficient ad-hoc stream query processing. To bridge the gap between stream data processing and ad-hoc query processing, we follow a top-down approach. First, we propose a benchmarking framework to analyze state-of-the-art SPEs. We provide a definition of latency and throughput for stateful operators. Moreover, we carefully separate the system under test and the driver, to correctly represent the open-world model of typical stream processing deployments. This separation enables us to measure the system performance under realistic conditions. Our solution is the first benchmarking framework to define and test the sustainable performance of SPEs. Throughout our analysis, we realize that the state-of-the-art SPEs are unable to execute stream queries in an ad-hoc manner. Second, we propose the first ad-hoc stream query processing engine for distributed data processing environments. We develop our solution based on three main requirements: (1) Integration: Ad-hoc query processing should be a composable layer that can extend stream operators, such as join, aggregation, and window operators; (2) Consistency: Ad-hoc query creation and deletion must be performed consistently and ensure exactly-once semantics and correctness; (3) Performance: In contrast to modern SPEs, ad-hoc SPEs should not only maximize data throughput but also query throughout via incremental computation and resource sharing. Third, we propose an ad-hoc stream join processing framework that integrates dynamic query processing and query re-optimization techniques with ad-hoc stream query processing. Our solution comprises an optimization layer and a stream data processing layer. The optimization layer periodically re-optimizes the query execution plan, performing join reordering and vertical and horizontal scaling at runtime without stopping the execution. The data processing layer enables incremental and consistent query processing, supporting all the actions triggered by the optimizer. The result of the second and the third contributions forms a complete ad-hoc SPE. We utilize the first contribution not only for benchmarking modern SPEs but also for evaluating the ad-hoc SPE.Eine Vielzahl moderner Anwendungen setzten die Echtzeitverarbeitung großer Datenmengen voraus. Aus diesem Grund haben neuerdings verteilte Systeme zur Verarbeitung von Datenströmen (sog. Datenstrom-Verarbeitungssysteme, abgek. "DSV") eine wichtige Bedeutung als neue Kategorie von Massendaten-Verarbeitungssystemen erlangt. Das zentrale Entwurfsprinzip dieser DSVs ist es, Anfragen, die potenziell unendlich lange auf einem Datenstrom laufen, jeweils Eine nach der Anderen zu verarbeiten (Englisch: "query-at-a-time model"). Das bedeutet, dass jede Anfrage eigenständig vom System optimiert und ausgeführt wird. Allerdings stellen vielen reale Anwendungen nicht nur lang laufende Anfragen auf Datenströmen, sondern auch kurz laufende Spontananfragen. Solche Anwendungen können mehrere Anfragen spontan und zeitgleich erstellen und entfernen. Das bewährte Verfahren, um Spontananfragen zu bearbeiten, zweigt den eingehenden Datenstrom ab und belegt zusätzliche Ressourcen für jede neue Anfrage. Allerdings ist dieses Verfahren ineffizient, weil Spontananfragen damit redundante Berechnungen und Daten-Kopieroperationen verursachen. In dieser Arbeit legen wir das Fundament für die effiziente Verarbeitung von Spontananfragen auf Datenströmen. Wir schließen in den folgenden drei Schritten die Lücke zwischen verteilter Datenstromanfrage-Verarbeitung und Spontananfrage-Verarbeitung. Erstens stellen wir ein Benchmark-Framework zur Analyse von modernen DSVs vor. In diesem Framework stellen wir eine neue Definition für die Latenz und den Durchsatz von zustandsbehafteten Operatoren vor. Zudem unterscheiden wir genau zwischen dem zu testenden System und dem Treibersystem, um das offene-Welt Modell, welches den typischen Anwendungsszenarien in der Datenstromverabeitung entspricht, korrekt zu repräsentieren. Diese strikte Unterscheidung ermöglicht es, die Systemleistung unter realen Bedingungen zu messen. Unsere Lösung ist damit das erste Benchmark-Framework, welches die dauerhaft durchhaltbare Systemleistung von DSVs definiert und testet. Durch eine systematische Analyse aktueller DSVs stellen wir fest, dass aktuelle DSVs außerstande sind, Spontananfragen effizient zu verarbeiten. Zweitens stellen wir das erste verteilte DSV zur Spontananfrageverarbeitung vor. Wir entwickeln unser Lösungskonzept basierend auf drei Hauptanforderungen: (1) Integration: Spontananfrageverarbeitung soll ein modularer Baustein sein, mit dem Datenstrom-Operatoren wie z.B. Join, Aggregation, und Zeitfenster-Operatoren erweitert werden können; (2) Konsistenz: die Erstellung und Entfernung von Spontananfragen müssen konsistent ausgeführt werden, die Semantik für einmalige Nachrichtenzustellung erhalten, sowie die Korrektheit des Anfrage-Ergebnisses sicherstellen; (3) Leistung: Im Gegensatz zu modernen DSVs sollen DSVs zur Spontananfrageverarbeitung nicht nur den Datendurchsatz, sondern auch den Anfragedurchsatz maximieren. Dies ermöglichen wir durch inkrementelle Kompilation und der Ressourcenteilung zwischen Anfragen. Drittens stellen wir ein Programmiergerüst zur Verbeitung von Spontananfragen auf Datenströmen vor. Dieses integriert die dynamische Anfrageverarbeitung und die Nachoptimierung von Anfragen mit der Spontananfrageverarbeitung auf Datenströmen. Unser Lösungsansatz besteht aus einer Schicht zur Anfrageoptimierung und einer Schicht zur Anfrageverarbeitung. Die Optimierungsschicht optimiert periodisch den Anfrageverarbeitungsplan nach, wobei sie zur Laufzeit Joins neu anordnet und vertikal sowie horizontal skaliert, ohne die Verarbeitung anzuhalten. Die Verarbeitungsschicht ermöglicht eine inkrementelle und konsistente Anfrageverarbeitung und unterstützt alle zuvor beschriebenen Eingriffe der Optimierungsschicht in die Anfrageverarbeitung. Zusammengefasst ergeben unsere zweiten und dritten Lösungskonzepte eine vollständige DSV zur Spontananfrageverarbeitung. Wir verwenden hierzu unseren ersten Beitrag nicht nur zur Bewertung moderner DSVs, sondern auch zur Evaluation unseres DSVs zur Spontananfrageverarbeitung

    Experiences in the development of a data management system for genomics

    Get PDF
    GMQL is a high-level query language for genomics, which operates on datasets described through GDM, a unifying data model for processed data formats. They are ingredients for the integration of processed genomic datasets, i.e. of signals produced by the genome after sequencing and long data extraction pipelines. While most of the processing load of today’s genomic platforms is due to data extraction pipelines, we anticipate soon a shift of attention towards processed datasets, as such data are being collected by large consortia and are becoming increasingly available. In our view, biology and personalized medicine will increasingly rely on data extraction and analysis methods for inferring new knowledge from existing heterogeneous repositories of processed datasets, typically augmented with the results of experimental data targeting individuals or small populations. While today’s big data are raw reads of the sequencing machines, tomorrow’s big data will also include billions or trillions of genomic regions, each featuring specific values depending on the processing conditions. Coherently, GMQL is a high-level, declarative language inspired by big data management, and its execution engines include classic cloud-based systems, from Pig to Flink to SciDB to Spark. In this paper, we discuss how the GMQL execution environment has been developed, by going through a major version change that marked a complete system redesign; we also discuss our experiences in comparatively evaluating the four platforms

    Scaling and Load-Balancing Equi-Joins

    Full text link
    The task of joining two tables is fundamental for querying databases. In this paper, we focus on the equi-join problem, where a pair of records from the two joined tables are part of the join results if equality holds between their values in the join column(s). While this is a tractable problem when the number of records in the joined tables is relatively small, it becomes very challenging as the table sizes increase, especially if hot keys (join column values with a large number of records) exist in both joined tables. This paper, an extended version of [metwally-SIGMOD-2022], proposes Adaptive-Multistage-Join (AM-Join) for scalable and fast equi-joins in distributed shared-nothing architectures. AM-Join utilizes (a) Tree-Join, a proposed novel algorithm that scales well when the joined tables share hot keys, and (b) Broadcast-Join, the known fastest when joining keys that are hot in only one table. Unlike the state-of-the-art algorithms, AM-Join (a) holistically solves the join-skew problem by achieving load balancing throughout the join execution, and (b) supports all outer-join variants without record deduplication or custom table partitioning. For the fastest AM-Join outer-join performance, we propose the Index-Broadcast-Join (IB-Join) family of algorithms for Small-Large joins, where one table fits in memory and the other can be up to orders of magnitude larger. The outer-join variants of IB-Join improves on the state-of-the-art Small-Large outer-join algorithms. The proposed algorithms can be adopted in any shared-nothing architecture. We implemented a MapReduce version using Spark. Our evaluation shows the proposed algorithms execute significantly faster and scale to more skewed and orders-of-magnitude bigger tables when compared to the state-of-the-art algorithms
    corecore