
Experiences in the Development of a Data
Management System for Genomics

Stefano Ceri, Arif Canakoglu, Abdulrahman Kaitoua, Marco Masseroli, and
Pietro Pinoli

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano, Milano, Italy
{firstname.lastname}@polimi.it

Abstract. GMQL is a high-level query language for genomics, which
operates on datasets described through GDM, a unifying data model
for processed data formats. They are ingredients for the integration of
processed genomic datasets, i.e. of signals produced by the genome after
sequencing and long data extraction pipelines. While most of the process-
ing load of today’s genomic platforms is due to data extraction pipelines,
we anticipate soon a shift of attention towards processed datasets, as such
data are being collected by large consortia and are becoming increasingly
available.

In our view, biology and personalized medicine will increasingly rely on
data extraction and analysis methods for inferring new knowledge from
existing heterogeneous repositories of processed datasets, typically aug-
mented with the results of experimental data targeting individuals or
small populations. While today’s big data are raw reads of the sequenc-
ing machines, tomorrow’s big data will also include billions or trillions
of genomic regions, each featuring specific values depending on the pro-
cessing conditions.

Coherently, GMQL is a high-level, declarative language inspired by big
data management, and its execution engines include classic cloud-based
systems, from Pig to Flink to SciDB to Spark. In this paper, we discuss
how the GMQL execution environment has been developed, by going
through a major version change that marked a complete system redesign;
we also discuss our experiences in comparatively evaluating the four plat-
forms.

Keywords: Genomic Computing · Data Translation and Optimization
· Cloud Computing · Next Generation Sequencing · Open Data

1 Introduction

Thanks to Next Generation Sequencing, a recent technological revolution for
reading the DNA, a huge number of genomic datasets have become available [24].
Massive pipelines are used to extract processed datasets from DNA sequences,
and expose heterogeneous genomic and epigenomic signals; among them, TCGA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/162433979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 S. Ceri et al.

(The Cancer Genome Atlas) [29], ENCODE (the Encyclopedia of DNA Ele-
ments) [14], and 1000 Genomes [1]. Open datasets of processed data are collected
by worldwide consortia; they constitute a wealth of information, as they can be
used for answering complex biological and clinical queries. While most of the
processing load of today’s genomic platforms is due to data extraction pipelines
(e.g., [23]), we anticipate soon a shift of attention towards processed datasets, as
such data are becoming increasingly available, collected by large consortia and
by commercial sequencing centers. Genomics is expected to produce more data
than any other scientific discipline by 2025, and is also expected to produce more
data than all the social sources, including YouTube [27].

Processed datasets are used in tertiary data analysis for giving a global sense
to heterogeneous genomic and epigenomic signals; a few systems are dedicated
to tertiary data analysis, including SciDB Paradigm4 [3], and BLUEPRINT [2].

In the context of the GenData 20201 and GeCo Projects2, we developed the
Genomic Data Model (GDM) [21], a unifying model for processed data formats,
and the GenoMetric Query Language (GMQL) [20,18], a query language for
genomics. GDM is a very simple data model which mediates all existing data
formats; GMQL is a high-level, declarative query language which supports data
extraction as well as the most standard data-driven computations required by
tertiary data analysis.

GMQL is the core of several, subsequent implementations of data manage-
ment systems. In all cases, GMQL queries were translated to queries for cloud-
based database engines. Version 1, described in [11], was developed between the
spring 2014 and the spring 2015 and was based on Apache Pig [6] and Hadoop
1 [28]. Version 2 is described in [18]; its development started in the summer of
2015 and is still ongoing; Version 2 is based on Hadoop 2 [16] and uses Apache
Spark [7]; project branches were developed for the engines Apache Flink [4] and
SciDB [3]. In this paper, we discuss the development of the various GMQL ver-
sions, including the architectural choices, the supported optimizations, and the
approaches to parallelism.

2 GMQL Resources: Data Model, Query Language,
Integrated Repository

GMQL is based on a representation of the genomic information known as Ge-
nomic Data Model (GDM). Datasets are composed of samples, which in turn
contain two kinds of data:

– Genomic region values (or simply regions), aligned w.r.t. a given reference,
with specific left-right ends within a chromosome: Regions of the model
describe processed data, e.g., mutations, expression or bindings; they have

1 http://www.bioinformatics.deib.polimi.it/gendata/, PRIN Italian National
Project, 2013-2016.

2 Data-Driven Genomic Computing, http://www.bioinformatics.deib.polimi.it/
geco/, ERC Advanced Grant, 2016-2021.

http://www.bioinformatics.deib.polimi.it/gendata/
http://www.bioinformatics.deib.polimi.it/geco/
http://www.bioinformatics.deib.polimi.it/geco/


Genomic Data Management 3

a schema, with 5 common attributes (id, chr, left, right, strand) including
the id of the region and the region coordinates, along the aligned reference
genome, and then arbitrary typed attributes. This provides interoperability
across a plethora of genomic data formats;

– Metadata, storing all the knowledge about the particular sample, are arbi-
trary attribute-value pairs, independent from any standardization attempt;
they trace the data provenance, including biological and clinical aspects.

Figure 1 shows a GDM dataset consisting of 3 samples, each associated with a
patient affected by Breast Cancer (BRCA). The region part has a simple schema,
describing a particular value associated to each region; regions are aligned along
the whole genome and belong to specific chromosomes (not shown in the figure).
The metadata part includes free attribute-value pairs, describing the patient’s
age and sex; in GDM attributes are freely associated to samples, without specific
constraints.

Fig. 1. Genomic Data Model

GMQL is an abbreviation for GenoMetric Query Language - the name high-
lights the language’s ability of computing distance-related queries along the
genome, seen as a sequence of positions. GMQL is a closed algebra over datasets:
results are expressed as new datasets derived from their operands. Thus, GMQL
operations compute both regions and metadata, connected by sample identifiers;
they perform schema merging when needed. The language brings to genomic
computing the classic algebraic abstractions, rooted in Ted Codd’s seminal work,
and adds suitable domain-specific abstractions. In [20] we show GMQL at work
in many heterogeneous biological contexts.

GMQL operations include classic algebraic transformations (SELECT, PROJECT,
UNION, DIFFERENCE, JOIN, SORT, AGGREGATE) and domain-specific
transformations (e.g., COVER deals with replicas of a same experiment; MAP



4 S. Ceri et al.

Operation Description

Select Meta Selects complete samples when a metadata predicate is true

(predicate can refer to other datasets using a semijoin condition)

Regions Selects regions satisfying a region predicate

Project Meta Projects metadata or adds/updates metadata attributes

Regions Projects regions or adds/updates region attributes

Extend Meta Adds to metadata aggregate function results computed over regions

Order Meta Sorts samples and selects top ones

Regions Sorts regions and selects top ones

Group Meta Groups samples and computes aggregate values

Regions Groups regions and computes aggregate values

Merge Meta Merges all metadata of all samples

Regions Merges all regions of all samples

Cover Merges all samples; regions must satify an accumulation constraint

Union Builds the union of samples (meta and regions independently)

Difference Meta Metadata of results are from the first operand

Regions Regions of second operand are subtracted from first operand

Map Meta Metadata of results are from the second operand

Regions Aggregates values of second operand’s regions intersecting a region of the first one

Join Meta Builds pairs of samples whose metadata satisfy join predicate

Region Builds pairs of regions satisfying distal and equi-join predicates

Table 1. Informal description of GMQL operations



Genomic Data Management 5

refers genomic signals of experiments to user selected reference regions; GENO-
METRIC JOIN selects region pairs based upon distance properties); their se-
mantics is informally described in Table 1. Tracing provenance both of initial
samples and of their processing through operations is a unique aspect of our
approach; knowing why resulting regions were produced is quite relevant.

An example of GMQL is the following, simple query which selects the genes’
promoter regions from a dataset of annotations, selects al experiments of a given
datatype from the NarrowPeaks dataset of ENCODE, and maps the selected
peaks to the selected promoters; the query counts how many peaks intersect
with each promoter region, then counts how many peaks in each sample intersect
with any promoters, then selects the top thee samples based on the latter count.
The counter is a global property of each sample and therefore is included by
the EXTEND operation into the metadata of results. The language supports
implicit iteration over all samples.

PROMS = SELECT(annotationType == ’promoter’) ANNOTATIONS;

PEAKS = SELECT(dataType == ’ChipSeq’) ENCODE_NarrowPeaks;

RESULT = MAP(peakCount AS COUNT) PROMS PEAKS;

GLOBAL = EXTEND(count AS SUM(peakCount)) RESULT;

TOP = ORDER(count; TOP 3) GLOBAL;

This query was executed over 2,423 ENCODE samples including a total of
83,899,526 peaks mapped to 131,780 human promoters, producing as result 29
GB of data. Figure 2 shows three samples with the highest counters (e.g., sample
131, corresponding to antibody target RBBP5 of cell line H1-hESC, has 32,028
peaks intersecting with gene promoters.) Note that metadata of the result are
partially computed by the query, partially derived from the initial description of
experimental conditions in the NarrowPeaks dataset.

Fig. 2. Metadata of the query result

In our current GMQL installation, we provide global curated datasets which
have been converted to GDM, including all processed datasets available in TCGA
[29] and ENCODE [14]; the transformation of TCGA datasets to GDM is dis-
cussed in [12]. The repository (as of January 1st 2018) contains 18 datasets and



6 S. Ceri et al.

138,118 samples for a total size of 906 GB, as illustrated in Fig. 3; we are working
towards its extension to many other source datasets, and the conceptual orga-
nization and integration of their most relevant metadata. We are also currently
working on the transformation of datasets from The Genomic Data Commons
(GDC) [31], which includes the latest version of TCGA datasets.

Fig. 3. Repository of processed open datasets

3 GMQL Implementation V1

The overall software architecture of GMQL V1 is shown in Fig. 4. From bottom
to top, it includes the repository layer, the engine layer and the GMQL
layer, which in turn consists of an orchestrator and a compiler, and is acces-
sible through a web service API. We next briefly explain query execution, a
detailed description can be found in [11]. Execution flow is controlled by the or-
chestrator, written in Java programming language; the processing flow includes



Genomic Data Management 7

compilation, data selection from the repository, scheduling of the Pig code ex-
ecution over the Apache Pig engine [6], and storing of the resulting datasets in
the repository in standard format.

When a user submits a GMQL query, the orchestrator calls the GMQL
compiler, which produces the query translation into Pig Latin and the search
criteria for loading the relevant samples from the repository; then, it uses the in-
dex manager to select from the repository the samples that comply to the search
criteria. Then, it invokes the job optimizer, which sets the execution parameters
(such as the parallelization factors); eventually, the orchestrator manages the
outcome of the computation, including indexing of the result and storing it in
the user space.

Fig. 4. Architecture of GMQL V1

The repository includes a Local File System (LFS), organized within the
Linux file system of the master node of the computing framework, and an Hadoop
Distributed File System (HDFS) [26], shared among all the computing nodes.
Datasets are stored in the HDFS system, subdivided in metadata and region
data. Both the LFS and the HDFS store the control data, which include the
schema for each dataset (encoded in Extensible Markup Language - XML) and
the Apache Lucene [5] indexes for metadata. Moreover, both file systems have a
public and a private space. Datasets are stored in their original text format; when
they are selected by a GMQL query, they are serialized by suitable adapters and
translated to the internal binary GDM format. At that point, they are managed
by Apache Pig under Hadoop 1. In this way, we do not replicate data in the native



8 S. Ceri et al.

and GDM formats and we minimize data translations from native into GDM
format. Version 1 of GMQL was installed at IEO-IIT (https://www.ieo.it/en/
http://genomics.iit.it/), a center of excellence in oncology research, with
a direct connection to a Laboratory Information Management System (LIMS)
designed for storing processed data as well as the raw datasets and the pipelines
for their extractions.

Fig. 5. Translation of GMQL queries in V1

The compiler analyses each GMQL statement by performing syntactic and
semantic checks; for valid statements, it then infers the schema of the new intro-
duced variable, then updates the internal state and finally emits the Pig Latin
code that performs the requested operation. Datasets are loaded into suitable Pig
Latin variables; each dataset is mapped into two bags, named V region.dat and
V meta.dat. The internal state contains the name and schema of each variable
which is either generated or mentioned in the query. Fig. 5 shows the trans-
lation of a JOIN operation, where lines 1-10 are concerned with metadata and
produce the data bag RES meta, and lines 11-20 work on regions by encoding in
Java programming language a fast-join algorithm which searches for matching
regions at minimal and bound distance. The linking of metadata and regions of
each output sample is guaranteed by the use of the same hash function on the
two ids of the input pairs, at lines 8 and 10 for the metadata and within the
Join function for the regions.

3.1 Discussion

The development of GMQL V1 was relatively fast, as the implementation took
about one year; Pig Latin was chosen as target language because GMQL syn-

https://www.ieo.it/en/
http://genomics.iit.it/


Genomic Data Management 9

tactically recalls Pig Latin - both languages progressively construct queries by
introducing intermediate results and naming them by using variables; this style
of query writing was considered as similar to the scripting style which is domi-
nant in bioinformatics, although of course GMQL scripts are high-level and not
intertwined with programming language constructs.

The main problem with this approach is that the optimization strategies were
hardcoded within the software produced by the translator, which in turn was
focused on the specific features of our target language Pig Latin. An additional
problem of V1 was the use of Lucene for metadata indexing; it turned out that
access to metadata is much faster than access to regions, hence the reduction
of execution time achieved by using Lucene at query load was not compensated
by the need of preserving Lucene data structures aligned with the spontaneous
evolution of the repository.

Moreover, at the end of 2014, it became clear that Apache Pig was no longer
strongly supported, while other engines were becoming much more popular; in
particular Spark was achieving a dominant position, Flink had very interesting
capabilities as a streaming engine, and SciDB had a totally different approach
to storage through arrays. Therefore, at the beginning of 2015, we opted for a
major system redesign, starting the development of GMQL Version 2.

4 GMQL Implementation V2

The design of GMQL V2 has been centered around the notion of an intermediate
representation for the query language, developed as an abstract operator tree
(actually a directed acyclic graph or DAG, as operations can be reused), that
is at the center of the software architecture. The intermediate representation
carries the semantics of the query language in terms of elementary operations
that are applicable to metadata and to region data separately, and opens up to
various options for expressing the language’s syntax (which can be expressed as
relational expressions, or in embedded form within programming or workflow
languages, or in logical format by using a Datalog-like style) and for deploying
over different cloud-based engines. In particular, at various times we used Spark,
Flink and SciDB.

The intermediate representation is also the backbone for supporting several
language implementations which embed GMQL operations within a program-
ming paradigm (Fig. 6). We have developed a library for Python (called gmql),
currently registered within the standard Python libraries; it enables running
GMQL queries both on a local repository (on the user’s desktop) and on a global
repository (e.g., the CINECA installation). We are also developing interfaces for
R and Galaxy.

A DAG for a complex query is illustrated in Fig. 7. The query consists of five
SELECT, two JOIN, one COVER and one MAP statements. It has four input
datasets (called Annotation, Bed, Bed1, Bed2), each in turn represented by
separate metadata and region data structures. Blue nodes apply to metadata,
red nodes apply to regions. The orientation of edges indicates that the nodes



10 S. Ceri et al.

Fig. 6. Language interfaces for V2

are evaluated from the bottom to the top; indeed any evaluation occurs with
the execution of the MATERIALIZE statement which indicates which variable
of the program should be returned as result (in the specific example, variable
T) and how the result variable should be named in the private repository of the
user issuing the query (in this specific case, #OUTPUT#).

Fig. 7. DAG for a complex GMQL query

The DAG shows that each GMQL operation is mapped to one or more operations
on the meta and region datasets. It also shows that the subtree constituted by



Genomic Data Management 11

the blue nodes, which apply to metadata, can be computed before the subtree
constituted by the red nodes, which apply to regions. This property hints to a
powerful optimization, called meta-first, which only applies to a subset of the
GMQL queries - by virtue of such optimization, it is possible to load only regions
of the samples which are used to construct the result.

We next briefly describe the software architecture of V2; similarly to V1, the
architecture includes as principal components a database engine and a global
repository3. The software of V2 is organized according to a four layer architec-
ture:

– The Access Layer supports the various interfaces available in V2. These
include an API to the DAG intermediate representation, a shell command
line interface, and a collection of Web Services for accessing GMQL resources.
Web Services are used for developing a user-friendly Web interface.

– The Engine Components, including the GMQL Compiler, for compiling
a GMQL query into a DAG (which embodies execution plans); the DAG
Manager, for supporting the creation and dispatching of DAG operations to
other components; the Server Manager, for managing multi-user execution
and their access capabilities; the Repository Manager, for managing the ac-
cess to the repository; and the Launch Manager, for launching the executions
of implementations.

– The Implementation Components (or executors), including the three
implementations currently supported. Each package contains the implemen-
tation of the operations (abstract classes) of the DAG nodes, respectively for
the Spark Implementation (the default option, and the most stable of the
current implementations) and the Flink and SciDB implementations (which
have been developed essentially for comparing their performances to the
Spark implementation).

– The Repository Implementations, including a Local File System (LFS)
repository, used when the installation is for a single machine, and a Remote
File System (RFS), used in a cluster-based architecture. We currently sup-
port three installations, respectively at the CINECA Supercomputing center,
on the Amazon Cloud, and on a dedicated local server available at our home
institution.

The Repository Manager is the system component in charge of storing and man-
aging the datasets imported from external repositories or generated by an user
as result of a query execution. We support a private repository for each user and
a public, read-only repository shared by all the users, which contains datasets
from open public collections, such as ENCODE [14] and TCGA [29], as discussed
in Section 2.

4.1 Optimization Options in V2

The new architecture opens up for multiple optimization options, illustrated
in Fig. 8. In particular, a query optimizer applies deployment-independent op-

3 GeCo V2 software is available at https://github.com/DEIB-GECO/GMQL.

https://github.com/DEIB-GECO/GMQL


12 S. Ceri et al.

timizations directly to the intermediate representation, either in the form of
node reordering or of refinements of the initial selections; the former ones range
from classic algebraic optimizations, e.g., pushing of selection conditions to the
nodes where metadata are used for joining or grouping (operations JOIN, MAP,
GROUP, and ORDER), or distribution of selections to binary operations (such
as JOIN, MAP, UNION and DIFFERENCE), or inversion of the execution or-
der of binary operations (such as JOINS with UNION or DIFFERENCE); these
optimizations are subject to applicability constraints. In few cases, it is possible
to perform also node deletions, e.g., when after optimization we can infer that
meta predicates are contradictions. These optimizations produce an Optimized
Intermediate Representation which is next used for the GMQL implementations.

Other optimizations are possible at a low level, and apply to specific imple-
mentations. In Version 2, we associate each dataset with a profile, which includes
several parameters, such as: the number of samples, their sizes, the number of
regions in each sample and the length of the genome where sample regions are
distributed (these are typically a subset of the overall length of each chromo-
some, as the initial and final parts of the chromosomes are not typically involved
in protein coding or epigenomically relevant regions). Therefore, it is possible to
use alternative algorithm for deploying the various operations depending on the
profiles of operands, or to dedicate a suitable number of execution nodes to given
queries based on their expected load, or to optimally use data partitioning and
caching, so as to evenly distribute the load to the various nodes of a cloud-based
system.

Fig. 8. Optimization options for GMQL V2

The most computationally expensive operations in GMQL require joining
regions of two datasets; each dataset may have millions of regions, yielding to
operations which potentially range over thousand of billions of region pairs. For
coping with such requirements we use genome binning, illustrated in Fig. 9;
binning is effective in supporting both effective parallelization and reduction of



Genomic Data Management 13

the pairs of regions to be considered for each join predicate. Binning has been
used in the context of genome browsers to speed up query processing over regions
[19]; its use in the map-reduce computations was proposed in [13].

Fig. 9. Genome binning

Genome binning consists of partitioning the genome into equal-size segments;
each region of the two operands of a joining operation is assigned to one or
more bins, and the joins between regions are executed only within bins, yielding
very effective parallel processing. Specifically, the first operand of the join is
called anchor and the second operand is called experiment; the mapping of each
anchor region to bins is defined by its search space, which in turns depends on
the genometric join condition. Experiment regions are simply mapped to bins
on the basis of their position. Algorithms discussed in [18] describe the binning
algorithms in detail and show that each operation is associated with an optimal
bin size. Intuitively, small bin sizes produce an excess of parallel execution, while
large bin sizes produce an excess of execution of join operations within each bin.

4.2 Performance Comparison

A direct comparison between V1 and V2 is not very significant, because the
two systems use different technologies and have been deployed over different
platforms.

Fig. 10. Use of resources and spedup, V1 vs. V2



14 S. Ceri et al.

A comparative study was done at the time of the first release of V2, on the
same platform, using the Spark engine for V2; the performance of V2 has sig-
nificantly increased since its first release. We considered four GMQL query frag-
ments, specifically dedicated to data preparation (with SELECT and COVER as
dominant operation), differential data annotation (with EXTEND and DIFFER-
ENCE as dominant operation), processing (with SELECT and JOIN dominant
operations) and extraction of results (with MAP dominant operation). The com-
parison between V1 and V2, shown in Fig. 10, shows the use of resources for each
query fragment and the speed-up in going from Version 1 to Version 2, ranging
from 13% to 41%.

Other comparative studies regard the speed-up of specific operations. The
left diagram of Fig. 11 corresponds to a MAP operation with a single reference
and shows that both V1 and V2 scale linearly with the number of samples, but
V2 has about half execution time; the right diagram of Fig. 11 corresponds to
a MAP operation with multiple references (N=11) and shows that V1 does not
scale linearly.

Fig. 11. Spedup of the MAP operation, V1 vs. V2

4.3 Discussion

Compared to V1, V2 has a much more complex software organization. While
V1 was cooperatively developed by 3 PhD students, V2 has a larger group of
developers, which included in the past several master students; the use of GitHub
allowed for several branches to the main Spark implementation, which allowed
us to test also the use of Flink and SciDB, served by suitable implementation
branches. At the moment, the Spark implementation is fully supported, while the
Flink and SciDB implementations are only maintained for specific operations.

Comparative analysis, published in [9] and [10], shows that the performance
of Flink and Spark are remarkably similar, while the performance of Spark and
SciDB are very different, with SciDB faster then Spark when operations in-
volve selections and aggregates (as they are facilitated by an array organization);



Genomic Data Management 15

whereas, Spark is faster than SciDB in JOIN and MAP operations (thanks to
the general power of the Spark execution engine.)

5 Conclusions

The GMQL System is the center of several other tools and activities. We fully
developed a Python library supporting an interface to the full GMQL language;
the library is deployed within the international Python library repository and
does not require any installation - as it is customary in Python. It supports a
local and a remote execution mode, the former runs in the client desktop, the
latter runs on a remote server and as such it connects to the global repository.
Similar interfaces are being deployed for R and Galaxy.

We also developed a client-side system for data inspection and exploration,
described in [17]; the tool connects directly to the results of GMQL queries and
specifically to those queries which are completed by a MAP operation, as it is
typically used to map known annotations (e.g., genes or epigenomically selected
regions) to experimental datasets (e.g., gene expressions or mutations).

Our major current effort is dedicated to the development of an integrated
repository for processed datasets, that extends the current repository described
in Section 2. We are currently defining core metadata information that is nor-
mally available at all data sources, and then methods for extracting and nor-
malizing such information; the conceptual model of the integrated repository is
presented in [8]. All these efforts are coherently applied to tertiary data analysis,
whose relevance is expected to grow within the near future.

Acknowledgment. This research is funded by the ERC Advanced Grant
project GeCo (Data-Driven Genomic Computing), 2016-2021.

References

1. 1000 Genomes Consortium. An integrated map of genetic variation from 1,092
human genomes. Nature, 491, 56-65, 2012.

2. F. Albrecht et al. DeepBlue epigenomic data server: programmatic data retrieval
and analysis of the epigenome. Nucleid Acids Research, 44(W1), W581-586, 2016.

3. Anonymous paper, Accelerating bioinformatics research with new software for big
data to knowledge (BD2K), Paradigm4 Inc., 2015 downloaded from: http://www.
paradigm4.com/).

4. Apache Flink. http://flink.apache.org/
5. Apache Lucene. http://lucene.apache.org/core/
6. Apache Pig. http://pig.apache.org/
7. Apache Spark. http://spark.apache.org/
8. A. Bernasconi et al. Conceptual modeling for genomics: building an integrated

repository of open data. In: Proc. Entity-Relationship, Valencia, ES, 2017.
9. M. Bertoni et al. Evaluating cloud frameworks on genomic applications. Proc. IEEE

Conference on Big Data Management, Santa Clara, CA, 2015.
10. S. Cattani et al. Evaluating big data genomic applications on SciDB and Spark.

Proc. Web Engineering Conference, Rome, IT, 2017.

http://www.paradigm4.com/
http://www.paradigm4.com/
http://flink.apache.org/
http://lucene.apache.org/core/
http://pig.apache.org/
http://spark.apache.org/


16 S. Ceri et al.

11. S. Ceri et al. Data management for heterogeneous genomic datasets. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 14(6), 1251-1264,
2016.

12. F. Cumbo et al. TCGA2BED: extracting, extending, integrating, and querying
The Cancer Genome Atlas. BMC Bioinformatics, 18(6), 1-9, 2017.

13. B. Chawda et al. Processing interval joins on Map-Reduce. In Proc. EDBT, 463-
474, 2014.

14. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in
the human genome. Nature, 489(7414), 57-74, 2012.

15. FireCloud. https://software.broadinstitute.org/firecloud
16. Hadoop 2. http://hadoop.apache.org/docs/stable/
17. V. Jalili et al. Explorative visual analytics on interval-based genomic data and

their metadata. BMC Bioinformatics, 18, 536, 2017.
18. A. Kaitoua et al. Framework for supporting genomic operations, IEEE-TC,

10.1109/TC.2016.2603980, 2016.
19. W.J. Kent. The human genome browser at UCSC. Genome Research, 12(6), 996-

1006, 2002.
20. M. Masseroli et al. GenoMetric Query Language: a novel approach to large-scale

genomic data management. Bioinformatics, 31(12), 1881-1888, 2015.
21. M. Masseroli et al. Modeling and interoperability of heterogeneous genomic big

data for integrative processing and querying. Methods, 111, 3-11, 2016.
22. C. Olston et al. Pig Latin: A not-so-foreign language for data processing. ACM-

SIGMOD, 1099-1110, 2008.
23. A. Roy et al. Massively parallel processing of whole genome sequence data: An

in-depth performance study. In ACM Sigmod, Boston, MA, 2017.
24. S. C. Schuster. Next-generation sequencing transforms today’s biology. Nature

Methods, 5(1), 16-18, 2008.
25. SciDB. http://www.scidb.org/
26. K. Shvachko et al. The Hadoop distributed file system. In Proc. MSST, 1-10, 2010.
27. Z. D. Stephens et al. Big data: astronomical or genomical? PLoS Biology, 13(7),

e1002195, 2015.
28. R. C. Taylor et al. An overview of the Hadoop MapReduce HBase framework and

its current applications in bioinformatics, BMC Bioinformatics, 11(Suppl 12), S1,
2010.

29. J. N. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project.
Nature Genetics, 45(10), 1113-1120, 2013.

30. M. Zaharia et al. Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. In Proc. USENIX, 15-28, 2012.

31. M. A. Jensen et al. The NCI Genomic Data Commons as an engine for precision
medicine. Blood, 130(4), 453-459, 2017.

https://software.broadinstitute.org/firecloud
http://hadoop.apache.org/docs/stable/
http://www.scidb.org/

	Lecture Notes in Computer Science

