
 Eindhoven University of Technology

MASTER

Progressive approximate query execution using partition-level sampling

Tittel, Viktor

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/fe005f3d-ae83-404d-a47b-62dec1649c44

Department of Mathematics and Computer Science
Database Systems Group

Progressive approximate query execution
using partition-level sampling

Viktor Tittel

Assessment Committee:
dr. Odysseas Papapetrou (Supervisor)
dr. Anna Vilanova
dr. Nikolay Yakovets

28 July 2021

Contents
1 Introduction 1

1.1 Contribution . 3
1.2 Problem Statement . 4

2 Background and related work 6
2.1 Row-level sampling based AQP . 6

2.1.1 Common sampling strategies . 6
2.1.2 Online sampling . 7
2.1.3 Offline sampling . 8
2.1.4 Hybrid models . 9

2.2 Partition-based sampling schemes . 9
2.3 Data skipping schemes . 10
2.4 Error estimation . 11

3 System Overview 12
3.1 Design goals . 12
3.2 Design overview . 13
3.3 Progressive computation . 14
3.4 Supported queries . 15

4 Architecture 16
4.1 Partition-level sampling using statistics: Motivation 16
4.2 Statistics Builder . 16

4.2.1 Distinct values . 17
4.2.2 Rare groups . 17
4.2.3 Eliminating empty joins . 18
4.2.4 Predicate selectivity estimation . 19

4.3 Partition picker . 21
4.4 Progressive estimation and result combiner 25
4.5 Error estimation . 26

5 Evaluation and discussion 28
5.1 Experimental setup . 28
5.2 Evaluation for TPCH datasets . 31

5.2.1 Average relative errors and average percentage of missing groups . . . 31
5.2.2 Execution times . 35
5.2.3 Discussion and future work. 38

6 Conclusion 40

Bibliography 40

1

A Appendix 46
A.1 Queries . 46
A.2 TPC-H schema . 49

Abstract

The amount of digital data has grown exponentially in recent years, and this trend is on an
upward trajectory. While this amount of data brings with it the possibility of gaining valuable
analytical insights, it comes at the cost of increased computational resources. Modern big
data processing systems, such as Spark [1], house massive datasets. However, with the ever-
growing amount of data, even big data processing systems are unable to provide answers in
acceptable response times. However, in many cases, users are satisfied with an approximate
answer to their query. Systems that provide such functionality are called Approximate Query
Processing (AQP) systems. To answer queries approximately, AQP systems generally rely
on row-level sampling to construct a sample representative of the entire dataset. However,
this approach becomes inefficient as the amount of data grows; even a small sample would
require loading almost all the data in memory. An alternative to row-level sampling is block-
level sampling, wherein entire blocks of tuples(partitions) are sampled simultaneously. In
this thesis we investigate the feasibility of using block-level sampling to answer SQL queries
approximately and progressively, by reading only a subset of the data from disk at a time. A
progressive AQP system continuously refines the estimate as more data is read in a way that
guarantees constant execution time for each update. To this end, we develop a prototype
system to execute queries progressively, that utilizes a set of lightweight statistics that enable
us to weigh subsets of data according to their contribution to the query result, and skip data
that does not contribute to the result.

Chapter 1

Introduction
The amount of digital data has grown exponentially in the last two decades. The majority
of this growth is comprised of raw, unstructured data, which is often stored in cloud data
lakes to allow for massive and distributed storage. Querying data lakes is often a challenge
due to the size and the unstructured nature of the data. Several data processing frameworks
exist to store and analyze the raw data, such as Apache Hadoop [2] and Apache Spark [1].
However, when processing sufficiently large datasets in the order of several terabytes, even
these systems can take hours or even days to answer certain queries [3]. Such response times
are unacceptable to users in most domains, since one of the key purposes for storing the data
is to enable data exploration, often times through interactive visualization.

When performing exploratory data analytics over massive datasets, one key observation is
that oftentimes, users are satisfied with approximate answers rather than to wait for the ex-
act answer or no answer at all, given that these answers come with statistical guarantees. This
observation gave rise to the Approximate Query Processing paradigm(AQP). First defined by
S.V. Vrbsky in 1990 [4], AQP is a computing paradigm in which only a fraction of the rele-
vant data is processed to provide fast query results, which are close to the correct value with
statistical guarantees. AQP sacrifices result accuracy for a significantly lower query latency,
with accuracy and latency parameters typically controlled by the user. While the majority of
prior research on AQP presents sampling as a solution to approximating query results, such as
WanderJoin [5], Quickr [6], DBO [7] and RippleJoin [8], these approaches do not consider the
fact that random disk accesses are extremely inefficient in HDFS-based processing systems.
In the worst case, creating row-level samples on a table can be as expensive as scanning the
entire table [9]. A recent analysis by Chaudhuri et al [10] on an APQ system deployed on
Microsoft production big data clusters showed that only queries where a lot of work remains
after sampling received substantial speed-ups. Queries where very little work remains after
sampling, such as queries with only simple aggregates, received no speed-up from sampling,
since the cost of sampling was not offset by the cost of the work after sampling.

Like its precursor - relational database systems, which store data in small sized blocks -
large-scale distributed file systems typically store data in partitions that can be accessed sep-
arately. In comparison to RDBMS block sizes, which are sized in the kilobytes, partitions are
sized in hundreds of megabytes - the default size of a partition, or block in HDFS is 128MB.
Since we can access partitions individually, it opens up the possibility of doing partition-level
sampling, wherein instead of sampling rows, we sample entire partitions. This idea is not
new by any means; traditional commercial RDBMS systems like Oracle and PostgreSQL offer
block-level sampling, and big data warehouses like Snowflake [11] and Hive [12] offer partition-
level sampling. It is not hard to see that for queries where little work remains after sampling,
partition-level sampling can offer significant speed-ups. To sample p% rows of a table, we only
have to read in p% of the table into memory - thus the read cost of creating a partition-level
sample on-the-fly is directly proportional to the sampling fraction. This requires significantly

1

fewer partition reads than sampling on row-level.

While partition-level sampling may provide significant speed-up for certain types of queries,
there is a caveat; since either all rows of a partition are included in the sample or none, in
most cases the sample will be extremely biased, and no longer representative of the entire
dataset. The accuracy of approximations over partition-level samples depends on the layout
of the data on disk. If the layout is random, i.e. the tuples are randomly shuffled among
partitions, then a partition-level sample will be as good as a uniform row-level sample over the
dataset. However, in big data processing systems such as Apache Spark and Apache Hadoop,
where queries only read and append data, data is typically stored in the order of arrival [13].
Thus, tuples in a partition will be highly correlated, leading to poor approximation accuracy
when compared to a row-level sample of the same size. Moreover, even if data is well shuffled
between partitions, a uniform sample of the data may not be sufficient to answer queries with
group-bys on attributes with a skewed distribution, or join queries. In the case of the former,
uniform sampling can miss rare groups. In the case of the latter, joining two uniform and
independent samples produces quadratically fewer results [14]; that is, if we take a sample
fraction of p from table R and table S, their sample join result will produce only p2 tuples of
the original join result in expectation.

Although sampling is a viable approach to delivering query results fast, constructing a repre-
sentative sample of the entire dataset that meets the required accuracy guarantees can still
be costly, and thus increase response time to users. Motivated by the fact that users prefer to
have fast feedback on query progress, instead of being forced to wait with no feedback until
query completion, the authors in [15] introduced the notion of online aggregation. In online
aggregation, the query is executed on progressively larger input, and the result is updated
every time more data is processed. As query execution progresses, the confidence bounds of
the result get tighter. This approach allows the user to observe the progress of the query, and
in some systems, control its execution, a process known as query steering. This approach has
significant advantages; users get a fast, albeit rough approximation of the query, and they can
terminate query execution early. In the current pay-as-you-go cloud computing environment,
in which big data is stored in the cloud and users pay for processing time, such a system can
bring about significant monetary savings.

Although online aggregation has great benefits, it needs a significant amount of work to
integrate into existing systems. Online aggregation assumes tuples are processed in a ran-
dom fashion, i.e. whenever a subset of data is added to the computation, that subset is a
uniform random sample of the original data. In the context of big data processing systems,
this implies that data should be maintained in random order, such that each partition of a
table constitutes a random sample of that table. The alternative is loading entire table(s)
into memory, and repeatedly taking random samples, which is highly inefficient. Maintaining
a random data layout requires added effort, since it is expensive to modify the data layout in
big data stores, which are typically read and append-only. Thus, we are again presented with
the problem of biased partition-level samples when working with data in-situ, which does not
have a random ordering. Although approaches such as in [16] can work with data in-situ, it
requires a full scan of the dataset, which incurs high I/O cost.

2

1.1 Contribution
In this thesis, we investigate the feasibility of using partition-level sampling by means of
partition-level statistics to perform online aggregation on data in-situ. Since partition-level
sampling on non-random data will produce a biased sample in expectation, this sampling
approach is inherently at odds with the randomness assumption of online aggregation. With
the assumption that most real-world data is stored in order of arrival, and thus tuples within
a partition will be highly correlated, our goal is to find corner cases for which partition-level
sampling can achieve comparable approximation accuracy to row-level sampling. That is,
we are searching for specific types of queries and data distributions for which partition-level
sampling can achieve comparable approximation accuracy to row-level sampling, with faster
response times. To this end, we design a prototype system that supports online progressive
AQP by iteratively constructing a sample of the full dataset by using partition-level statistics
to sample partitions, and combining partition-level samples. At each iteration, the user can
see the partial results of the query so far. The system is designed as a library that runs on
top of Spark, that can be embedded in another Spark application, and interfaces between
the higher-level application and the raw data. It requires no changes to the platform it runs
inside of, or the raw data it sits on top of. This system enables us to explore partition-level
sampling on large, distributed data that resides in Spark clusters, where partitions are sized
in the hundreds of megabytes. Due to the fact that most data in production clusters is stored
in the order in which it arrived in the cluster [13], the system is layout agnostic, and does not
repartition the data. The system samples partitions at query time, so no prior query workload
is required to build samples offline. This enables immediate exploratory data analysis on new
datasets. The system supports both single table queries and multi-table join queries, with
an emphasis on the latter. The work in this thesis is directly inspired by previous work on
partition selection [17] and data-skipping [18] [19] [20] [21] [13].

In order to accurately select partitions that will participate in the query, the system builds a
set of summary statistics for each partition. We consider three factors when building statis-
tics. The first factor is low storage overhead; all statistics are loaded into memory on program
startup in order to avoid reading them from disk at query time, so the statistics have to be
lightweight to keep their memory footprint low. Secondly, the statistics have to be comprehen-
sive enough to differentiate between any two partitions. For any query, the system partition
picker should have sufficient statistics to rank partitions in order of contribution to the query
result, with good accuracy. Thirdly, we should be able to clearly justify why and how each
statistic contributes to a query. To this end, we store the following statistics: histograms,
count-min sketches, distinct values and heavy hitters. All statistics are single-column, and
can be computed with just one pass over the data. Multi-column statistics can potentially
provide more accurate answers, but incur a higher storage overhead, which goes against our
design considerations.

In order to facilitate exploratory data analysis, the system employs a progressive compu-
tation paradigm. Instead of waiting for the query to complete on the full dataset, our system
returns a partial estimate computed on a small subset of the full dataset, and refines this
estimate by progressively increasing the subset. Ideally, the partial result should be improved
with each consecutive iteration, however we cannot provide guarantees for it. Convergence
to the true answer is dependent on the query itself - if the where clause is not very selective,

3

the answer will converge to within a small factor of the true answer rapidly. If the query
has high selectivity, such as queries with selective predicates or that group by columns with
rare groups, convergence to a sufficiently accurate result will take longer. To provide the user
with statistical accuracy of the partial answers, we employ a fast empirical method called
variational subsampling [22] to calculate errors per group. This also serves as a convenient
stopping criterion; once all groups have reached the desired error level, specified by the user,
the algorithm will terminate execution. Alternatively, the user can stop the query manually
at any time during execution.

1.2 Problem Statement
In HDFS-based big data storage, where data is stored in large partitions of files typically sized
in the hundreds of megabytes, random disk accesses are highly inefficient. Thus, constructing
a sample of a table in the database can be as costly as scanning the entire table, since it
requires fetching most if not all partitions from disk. The I/O cost of constructing row-level
samples can partially negate the benefits of using sampling to speed up query processing. This
is of specific concern for online aggregation, since a scan of the entire table would be needed
for each estimate update. In contrast, partition-level sampling has an I/O cost proportional
to the desired sampling percentage. If a table consists of 100 partitions, a sample size of 1%
would only scan 1% of the data.

A significant challenge of this approach is constructing samples that can answer the query
accurately. Under the assumption that most real-world data is stored in order of arrival, a
partition-level sample will be inherently biased, which can negatively impact the accuracy of
the estimation. This is of particular importance for evaluating a query progressively. The
stopping criteria for query termination is dependent on error estimation techniques which
assume that a sample is random. A biased sample may therefore produce incorrect error
estimates, which may terminate query execution early, before the desired accuracy has truly
been achieved. Because we are aware of the potential pitfalls of partition-level sampling, our
purpose is not to use partition-level sampling to answer a wide array of queries on arbitrary
data distributions. Instead, our goal is to find types of queries and data distributions for
which partition-level sampling would offer significant speed-ups, with accuracy comparable
to row-level sampling. We are interested primarily in queries with aggregates, group-bys and
joins.

Let P (Ti) be the set of all data partitions for table Ti, and S(P (Ti)j) be the set of statistics
for partition Pj of table Ti. Let Q be a query with at least one aggregate statement, and at
least one group-by attribute. Let A be the set of aggregates and G be the set of all groups
that are in the full answer to Q. For each group g ∈ G we can denote the aggregate values
for it as Ag = {A1(g), A2(g)..., An(g)}. The approximate answer for aggregates of group Ag

on a set of partitions K is defined as Ãg(K). We define the progressive computation of query
Q for a group g ∈ G as a recurrence relation Ãg,(n) = Ãg,(n−1) + Ãg(K), where K is the set of
partitions chosen at the current step n. Note we overload the + operator to mean we combine
aggregates appropriately, and not simply sum them together.

Given a query Q, a set of statistics S, and a partition sampling budget j, at each step

4

the system picks a set of partitions K = {p1, .., pj}, and executes the query Q on K to pro-
duce Ãg(K) for all g ∈ G. The newly computed Ãg(K) at the current step n is combined
appropriately with the approximate answer at step n−1, to produce the approximation com-
puted so far.

The goal of the system is to initially pick a set of partitions K such that Ãg(K) is a good
approximation of Ag for all g ∈ G, and then progressively refine the approximation by adding
more partitions. At each step, the system attempts to pick a new set of partitions K in a
way that either increases the number of groups discovered, or decreases the estimation error
of already discovered groups, or both. The system stops either when specified by the user, or
the desired error level has been reached by all groups.

5

Chapter 2

Background and related work
This section describes the prior work on sampling-based AQP, partition-level sampling and
data skipping schemes.

2.1 Row-level sampling based AQP
This subsection describes the most common sampling schemes for constructing row-level sam-
ples.

2.1.1 Common sampling strategies

Uniform sampling

Given a table T and a sampling probability p, for each row t ∈ T the uniform sampler
picks the row to be in the sample with probability p. Thus each row is subjected to an
independent Bernoulli trial, and included in the sample with probability p. An alternative
method is fixed-size uniform sampling, wherein a fixed sample of size n is created from the
table. Uniform sampling can be done with or without replacement. Uniform sampling has
two significant drawbacks. First, for join queries, joining uniform samples introduces two
problems: quadratic reduction of and strong correlation in output tuples [23]. For example,
given tables T1 and T2 with 100 records each, and their respective 10% samples S1 and S2,
the sample join S1 ./ S2 will produce only 0.1 · 0.1 · 100 = 1 tuple in expectation. Secondly,
uniform sampling performs poorly on skewed data; it can miss rare groups that only have a
few tuples.

Stratified sampling

For SQL queries with a group-by clause, a major shortcoming of uniform samplers is that
they are prone to missing rare groups. The goal of the stratified sampling algorithm is to
ensure that no groups are missed when constructing the sample. Given a table T , a set of
columns C, an integer number γ and a sampling probability p, a stratified sampler partitions
the table based on every distinct combination of values in the column set C. These partitions
are called strata. Then, γ tuples are sampled uniformly at random with probability p from
each strata; if a strata has fewer than γ tuples, all tuples of that strata are taken. This
approach guarantees that for each possible group in C, at least γ tuples are sampled, or all of
them [3]. It is also possible to set sampling rates individually per strata; if one strata is more
"interesting" than another, one could have a higher sampling rate p for that strata. Using
stratified sampling can achieve a better approximation than uniform sampling using similar
sample size, or achieve an identical approximation quality with lower sample size. Although
stratified sampling can produce good approximations of queries with group-by clauses, it
suffers from some limitations. When constructing samples offline, the query workload must
be known in advance, in order to predict what columns will most likely be used in group-by

6

clauses. Such an approach prohibits exploration of a new database using ad-hoc queries.
Second, the memory footprint of a stratified sample can be as large as the number of distinct
columns in C. When grouping by multiple columns, it can become prohibitively expensive.

Universe sampling

As mentioned earlier, one of the drawbacks of uniform sampling is the quadratic reduction in
output tuples for join queries. Universe sampling addresses the problem by mapping the values
of the join keys onto some high-dimensional space, most commonly using a hash function,
and then sampling the same portion of this space for all input tables [6]. More formally, given
a set of join columns C, sampling probability p and a perfect hash function h : C 7→ [0, 1], a
tuple t in any input table is included if h(t.cols∩C) < p. Thus, if a tuple t1 is sampled from
the first input table, tuples t2, t3, .., tn from other tables that match t1 are also sampled. It is
now trivial to see that joining a p fraction of the tables using uniform sampling produces a p
fraction of the original result tuples, and not p2. Since each tuple appears in the result with
the same probability p, joining two universe samples with fraction p is equivalent to doing
universe sampling with fraction p on the join output when using the full dataset. While the
fraction of join output is preserved, this method naturally leads to strong correlation in the
join output. If two tuples have the same join keys, they will either both be sampled or not.
Thus if t1 appears in the join output, so will t2, and vice versa. Such correlation can lead to
lower accuracy of results, specifically in the case when the join keys consist of low-cardinality,
high frequency values[24]. Moreover, universe sampling is applicable only to equi-joins, and
join attributes must be the same between all input tables.

2.1.2 Online sampling

Online sampling methods, as the name implies, create samples at run-time when the query
is submitted to the system. Online sampling attempts to create a representative sample of
the input tables, without any a-priori knowledge of future queries. Given a time and/or an
accuracy constraint, a sample size can be computed that will satisfy the constraints. The
newly created samples are then used to answer the query. However, making samples online
efficiently is a challenge due to time constraints. Not only does it incur additional overhead
at run time for any sampling method, more sophisticated sampling methods that require
multiple passes over the data are expensive. Due to the cost of sampling at run-time, most
AQP solutions that rely on online sampling use one-pass samplers, such as uniform, distinct
and universe samplers [6] [25] [26].

Quickr [6] is a representative state of the art online AQP engine, built on top of Spark.
Quickr implements three one-pass samplers mentioned previously: uniform, distinct and uni-
verse. A cost-based query optimizer is used to decide appropriate sample types. Samplers are
injected into the query plan are pushed down below projection, selection and join operators.
This differs from traditional sample construction - instead of searching for the best sample of
the data to answer the query, it searches for the best sampled query plan. In both cases, the
best sample or plan is specified by user constraints, such as performance and accuracy. One of
the unique features of Quickr, excluding the introduction of the universe sampler mentioned
earlier, is support for query approximability. Given a query, Quickr decides whether the query
is approximable; a query is approximable if an accurate estimate can be provided per group,

7

no groups are missed, and an error estimate can be computed. If a query is not approximable,
it is executed over the full dataset instead of a sample. During query execution, samples are
progressively refined until the user stops execution, or the desired error bound is reached.

2.1.3 Offline sampling

When the query workload is known in advance, and will not significantly change in the future,
samples can be created offline, based on anticipated queries. This allows the query engine
to achieve a much faster query response time, since the query can be run over the existing
samples immediately. This also allows for more sophisticated types of query synopses which
require multiple passes over the data, something that is not feasible for online sampling. Syn-
opses are not limited to pre-computed samples; other types include histograms, wavelets and
sketches [27]. While offline sampling can significantly improve result accuracy and response
times for queries we know a priori, it can fail for ad hoc queries which are not covered by any
of the stored synopses. This most commonly happens in the case when ad hoc queries have
highly selective predicates. After sample tables are filtered by the predicate, it could be that
we no longer have enough tuples left to give a sufficiently accurate answer to the query [26].
Thus the goal of an offline sampling system is to create samples in such a way that enough
tuples are present to give sufficiently accurate answers to most queries, ad hoc or otherwise.

To build offline synopses, two approaches are possible. Workload-aware AQP systems uti-
lize a-priori knowledge of the query workload distribution. A fundamental assumption of
workload-aware systems is that the future query workload will be the same as the historical
query workload, or at least have a similar distribution. Examples of such systems include
STRAT [28] and more recently, BlinkDB with runs on top of Spark [29]. Given a work-
load of queries, STRAT constructs a stratified sample for each table such that the relative
expected error of the workload queries using the sample is minimized. The choice of sam-
ples can be tailored to also provide accurate answers to ad hoc queries which are similar to
the initial query workload. BlinkDB is a more recent development, and perhaps the most
prominent workload-aware massively parallel AQP engine. BlinkDB uses a column-set based
optimization framework to compute a set of stratified samples based on the query workload.
For each query, it extracts all the columns that appear in the query; this set of columns is
called the QCS. Based on the space constraints, BlinkDB uses an optimization algorithm to
determine for which QCSs it will build a stratified sample, such that the highest possible
number of workload queries can be answered using the samples. The shortcoming of this
approach, like for any workload-aware AQP engines, is that the query workload can change
drastically, making this approach ineffective to answer new queries. The second approach to
offline sampling is workload-independent AQP systems that create samples based only on the
schema and statistics of the table. The first such system was AQUA [30], which runs on top
of a DBMS system. It pre-computes synopses of the original data, by looking at all possible
combinations of grouping columns and samples each combination at a different sampling frac-
tion. The synopses are updated as the database changes. Babcock et al. [31] propose another
workload-independent sampling technique aimed at the class of queries with aggregations and
group-bys, called small group sampling. This approach is two-fold; first, a uniform sample
is constructed for each table in the database. Then, for each column, a modified stratified
sample is constructed that contains only rows from the rarest groups in that column, i.e.
rows that appear infrequently. A heuristic algorithm is used to decide whether a group is

8

considered rare. This approach differs from pure stratified sampling - not all groups will be
sampled by the algorithm, since it is assumed larger groups will be captured by the uniform
sample. An incoming query is then executed on the union of the uniform samples with the
stratified samples of the group-by columns in the query. The intuition behind this approach
is that a uniform sample can sufficiently capture large groups, but can miss rare groups.
By augmenting the uniform sample with rows containing the rare groups, the accuracy of
aggregations for those groups is substantially improved.

2.1.4 Hybrid models

A novel approach to workload-independent AQP is proposed by Kulessa et al. [32], called
Model-based AQP. This approach uses a Mixed Sum-Product-Network [33] generative model
learned over a database to answer ad hoc queries. Generative models are a class of statistical
learning models that can generate new data; given a set of data X and/or a set of labels
Y , a generative model captures the join probability p(X, y), and can predict how likely a
given input is. The learning process is done offline. In the context of AQP, a query is the
predictor(input) variable, and sample tuples are the target(output) variable. At runtime, the
user’s query is fed into the generative model, which generates sample tuples. These tuples are
then used to answer the query. A stratified sampling approach is used to generate the sam-
ples; samples are generated for each group independently, so that rare groups have sufficient
representation in the sample. A shortcoming of the current model-based approach is that it
only supports queries on single tables - joins and nested tables are not supported. A similar
approach is presented by Thirumuruganathan et al. [34], using deep learning models instead.

Taster [25] is an adaptive, self-tuning AQP engine implemented over Spark SQL, which com-
bines elements of both online and offline AQP systems. At runtime, Taster generates a query
synopsis, which can be either samples or sketches, and injects them into the query plan.
Two types of samplers are supported: uniform and distinct (one-pass stratified sampling). A
count-min sketch [35] is also supported to answer queries with aggregations over single and
multi-table joins. These synopses are saved in a synopsis buffer. After query execution, if the
buffer is full, the tuner component of Taster decides which synopses should be stored in an
offline HDFS warehouse. Likewise, it also decides which plans to eject from the warehouse.
The synopses can then be reused across queries; the cost-based planner component generates
candidate execution plans which may or may not use the stored synopses. The Tuner com-
ponent then chooses the best plan. When ranking plans, the tuner favors plans that generate
reusable synopses, and not just minimizing the cost of the current query. Experimental evalu-
ation showed that Taster significantly ourperforms Quickr and offers comparable performance
to BlinkDB, without requiring a priori knowledge of the datasets.

2.2 Partition-based sampling schemes

Partition-level sampling is not a new idea by any means. Prior research [36] [9] [37] [38]
has acknowledged the inefficiency of row-level sampling in terms of IO cost, and has utilized
block-level sampling for various goals such as statistics estimation, among others. Although
this research is based on traditional RDBMS blocks, which is the finest level of granularity
at which data is stored and are typically only a few kilobytes in size, the core concept of this
approach can be carried over directly to big data systems where the finest level of granularity

9

is significantly larger-sized partitions.

More recently, partition-level sampling has been studied for big data processing systems
in the framework of both online aggregation and offline synopses. Online aggregation(OLA)
approaches that utilize partition-level sampling [39] [40] [41] generally shuffle the partitions
before loading them into memory as a bias reduction step; retrieving the shuffled partitions
sequentially amount to sampling partitions uniformly. The cost of shuffling depends on the
specific implementation; the authors in [39] [40] simply shuffle the partitions and use them
as is, while the authors in [41] first take a number of blocks from several input splits, shuffle
the tuples in memory and divide them into new blocks for the map tasks. Naturally, the
latter approach is more expensive than the former. A more novel approach that does not
rely on shuffling partitions is presented in [17]. The authors build a set statistics for each
partition, and train a supervised regression model which uses partition statistics as features.
At runtime, the regression model selects a set of partitions to answer the query. However,
this approach requires a prior query workload to train the model, and the model needs to be
continuously re-trained. Yet another approach, introduced in [42], combines partition-level
sampling with row-level sampling. Partitions are sampled uniformly and loaded into mem-
ory; however, instead of using all tuples inside the partitions, a secondary sampling process is
performed on the tuples. This allows for finer granularity when computing estimates - results
can be output after just processing a fraction of the tuples in memory. As the authors note,
this approach works best when the tuples inside partitions have a more uniform distribution,
since then partitions can be represented by just a fraction of their tuples.

A new offline partition-level sampling AQP approach is presented in [43]. The authors intro-
duce a distributed data model called the Random Sample Partition (RSP); RSP represents a
dataset as a set of disjoint data blocks, called RSP blocks. Within each RSP block, the tuples
have a similar distribution to that of the entire dataset. The work in [44] utilizes the concept
of RSP blocks to store a dataset as a set of ready-to-use random sample data blocks. When
a query arrives in the system, only a fraction of the RSP blocks are selected and processed
to produce approximate results that are representative of the entire dataset.

2.3 Data skipping schemes
Data skipping is a relatively new technique that utilizes partition-level statistics to reduce
the need to access irrelevant data. By maintaining metadata for each partition, a query may
skip partitions if the metadata indicates that the tuples in the partition will not contribute
to the query result. Most recent work on data skipping focuses on changing the layout of the
data to skip partitions aggressively [18] [19] [20] [21]. However, a big limitation of most data
skipping approaches is they lose effectiveness over arbitrary data, i.e. the data layouts do
not generalise to arbitrary and changing data distributions. Adaptive partitioning schemes
described in [20] and [19] address this problem by updating the data layout based on new
workloads, but such schemes are expensive to maintain. The work in [13] introduces data
skipping for join queries. The authors define a concept of data-induced predicates, which map
predicates on columns to range predicates on the join column at partition level. In effect,
these data-induced predicates define pruning rules for partitions participating in the join.

10

2.4 Error estimation
Error estimation is an important part of AQP systems. Without providing accuracy guar-
antees, users have no way of knowing the accuracy of the approximate results. Some AQP
systems, such as BlinkDB [29], provide the error estimate only for the final answer. AQP
systems that implement online aggregation, such as G-OLA [16], update the error estimate
as more data is processed, which allows for query execution to be terminated once the de-
sired accuracy has been reached. To support error estimation for a wide range of queries,
some prior AQP systems have relied on the bootstrap method [45]. Unlike closed-form error
estimates, the bootstrap method allows for error estimation on a much wider class of queries.
Given a sample S of size n, the bootstrap resamples S k times with replacement, creating
k samples of size n. The resamples can then be used to compute statistical measures such
as the standard deviation and confidence intervals. The downside of this approach is the
computational overhead, since generally thousands of bootstrap trials (resamples) are needed
to compute reliable error estimates. The computational cost is made up of two parts: the
cost to construct the resamples, and the cost to aggregate them.

VerdictDB [22] sidesteps both aspects of the computational overhead by utilizing the concept
of variational subsampling. First, they use the theory of subsampling [46] to reduce the cost
of aggregating the resamples by using smaller resamples. To reduce the cost of constructing
resamples, they partition the sample into b resamples. Unlike traditional subsampling, where
each tuple must be able to belong to multiple resamples and resamples must be of the same
size, variational subsampling restrict tuples to a single resample, and allows for different-sized
resamples. This is done by assigning a resample id to each tuple in the sample. Tuples with
the same resample id belong to the same resample. The authors show that their approach
preserves the statistical correctness of traditional subsampling. Variational subsampling can
also be applied to queries with joins, by using a special function to combine the resample id’s
of tuples from different tables.

11

Chapter 3

System Overview
This section presents a high-level overview of the systems components and how it operates.
In Section 3.1 we discuss the main design goals of the system. In Section 3.2 we discuss the
program inputs, both from the user and the system perspective. In Section 3.3 we define
the notion of progressive computation, and in Section 3.4 we discuss what type of queries
are supported by the system. In Section 3.5 we present a simplified design overview of the
system.

3.1 Design goals
We had the following main goals when designing the system:

• Generality - The system must be able to support commonly used aggregation queries.
While the focus of this thesis is primarily on equi-join queries, this means supporting
queries with one or more aggregates, group-by’s, various selection predicates and joins
on several different attributes.

• Efficiency - The system must provide results significantly faster than traditional row-
level sampling, with comparable statistical accuracy. To achieve this, the system utilizes
lightweight data structures to quickly and accurately pick which data should be loaded
in the system, as to avoid unnecessary computation time that will not contribute to
improving the approximate query result.

• Independent of data ordering - If data had a random ordering, each table partition
would constitute a random sample of that table. While such a scenario is ideal, as
it would greatly reduce the amount of work required to pick partitions, it is often not
feasible in practice. Large-scale data stores, such as those running on Spark clusters, are
designed for read queries, and data is typically bulk appended. Maintaining a specific
data ordering, be it random or otherwise, is expensive in terms of storage, network
and CPU resources, since after each bulk append the data store has to be re-arranged.
Therefore, the system should keep the data as is, and rely on partition-level statistics
instead.

• Progressive - Most prior work on AQP deals with systems that provide one-shot
answers. After the system has computed an answer, it terminates. However, our goal
is to execute queries progressively. The system should provide increasingly meaningful
partial results as the algorithm computes. The answer should eventually converge to
within a very small factor of the true answer.

12

Figure 3.1: The architecture of the system

3.2 Design overview
Figure 3.1 shows the high-level architecture of the system. The system consists of three main
components: the statistics builder, partition selector and the result evaluator. The query
executor simply executes the given query on the set of picked partitions, and combines the
results from the new partitions with results from previous partitions. We briefly describe each
component, along with its input and output.

Statistics builder. This component is responsible for building the required statistics for
each partition. The statistics builder takes as input a partition of a table, and a map that
specifies what statistics should be built for each column. The statistics are stored separately
from the raw data, such that it can be accessed independently. During query time, the statis-
tics are loaded for all partitions of the tables specified in the query, and used to compute
run-time statistics such as selectivity and join size estimates. For each relevant partition,
the builder outputs both the pre-computed statistics from the store and and the run-time
statistics to the partition picker.

Partition picker. At runtime, the query is parsed and the system extracts the join columns,
where predicates and the group by columns. These are sent to the partition picker, which re-
trieves the statistics for these columns. The partition picker then removes from consideration
partitions which will not contribute to the query result. If the query contains a where pred-
icate, it calculates the predicate selectivity for each partition; if the selectivity is near zero,
that implies that almost no rows in the partition will pass the predicate, and the partition is

13

eliminated from consideration. If a query contains a join, the partition picker estimates the
join size between all partitions of tables that join - if the estimate is zero, that implies the
join between the two partitions will not produce any output tuples, and the partition is elim-
inated from consideration. The remaining partitions are weighted using the statistics data,
in accordance to how much they contribute to the query result. Given a sampling budget p
in the form of number of partitions to sample at each iteration, the partition picker chooses
p partitions using weighted sampling. Partitions with higher weights contribute more to the
query result, so they have a higher probability of being picked.

Query executor. The query executor executes the query on the partitions selected by
the partition picker. Aggregates are updated for each group with the new data. The updated
results are sent to the result evaluator.

Evaluator. At each step, the evaluator performs error estimation on the result computed so
far, using the idea of variational subsampling [22]. It takes as input the result of the query
so far, and for each group it outputs the estimation error and the confidence interval of the
aggregates. Although the errors and the confidence intervals are themselves approximations
and not exact, in practice they are almost identical to the true errors, and converge to the
true errors as the total sample size grows.

3.3 Progressive computation
One of the fundamental principles of our system’s design is progressive query execution. Al-
though several definitions exist [47] [48], they are ill-suited for the constraints of the Spark
ecosystem. We define the progressive computation of a query Q on a set of data tables D as
a function of time t with two properties: (1) When called continuously on a subset of tables
in D, which we denote as D(t), it returns partial results R(t) of the query Q as computed
on D′, and combines R(t) with the R(t − 1) at the previous iteration. (2) The results R(t)
converge to the true result R. In other words, given an SQL query Q, a set of tables D and
a sampling budget p, at each iteration the system samples p partitions, executed the query
Q on the set of partitions, and combines the result at the current iteration with the result at
the previous iteration. The computation continues until either the stopping condition is met,
the data is exhausted, or the computation is stopped by the user. In Section 4.4 we elaborate
further on the definition of progressive computation and how it is implemented in the system.

The authors in [47] define the progressive computation of F in a similar way, but with a
time parameter that determines the time between two consecutive results. While this defi-
nition provides the user with an intuitive way to tune the waiting time between results, as
opposed to specifying a sampling budget per iteration, it does not fit with the way we sample
partitions. Latency cost functions such as the one defined in [17] can be used to calculate
a sampling budget when doing row-level sampling, but doing so for partition-level sampling
on partition of various sizes will introduce additional sampling bias, as smaller partitions
are more likely to be picked when the sampling budget is small. Hence we limit user input
to specify a sampling budget per iteration only, along with desired error bounds. In our
definition, we measure time t in terms of iterations, and not wall-clock time.

14

3.4 Supported queries
The system supports queries that have commonly used aggregates such as sum, avg and
count, an arbitrary number of predicates, group by’s on multiple columns, and equi-joins on
multiple tables and keys. Currently, nested queries are not supported, although it is possible
to flatten many nested queries to work with our system. This is left as future work. Extreme
statistics, i.e. min and max, are supported conditionally.

Aggregates. The system supports an arbitrary number of the following aggregates: SUM,
AVG, COUNT, COUNT-DISTINCT, STD, VAR, as well as arithmetic operations on columns
in the select clause. Case statements in the select clause are also supported. As mentioned
previously, nested queries in the select clause are not supported.

Group by’s. The system supports group by’s on multiple attributes. Grouping by cal-
culated attributes is supported, although it will degrade the quality of partition selection
since the derived column does not have any statistics stored for it. Group by’s on columns
with very high cardinality is supported; although it may seem counter-intuitive to use par-
tition sampling on such queries, since a lot of groups will be missing initially, we can still
provide partial results progressively, which is of value to the user.

Predicates. The system supports multiple predicates; the where clause can consist of an
arbitrary combination of a union and intersection of predicates. The predicates can contain
comparison operators such as equality, inequality, greater than, lesser than and between.
These operators can be applied on columns with dates and numerical values; the equality
operator can be applied on string columns as well. The IN statement is supported for string
columns. The like operator is not supported.

Joins. The system supports equi-joins on multiple tables. We use count-min sketches to
perform join size estimation, which we explain in Section 4.2.3, which allow us to only com-
pute join size estimates on joins with the equality operator. Therefore, join operators <, <=,
> and => are not supported. Two tables can be equi-joined on multiple keys. Multiple tables
can be chain equi-joined on different keys. Tables can be joined on any attribute type. The
join columns can be of any type, such as numeric, string and date types. Joins using other
comparison operators, such as greater or lesser than, are not supported.

15

Chapter 4

Architecture
In this section we present and explain the architecture of the system in detail. In Section 4.1
we present our motivation for using summary statistics to perform partition-level sampling.
In Section 4.2 we describe what statistics we build and maintain for partitions. In Section
4.3 we present the partition picking algorithm. In Section 4.4 we describe how the system
executes queries progressively. In Section 4.5 we illustrate how we estimate the errors for the
approximations.

4.1 Partition-level sampling using statistics: Motivation
The primary motivation behind our partition-level sampling approach is that we want to
characterize partitions based on their contribution to the query result. This contribution
consists of three components. First, the amount of tuples in the partition that match the
query predicate. Second is the number of unique groups contained in the group-by column of
the partition - it is preferred to capture as many groups as possible early on in the sampling,
instead of refining estimates for the same groups when not all groups have yet been found.
Third is the number of rare groups present in the partition. We attempt to estimate this
contribution using a set of statistics, such that each partition has a weight associated with it
that quantifies its contribution to the query result based on the aforementioned contributions.
As an example, for a single-table query with a WHERE clause, partitions that have a higher
number of tuples that satisfy the clause should have higher contribution weights, all else being
equal. Using partition-level statistics allows us to perform weighted partition-level sampling
in a way that favors partitions that contribute more to the query result, by associating each
partition with a weight that approximates its contribution. In contrast to sampling partitions
uniformly at random, using partition-level statistics can help us achieve higher accuracy and
find more groups for some types of queries. This can be especially useful for queries with
WHERE clauses that have a low selectivity, i.e. very few tuples in the data match the clause,
and join queries. We assume that the data is not stored in a random order. As a matter
of fact, this approach would not work on random data layout, since all partitions will have
approximately equal query contribution. In the following sections we describe our statistics
of choice, motivate how they assist to quantify the contribution of partitions to the query,
and how we utilize these statistics to perform weighted partition-level sampling.

4.2 Statistics Builder
The purpose of the statistics builder is to compute a set of statistics for each partition, such
that we can use the statistics to weigh partitions according to their contribution to the query
answer. The statistics have to be comprehensive enough to enable us to accurately estimate
the contribution of different partitions to the set of supported queries. The statistics also
have to be lightweight, to keep the computation time low and the memory overhead light.

16

The statistics we introduce in the rest of this section have been chosen with these design
considerations in mind.

4.2.1 Distinct values

Motivation For queries containing the group-by clause, ideally we would like to capture
most groups early on, and progressively refine their estimates. We can use knowledge about
the cardinality of the group-by attribute, i.e. the uniqueness of the values in the group-by
columns, to find many groups early in the computation. Thus partitions with more distinct
values on the group-by attribute should be favored over partitions with less distinct values on
the group-by attribute. In other words, we prefer partitions that contain many groups over
partitions that contain only a few groups.

Implementation To keep track of attribute cardinality, we use the HyperLogLog [49], a
lightweight sketch that approximates the number of distinct elements in a multiset. We chose
HyperLogLog over exact cardinality estimation because it is orders of magnitude faster, and
has a significantly lower memory overhead. We divide the answer returned by HyperLogLog
with the number of tuples in the group-by column, which gives us a real number between 0
and 1. We compute cardinality only for grouping columns.

4.2.2 Rare groups

Motivation As we have mentioned prior, random sampling on both row-level and partition-
level, is inept at capturing rare groups in skewed data. This problem is amplified when
selecting partitions at random; in the worst case, an entire table scan would be necessary in
order to find the rare groups. Therefore, we find it important to identify partitions that are
most likely to contain rare groups. On a partition level, we consider a partition an outlier if
it contains rare groups for a given query. We view the contribution of outlier partitions to
the query result as significant; rare groups are most likely to be present in a small number of
partitions, and if we miss these partitions, we also miss the rare groups in the query result.

Implementation We use a count-min sketch [35] to keep track of the heavy hitters for every
grouping column in the partition. We combine partition-level sketches to calculate a set of
global top-k heavy hitters. Then for each partition, we calculate which global heavy hitters
are also heavy hitters in the partition and store them in an occurrence set OS. For a partition
Pi, if GHH(g) is the set of global heavy hitters on group-by attribute g, and Pi.LHH(g) is the
set of local heavy hitters on group-by attribute g, then Pi.OS = Pi.LHH(g) ∩GHH(g). The
computation of both local and global heavy hitters, as well as occurrence sets is done offline.
At runtime, we group partitions by their occurrence sets on the attributes in the group by
clause, such that partitions with equivalent occurrence sets are grouped together. For each
group, we count the number of partitions in that group, and convert it to a normalized outlier
score ols ∈ R, 0 ≤ ols ≤ 1. Partitions in smaller groups get a higher outlier score since they
contain rare group by values, and partitions in large groups get a lower outlier score, since
their group by values are more common.

The intuition behind this approach is that once we know which global heavy hitters oc-
cur in which partitions, we can group partitions with similar heavy hitter lists. Partitions in

17

groups with small sizes relative to the largest group size are then considered outliers, since
they contain group-by values present in only these few partitions. For example, consider
table T with partitions P (T) = {t1, t2, t3}, and a query Q with a group-by attribute G. Let
T (G) = {g1, g2, g3} be the set of values in T of attribute G. If g1, g2 are heavy hitters in both
t1 and t2, and g3 is a heavy hitter in t3, then t3 has a higher outlier score than t1 and t2.
Although we do not strictly label partitions as being outliers, we assign them a normalized
score which reflects their degree of outlierness. The granularity with which we track rare
groups can be tuned by changing the percentage of heavy hitters we track in the count-min
sketch, as well as k when collecting the set of top-k global heavy hitters. For instance, by
tracking heavy hitters that appear in at least 1% of the rows, we achieve a lower granularity
than tracking heavy hitters that appear in at least 0.1% of the rows. Outlier detection is done
only for the grouping attributes.

4.2.3 Eliminating empty joins

Motivation. For join queries, the partitions of one table participating in the join are not
guaranteed to join with all partitions of another table in the join. In order to avoid load-
ing the entire table in memory, and thus loading partitions whose join will not contribute
to the query result, we perform partition-wise join size estimation using count-min sketches
[50] between partitions of all tables participating in the join. Although this does not directly
contribute to partition weights, we use this estimate to eliminate joins that will not produce
any results.

Sketches over samples. Using count-min sketches allows for fast partition pruning during
query time. The count-min sketch admits two parameters: the error probability δ, and the
error factor ε. The sketch itself is a two-dimensional d × w array, where w is the width and
d is the number of hash functions of the sketch. Both d and w are derived from δ and ε,
and are fixed when the sketch is created. The count-min sketch can be used to estimate the
inner product of two vectors a and b. When applied in the context of databases, this captures
the join size of two tables, or in our case, the join size of two partitions. We can view the
count-min sketch as a set of d vectors with length w, The inner product a · b can be can be
estimated by finding the minimum inner product between corresponding vectors of the two
sketches. With probability 1 - δ, the inner product estimate is at most ε · ||a||1 · ||b||1 above
the true inner product a · b.

However, for truly large datasets, partition sizes can reach into the gigabytes. In this case,
even fast sketches like count-min fail to scale [51]. The problem arises when building count-
min sketches over high-cardinality columns, such as primary key columns of dimension tables.
Since the majority of values in such columns will be unique, if the error factor ε is not suf-
ficiently small with regard to the partition size, the count-min sketch will experience many
hash collisions, leading to vast overestimation of the true join size. In the worst case, it can
report join size estimates in the order of millions when the true join size is zero. While it is
possible to scale count-min sketches to account for partition size, this will drastically increase
the memory overhead of the sketch and the computational cost of the inner product query.

Our approach is to create count-min sketches over a uniform sample of the partition data.
This is based on the observation that if the partition is large, a uniform sample will suffice to

18

capture the shape of its frequency distribution. Several works exist that study sketching over
samples [52] [51] [53]. The authors investigate the accuracy of sketches with different sam-
pling rates, and show how much the sketch, sampling, and interaction of the two contribute
to the total variance. They found that in the case of highly skewed data (zipf coefficient > 3),
the estimation accuracy is directly proportionate to the sample size; smaller sample sizes
produced greater errors. For more uniform data, sketches over higher sample sizes (> 1%)
did not increase the accuracy of the estimation substantially. However, even though sampling
decreases the accuracy of join size estimation, it can still provide good estimates when creat-
ing sketches over a small percentage of the data.

Sketch accuracy and estimation time. When creating the count-min sketches, we have
to make a tradeoff between the accuracy of the sample and its size. The size of the sketch pro-
portionally affects the time it takes to perform an inner product query between two sketches.
Join size estimation is done at query time, between potentially thousands of partitions. Thus
we want to minimize computation time as much as possible; ideally, it should take no more
than a few milliseconds to estimate the join size between two partitions. At the same time,
the estimation should be accurate - erroneously loading partitions with no tuples in common
into memory would be disastrous. Estimating the sample size under latency requirements is
not a trivial task however, as it depends on both the computation capacity(number of cores,
memory size) of the Spark cluster and the distribution of the data inside partitions. Partitions
with highly skewed data require a higher sample size in comparison to partitions with more
uniform data distribution.

Estimating the sample size over which to construct sketches is outside the scope of this
thesis. Instead, we resort to uniformly sampling a fixed fraction of each partition. For each
join column in the partition, we build a count-min sketch over the uniform sample of the
partition. Since we are using uniform sampling, we construct the sample only once. This is
done offline. At query time, to estimate the join size between partitions Pi and Pj , we load
the count-min sketches of these partition, and calculate the inner product cms(Pi) · cms(Pj).
If cms(Pi) · cms(Pj) = 0, this implies the join between Pi and Pj will not produce any tuples.
Since the sketches are built over samples of partitions, the true join size will be underesti-
mated. This is not a concern for us however - the estimated join size is used only to filter out
join combinations that do not produce any result tuples, and not to rank partitions.

4.2.4 Predicate selectivity estimation

Motivation. One of the ways in which we quantify the contribution of a partition to a query
is the number of tuples in the partition that satisfy the WHERE clause. Partitions that have a
higher number of tuples that satisfy the clause should have higher query contribution weight,
all else being equal. In addition, partitions that have no tuples that satisfy the WHERE clause
should not be sampled. It is important to note however, picking partitions with higher tuple
counts that satisfy the predicate does not necessarily lead to higher approximation accuracy.
For example, consider an aggregation query with a WHERE clause and a GROUP BY clause
on table T with partitions P (T) = {t1.t2}. Assume the number of distinct group-by values
for the query is 1 in t1, and 9 in t2. Assume 1000 tuples in t1 and 100 tuples in t2 satisfy
the WHERE clause, respectively. If we pick partitions solely on their selectivity estimates,
i.e. how many tuples satisfy the WHERE clause in the partition, then we would pick t1.

19

However, by doing that we only capture one group in the approximate result, instead of nine.
We account for such scenarios when calculating partition contribution to the query.

Implementation.The selectivity of a predicate is defined as the number of rows in the
table that satisfy the predicate condition, i.e. the WHERE clause. In this context, we define
it as a number s ∈ R, 0 ≤ s ≤ 1 which is a measure of the fraction of rows that satisfy the
predicate in a partition. A selectivity value of 0 implies the partition has no rows that match
the predicate; conversely, a selectivity value of 1 implies all rows in the partition match the
predicate. The selectivity value s for a partition is the total selectivity of all predicates on
the columns of that partition. If the predicate expression has only one clause, then the total
selectivity s is simply the selectivity of that clause. Predicates that have multiple clauses that
all consist of the same column are evaluated together. Predicates that have multiple clauses
with different columns are evaluated as follows:

• Conjunction - when the predicate includes multiple conjunctive clauses, i.e. clauses
connected with AND, the selectivity for these clauses is the minimum selectivity of
the individual clauses. An alternative method for calculating selectivity of a set of
AND clauses is to take the product of the individual selectivities; however, this method
assumes independent distribution of the values in the clause columns, which rarely
happens in practice [54]. Since we do not know which columns are correlated beforehand,
we defer to using the former method.

• Disjunction - when the predicate includes multiple disjunctive clauses, i.e clauses sepa-
rated with OR, the selectivity of these clauses is min(1, sum of the selectivities of the
individual clauses). We have to take the maximum between the sum and the maximum
possible selectivity of 1, since the sum can exceed 1. This formula does not rely on the
independence assumption.

We use equi-depth histograms over single columns for predicate selectivity estimation. We
have chosen to use equi-depth instead of equi-width histograms due to real world datasets
often exhibiting significant skew [17]. The number of buckets in the histogram determine the
estimation accuracy, and the storage size of the histogram. Therefore, a trade off has to be
made between estimation accuracy and the memory and computational overhead. We set the
default number of buckets to 100; in our experiments we have found this to be a sufficient
value to accurately estimate predicate selectivity. To handle string columns, we hash them
using a universal hash function, and build the histogram over the numeric hash values. His-
tograms are built offline, while predicate selectivity estimation is done during query time.

Although single-column histograms are easy to build and maintain, and can produce high ac-
curacy estimates for simple predicates, their accuracy can degrade severely for more complex
predicates involving multiple conjunctions and disjunctions of clauses [54] due to correlations
between columns. Several techniques exist to deal with multi-dimensional predicates, such
as multi-column histograms, sampling and regression models. Although these methods can
produce more accurate selectivity estimates, they do so at the expense of higher memory
overhead and computation time. Since one of our main design goals is to achieve higher
efficiency through cheap and lightweight statistics, we choose to forgo the aforementioned
techniques. Even if single-column histograms fail to provide accurate estimates for complex

20

predicates, they can still tell us if no rows match the predicate, which lets us filter out some
of the partitions with zero selectivity.

4.3 Partition picker
The partition picker is responsible for selecting the partitions on which the query will be
executed at each iteration, and their execution order. It takes as input the query, a sampling
budget and the statistics, and outputs a set of partitions on which the query will be evaluated.
The query is evaluated against the selected partitions, and combined with the partial results
from previous iteration(s). The partial result so far, as well as errors and confidence bounds
for each group are returned to the user. The approach for single table queries is described in
Algorithm 1, and for multi-table queries in Algorithm 2.

Single table partition selection. In the first step we filter out all partitions that have
no rows that match the selection predicate. For each partition, we use its histogram to esti-
mate the selectivity of the partition. If the selectivity is 0, i.e. no rows of the partition pass
the predicate, the partition is eliminated from consideration. For the remaining partitions,
denoted as eligible_partitions, we compute their normalized outlier scores, and normalize
their selectivity values. Cardinality values are also normalized for each group-by attribute.
The final weight of a partition is computed by taking the weighted sum of its selectivity,
outlier score, and cardinalities of the grouping columns. The weights, denoted as multipliers
in Algorithm 1, sum to 1. Thus, the partition weight is a real number between 0 and 1.
Partitions with higher weights have higher probability of being sampled.

21

Algorithm 1: Algorithm to do weighted partition-level sampling for single table
queries
1 Input: statistics S, table t, sampling fraction m, group by columns g, predicate

columns w;
2 Output: Set of partitions (p1, p2, .., pm) to be evaluated;
3 eligible_partitions← ∅;
4 partitions← P (t);
5 for p in partitions do
6 selectivity ← selectivity of p on columns w using S(p);
7 if selectivity > 0 then
8 p.selectivity ← selectivity ;
9 eligible_partitions.add(partition);

10 end
11 end
12 eligible_partitions.outlier_scores← OutlierScore(eligible_partitions.local_hh);
13 eligible_partitions.selectivities← Normalize(eligible_partitions.selectivities);
14 eligible_partitions.cardinalities← Normalize(eligible_partitions.cardinalities);
15 for p in eligible_partitions do
16 weight← sel_multiplier · p.selectivity + outlier_multiplier · p.outlier_score;
17 for col in w do
18 weight← weight+ card_multiplier · p.cardinality(col)
19 end
20 p.weight← weight

21 end
22 choice←WeightedSampling(eligible_partitions,m)
23 return choice

22

Multi table partition selection. Similar to the single table approach, in the first step we fil-
ter out all partitions that have no rows that match the selection predicate. This is done for all
tables participating in the join. In the second step, we calculate all possible partition join com-
binations for the remaining partitions. For example, a join A ./ B with P (A) = (p1, p2) and
P (B) = (p1, p2) has four join combinations: A.p1 ./ B.p1, A.p1 ./ B.p2, A.p2 ./ B.p1, A.p2 ./
B.p2. This process does not impact execution time of the query; in our experiments, the
time to calculate all possible join combinations was less than one second for a 150GB TPCH
dataset. To remove join combinations that will not produce any result tuples, we perform
join size estimation between partitions in the combination using count-min sketches. If the
estimated join size between any two partitions in a combination is zero, the combination is
eliminated from consideration; otherwise it is added to eligible_cmbs. Figure 4.1 illustrates
this approach.

For the sake of convenience, we treat join combinations as objects; a join combination object
consists of the partitions in the combination, as well as their respective statistics. Thus, when
we speak e.g. of the selectivity of a join combination, we refer to the selectivity of the parti-
tion(s) in the join combination. For the eligible combinations in eligible_cmbs, we compute
their normalized outlier scores, and normalize their selectivity and cardinality values. The
final weight of a join combination is computed by taking the weighted sum of its selectivity,
outlier score, and cardinalities of the grouping columns. Join combinations are sampled in
the same way as partitions in Algorithm 1. We cannot guarantee that exactly m partitions
will be sampled; for a join A ./ B and m = 3, combinations {(A.p1, B.p1), (A.p2, B.p2)} may
be picked. In such a case, we always over-sample, so that the number of sampled partitions
is always greater or equal to m.

Figure 4.1: Join combination elimination between partitions of table A and B

23

Algorithm 2: Algorithm to do weighted partition-level sampling for multi table
queries
1 Input: statistics S, tables T , sampling fraction m, group by columns g, predicate

columns w, join columns j;
2 Output: Set of join paths (path1, path2, .., pathm) to be evaluated;
3 eligible_partitions← ∅;
4 for t in T do
5 partitions← P (t);
6 partitions_selectivities← selectivities of all partitions of t on columns w;
7 filtered_partitions← all partitions p where partitions_selectivities[p] > 0;
8 eligible_partitions[t].add(filtered_partitions);
9 end

10 all_cmbs← set of all join combinations between eligible partitions;
11 eligible_cmbs← ∅;
12 for cmb in all_cmbs do
13 if cmb has no zero-result joins on columns j then
14 eligible_cmbs.add(cmb);
15 end
16 end
17 eligible_cmbs.outlier_scores← OutlierScore(eligible_cmbs.local_hh);
18 eligible_cmbs.selectivities← Normalize(eligible_cmbs.selectivities);
19 eligible_cmbs.cardinalities← Normalize(eligible_cmbs.cardinalities);
20 for cmb in eligible_cmbs do
21 weight←

sel_multiplier · cmb.selectivity + outlier_multiplier · cmb.outlier_score;
22 for col in w do
23 weight← weight+ card_multiplier · cmb.cardinality(col)
24 end
25 cmb.weight← weight

26 end
27 choice←WeightedSampling(eligible_cmb,m)
28 return choice

24

4.4 Progressive estimation and result combiner
To provide results progressively, we use a mini-batch execution model. At each iteration, we
pick a number of partitions(a mini-batch) on which the query is evaluated. We incrementally
maintain the query result after processing each mini-batch, instead of recomputing the query
answer on all the batches we picked so far. In other words, the query result at the current
iteration is combined with the the query results of all previous iterations. While this is
trivial to do for SUM and COUNT aggregates, combining AVG, STD and VAR aggregates
requires special formulas and knowledge of the number of tuples that were used to compute
the aggregate. To this end, we augment each query with an additional COUNT aggregate to
keep track of how many tuples are in each group-by group. For STD and VAR aggregates, we
also add an additional SUM aggregate on the same columns to the query. To incrementally
update the standard deviation and variance, we use an algorithm by Chan et al. [55]. The
algorithm has two desirable properties: It computes the aggregate in a single pass, and
numerical stability. The formula to update the variance is described in Equation 4.1; standard
deviation is updated in a similar way.

updated_var = varnew + varold + (avgold − avgnew) · nnew · nold ·
1

nnew + nold
(4.1)

Where:
nnew = #tuples in iteration i
nold = total #tuples up to iteration i− 1
avgnew = average of the sample at iteration i
avgold = maintained average up to iteration i− 1
varnew = variance of sample at iteration i
varold = maintained variance up to iteration i− 1

To update the mean, we take the weighted sum of the two means, where the weights are
determined by the number of tuples used to calculate the mean. Equation 4.2 shows how this
can be done.

updated_avg = avgnew ·
nnew

nnew + nold
+ avgold ·

nold

nnew + nold
(4.2)

Where:
nnew = #tuples in iteration i
nold = total #tuples up to iteration i− 1
avgnew = average of the sample at iteration i
avgold = maintained average up to iteration i− 1

Aggregates are updated for each group in the group-by clause. For queries with AVG aggre-
gates, for each group we store the number of tuples used to compute its aggregates. For STD
and VAR aggregates, in addition to storing tuple counts, we also store the updated mean for
the same columns. We refer to it as avgold variable in Equation 4.1. Before returning results
to the user, we scale the result to account for how many partitions we have not yet seen. If n
is the total number of partitions of the tables participating in the query, and j is the number
of partitions we have sampled so far, then we scale the aggregate result by multiplying it with
the scaling factor n

j . We do not update aggregates of groups that have achieved the desired
error level, in order to reduce unnecessary computation time.

25

4.5 Error estimation
To estimate the error of our approximation, we use the variational subsampling method in-
troduced in [22]. We augment the query to generate subsample IDs(sid) between 1 and b
for every tuple in the sampled partitions. For join queries, we use the following function to
combine sid values of tuples from different tables:

h(I) = 1 +
⌊
I[n]− 1√

(b)

⌋
+
⌊
I[n− 1]− 1√

(b)

⌋
·
√
b+

⌊
I[n− 2]− 1√

(b)

⌋
·
√
b

2 + ...+
⌊
I[0]− 1√

(b)

⌋
·
√
b

n−1

(4.3)
Where:

I[1, ..n]= array of sid values from tables 1..n. For each sid ∈ I, sid = 1,..,b
b = number of subsample groups

Function 4.3 is a generalized version of the indexing function described in [22] for multiple
tables. After the sid values have been assigned, the query is executed. In addition to group-
ing the result by the columns in the group-by clause, we also group by the newly created sid
column. Hence, each group will have b subsamples. Let A be the set of aggregates and G
be the set of all groups that are in the full answer to query Q. To compute the confidence
interval of the aggregate ai ∈ A of group gj ∈ G, we need to know how much the distribution
of ãi(gj) varies around the true aggregate ai(gj). Thus, we need to know the distribution of
δ = ãi(gj)− ai(gj). Since computing ai(gj) requires the full dataset, variational subsampling
approximates the distribution of δ by δ+ = ãi

+(gj) − ãi(gj), where ãi
+(gj) is the aggregate

value of a subsample.

Since the subsamples are computed using only a fraction of the total sample, and can vary
in size, we scale them up accordingly with a scaling factor C. We fill δ+ by computing
C · ãi

+(gj)− ãi(gj) for each subsample ãi
+(gj). The result is an array of size b. We sort δ+

in ascending order. The 95% confidence interval of ai(gi) is then given by:[
ãi(gj)− δ+

0.025 ·
√
ns

n
, ãi(gj)− δ+

0.975 ·
√
ns

n

]
(4.4)

Where:
δ+

0.025 = element of δ+ at the 97.5th quantile [22]
δ+

0.975 = element of δ+ at the 2.5th quantile
n = total number of tuples in the sample
ns = number of tuples in the subsample

The error is calculated based on the width of the confidence interval as follows:

Err = CIupper − CIlower

2 · 2
CIupper + CIlower

= (CIupper − CIlower)
(CIupper + CIlower) (4.5)

Where:
CIupper = upper bound of the confidence interval
CIlower = lower bound of the confidence interval

26

The confidence interval and error is calculated for all ãi(gj), i = 1, ..|A|, j = 1, .., |G|. Once
an aggregate ãi(gj) has reached the desired error level, we stop updating its running value,
and exclude it from further error estimation.

27

Chapter 5

Evaluation and discussion
In this section we empirically evaluate the performance of the system. We analyze its accu-
racy and measure evaluation time on a set of benchmark datasets.

5.1 Experimental setup
Goal. The primary goal of our experiments is to find types of queries and data distributions
for which partition-level sampling would offer significant speed-ups, with accuracy compara-
ble to row-level sampling. To this end, we design a set of queries that include use cases for
which we hypothesise that our approach could yield good results, and use cases for which our
approach fails. In addition, we are also interested in the scalability of our approach. That
is, we test how the running time and the accuracy of our approach scales with increasingly
larger datasets.

Spark cluster. The Spark cluster consists of 4 nodes. Each node has an Intel Xeon Platinum
8260 CPU, with 48 cores and 10.7 GB of RAM per core. For each node, we use the full 48
cores. The cluster uses Spark 2.4 version and runs on CentOS 7.9.2009.

Datasets. To perform our experiments, we use the TPC-H benchmark dataset [56]. The
schema of the dataset can be found in the Appendix. To test the scalability of our approach,
we generate five TPC-H datasets of varying sizes: 10GB, 40GB, 70GB, 100GB and 150GB.
To simulate how data appears in the real world, we generated the datasets from a Zipfian
distribution with a skew value of 2 (z=2) [57]. The standard TPC-H dataset is distributed
uniformly, hence we chose to introduce skew into the dataset that would mimic how real-world
data is distributed.

Queries. For the TPC-H dataset we use modified versions of nine standard TPC-H queries
(Q1, Q3, Q4, Q5, Q10, Q12, Q16, Q19, Q21) [58] by flattening nested queries, removing
unsupported operators, and adding group-by clauses. The full queries can be found in the
Appendix. For each query, we explain the modifications, and what the query was designed
to test.

• Query 1. We use the query as is. The purpose of this query is to test partition-level
sampling on a single table, on data that is chronologically ordered.

• Query 3. We remove l_orderkey from the GROUP BY clause. The column has very
high cardinality, so it would result in millions of groups. The purpose of this query is
to test performance over a 3-table join with a WHERE clause on three tables, on data
that is chronologically ordered. This is designed as a failure case for our approach.

28

• Query 4. We remove the EXISTS operator from the WHERE clause, since nested
queries are not supported. The purpose of this query is to test performance over a
2-table join with a very selective WHERE clause(o_orderkey has 2400 distinct date
values) on one table, on data that is chronologically ordered.

• Query 5. We use the query as is. The purpose of this query is to test performance
over a long, 6-table chain join with a very selective WHERE clause on two tables, on
data that is chronologically ordered.

• Query 10. We use the query as is. The purpose of this query is the same as of Query
3, except we substitute a WHERE clause on the CUSTOMER table to a clause on the
LINEITEM table, on data that is chronologically ordered.

• Query 12. We remove the CASE statements in the SELECT clause, since they are not
supported, and replace them with a SUM and AVG aggregates. The purpose of this
query is to test performance over a simple 2-table join with a WHERE clause, on data
that is chronologically ordered.

• Query 16. We replace all WHERE clauses for the following reasons. First, we do
not support nested queries. Secondly, three of the four WHERE clauses are on the
PART table. This table is very small (4 partitions on a 150GB dataset), and therefore
choosing which of its partitions to sample alone is not challenging. We introduce a very
selective WHERE clause on the PARTSUPP table. The purpose of this query is to
test performance on a 2-table join with a very selective WHERE clause(ps_availqty has
10000 distinct values), on data that is not chronologically ordered.

• Query 19. We simplify the WHERE clauses. The original query had a highly selective
WHERE clause, which only a few partitions satisfied. Since we want to demonstrate
progressive query computation, we removed 18 out of 21 WHERE clauses. The purpose
of this query is to test performance on a 2-table join with a WHERE clause, on data
that is chronologically ordered.

• Query 21. We add an additional AVG aggregate, and remove the EXISTS clauses.
We also remove the WHERE clause on the order table. The purpose of this query is to
test performance on a 4-table join, with a WHERE clause on only one table. This is
designed as a failure case for our approach.

Metrics. We evaluate the system using three metrics: the average relative error, average
percentage of missing groups and the average query execution time. The average relative
error is the average of the relative error for all aggregates in all groups. We penalise missing
groups by assigning them a relative error value of 1. The average percentage of missing groups
is measured as the average percentage of groups in the full answer that are missed in the ap-
proximate answer, over all queries. The execution time is measured as the total wall-clock
time spent to process the query until completion. We measure the average execution time
over all queries.

Data layout. We tabulate the layout of the data in Table 5.1. Each entry is the num-
ber of partitions of the table in the dataset. Tables Region, Nation and Supplier are only a
few megabytes in size for all datasets, so they consist of only one partition each. The 10GB

29

TPC-H dataset has fewer partitions than the other datasets, since it is quiet small in com-
parison. Tables Order and Lineitem are stored in chronological order by columns o_orderkey
and l_orderkey respectively.

Table/Dataset 10GB 40GB 70GB 100GB 150GB
Customer 4 40 40 40 40
Order 11 45 45 45 45
Lineitem 21 100 100 100 100
Part 1 4 4 4 4
Partsupp 10 50 50 50 50
Region 1 1 1 1 1
Nation 1 1 1 1 1
Supplier 1 1 1 1 1

Table 5.1: Number of partitions for every table in each dataset.

Comparision methods. While we are primarily interested how our method compares with
row-level sampling, we also include random partition-level sampling as a point of comparison.

• Row-level random sampling: for single-table queries, we perform stratified sampling
on the group-by attributes. For queries with joins, we use universe sampling on the
longest chain of tables that join on the same key, and uniform sampling on the rest of
the tables. For a join between two tables only, we use universe sampling on both.

• Random partition-level sampling: all partitions are sampled uniformly, without
any help from stored statistics.

Parameters.

• Sampling rate: at every iteration, we sample 1% of each table participating in the
query. If it is not possible to sample exactly 1%, we sample d|P (T)| · 0.01e partitions,
where |P (T)| is the number of partitions of table T . To compare with row-level sampling,
we adjust the sampling rate accordingly, such that at each sampling step, all three
methods read the same amount of data.

• Heavy hitters: we keep track of heavy hitter groups that appear in at least 1% of the
rows in a partition. For global heavy hitters, we set k = 50.

• Count-min sketch sample size: we build count-min sketches over 1% of the rows
in a partition. The default sketch parameters are δ = 0.01 and ε = 1 × 10−8. These
sketch parameters were sufficient to accurately detect empty joins on the biggest TPC-H
dataset (150GB).

• Selectivity estimation: we use equi-depth histograms with 10 buckets for each col-
umn. This is sufficient enough to accurately estimate the selectivity of the WHERE
clauses we use in our queries.

• Multipliers: In the weighting formula, we use a selectivity multiplier of 0.2, an outlier
multiplier of 0.3, and a cardinality multiplier of

0.5
n

30

for each group-by attribute, where n is the number of group-by attributes. We tested
different combinations of each multiplier, each one starting from 0.1 until 0.9, with 0.1
increments. These values were found to give the best results.

5.2 Evaluation for TPCH datasets
We run each query on the TPC-H datasets for 10 iterations. At each iteration, we sample a
fixed amount of data, and update the aggregates with the new data. While we set a target of
1% sample at each iteration, this is not possible to do with the 10GB TPC-H dataset, since
all of its tables have less than 100 partitions. To compensate for this, we adjust the row-level
sampling size accordingly, such that at each sampling step, all three methods read the same
amount of data. We re-run each query 10 times, and compute the average of the error metrics
and execution times. In all further figures, we label our method "smart". The scale factor of
a dataset refers to its size - a dataset labeled sf10 contains 10GB of data.

5.2.1 Average relative errors and average percentage of missing groups

In this section we analyse the average relative errors and the percentage of missing groups
for the benchmark queries, presented in Figure 5.1 and Figure 5.2 respectively. We note at
first that errors can increase with an increase in sample size. This is an inherent flaw of
partition-level sampling: when we compute the estimates, we scale the result to account for
how many partitions we have not yet seen. However, aggregate values can be very different
between partitions. For example, one partition may have a total sum of an attribute which
is much larger than that of another partition, but since we scale the result using only the
number of partitions, the error may increase. For query 1, row-level sampling significantly
outperforms both our method and random partition-level sampling both in terms of error and
percentage of missing groups. Random partition picking also achieves lower errors on average
than our method, except on the 150GB dataset. However, it is prone to missing groups. For
the 40GB, 70GB and 100GB datasets, random picking missed on average 60% of the groups.
Row-level sampling captured all groups, since stratified sampling was used. This is overall a
negative result for our method; although we were able to capture more groups early on in the
computation as compared to random partition sampling, in terms of errors it provided little
benefit.

Query 3 and 21 were designed to be failure cases for our method, i.e. queries for which
our method should not work. Query 3 contains three WHERE clauses, each on a different
table. This amplifies the error of the total selectivity estimate as compared to having multiple
clauses on a single table, since a failure to filter out a partition of one table leads to a join
that produces no result. Query 21 contains a WHERE clause on the Nation table, which has
25 unique nation names. However, having selectivity information on the Nation table gives us
no useful information on which partitions in Order, Lineitem, and Supplier actually contain
tuples that will satisfy the WHERE clause after the join. An intermediate join between Order,
Lineitem, and Supplier may produce many tuples, but when it is joined with Nation, none
of the tuples may satisfy the WHERE clause. As expected, both our method and random
partition picking failed to find any results for all runs.

For queries 5 and 10 our method has identical errors to row-level sampling. This is due

31

to the fact that in both queries, we are selecting a very small range of the date attribute.
Therefore, the bias in the result due to correlation on the date attribute inside partitions is
small. If we were to select a range of dates that spans many years, the bias would increase
significantly, since at each iteration we only pick partitions that contain a narrow range of
dates. For both queries, our method misses significantly more groups on average than row-
level sampling. This is due to two factors: correlations present in the Order table, and lack
of a feedback mechanism in our algorithm. Since we sample entire partitions, we are bound
to miss some groups. In the case of queries 5 and 10, we kept picking partitions that refined
the already existing groups, instead of favoring partitions that would lead to discovery of
new groups. However, such a feedback mechanism is not trivial to design and implement.
Since the grouping is done on the Nation table, which has only one partition, we do not know
which combination of partitions of other tables to pick, such that it would lead to result tuples
that contain the missing nation groups. Such a mechanism would have to take into account
correlations between partitions of different tables, which is out of the scope of this thesis.
Random partition sampling failed to produce any results for both queries. For query 12, our
approach yields similar errors as row-level sampling, except for the 10GB dataset. Both Order
and Lineitem tables are ordered on the o_orderdate and l_orderdate, thus l_receiptdate is
also ordered chronologically. Thus when using partition-level sampling on these tables we
would expect to get biased estimates. However, the attribute on which we are aggregating,
o_totalprice, is not correlated with the date, i.e. it does not increase or decrease over time.
We must note that, in a real world dataset, an attribute like o_totalprice would most likely
be correlated with the date column. Our method, like row-level sampling, did not miss any
groups. In contrast, random partition sampling failed to find any tuples for the 40GB, 70GB
and 100GB datasets. In terms of accuracy, it performed much worse than our method and
row-level sampling.

For query 16, our method achieved accuracy equal to or higher than row-level sampling,
even on the 10GB dataset. This is due to the fact that neither Partsupp or Part tables
have correlations on the order date, so therefore picking any partitions that can join and
that satisfy the WHERE clause is likely to give an unbiased estimate. Our method performs
similarly in query 19, except for the 10GB dataset. After four iterations, it could not find
any more partitions to sample. This is due to incorrect selectivity estimates. Random par-
tition selection performed worse than the other methods on all datasets except 70GB. Since
its performance is inconsistent across the datasets, we can not draw any conclusions from it.
Both our method and row-level sampling found all groups immediately.

32

Figure 5.1: Average relative errors for all queries

33

Figure 5.2: Average percentage of missed groups for all queries

34

5.2.2 Execution times

In this section we analyse the execution times for the benchmark queries. We exclude queries 3
and 21 from running time comparisons, because our method failed to get any results for these
queries. We also exclude random partition sampling from comparison, since it failed to get
results for most queries. Thus we compare execution times between our method and row-level
sampling for queries 1, 4, 5, 10, 12, 16 and 19. We present the execution times in Figure 5.3.
With the exception of query 1 and query 5 on the 10GB dataset, our method was consistently
faster than row-level sampling. In Figures 5.3 and 5.4 we see that when our method was faster
than row-level sampling, it yielded a 1.15x-2.0x speedup with errors comparable to or better
than what row-level sampling achieved. Figure 5.4 shows the execution time for different
sampling fractions for both methods. In most cases, our method has a smaller execution time
than row-level sampling for the same sampling fraction. Figure 5.5 shows the total execution
time of queries 1, 4, 5, 10, 12, 16 and 19 for the five datasets. We can see that, similarly to
row-level sampling, the execution time of our method scales linearly with the size of the data.

35

Figure 5.3: Average relative error over time for queries 1, 4, 5, 10, 12, 16 and 19

36

Figure 5.4: Execution time vs sample size for queries 1, 4, 5, 10, 12, 16 and 19

37

Figure 5.5: Total execution time per query for each dataset.

5.2.3 Discussion and future work.

Summary of results. So far, we have shown that our approach of using statistics to perform
partition-level sampling shows promise for specific types of queries and data distributions.

38

More specifically, join queries with a selective where clause on only one or two tables, and
joins between tables which are not correlated on any attribute can benefit from our approach
the most. In our experiments, we have found that all statistics are valuable in calculating the
contribution of partitions to the query result. Join size estimation and selectivity estimation
enable us to prune partitions that do not contribute to the query result - this was clear when
comparing our method to random partition sampling. Most of the time, partitions would be
picked that either did not join with another picked partition, or the partition had no rows
that satisfied the WHERE clause of the query. Cardinality estimations and outlier detection
enable us to capture more groups early on in the estimation; for query 1, our method had
similar accuracy as random partition picking, but captured more groups earlier in the com-
putation.

Limitations. Although we have showed a set of queries for which our method outper-
formed row-level sampling both in terms of accuracy and execution time, the scope of our
analysis was limited. Our experiments are not meant to be a comprehensive test suite of our
method. Rather, it is meant to be a starting point for future investigation into partition-level
sampling, specifically for aggregation queries that include joins. Most current theory on Ap-
proximate Query Processing centers around row-level sampling, thus making partition-level
sampling challenging from a theoretical correctness standpoint. Partition-level sampling is
not a universal alternative to row-level sampling, since it produces answers with potentially
very high bias. This inherently limits its usefulness for online aggregation, since error esti-
mation methods assume that our sample is unbiased.

Future work. We highlight a few important areas for future research on the topic of
partition-level sampling. First is to develop a robust error approximation method designed
specifically to handle biased partition-level samples. As mentioned earlier, current error esti-
mation methods rely on unbiased samples. Second is to develop a feedback mechanism into
the progressive query execution. Such a mechanism would let the user steer the query by
selecting the subset of the data they want to focus on. The query execution would then adapt
to user input. Third is to develop a more dynamic partition sampling algorithm that takes
into account the type of query, the stored statistics and correlations between columns in the
database.

39

Chapter 6

Conclusion
In this thesis, we proposed using weighted partition-level sampling to enable progressive
approximate query execution on big data. To compute how much each partition contributes
to the query result, we use a set of pre-computed statistics. Because of the inherent bias that
partition-level sampling introduces, this approach is at odds with traditional error estimation
techniques which assume the sample is random. Therefore, the purpose of this thesis was to
investigate the types of queries and data distributions for which partition-level sampling could
provide benefits over row-level samples. To this end, we implemented a prototype system that
provides progressive query execution over partition-level samples. Through empiric evaluation
on datasets of different size, we have found two cases for which our method of partition-level
sampling could offer benefits over row-level sampling in terms of execution time and accuracy:
(1) Join queries with a selective where clause on only one or two tables. (2) Joins between
tables which are not correlated on any attribute.

40

Bibliography
[1] https://spark.apache.org/.

[2] https://hadoop.apache.org/.

[3] Barzan Mozafari and Ning Niu. A handbook for building an approximate query engine.
IEEE Data Eng. Bull., 38:3–29, 2015.

[4] S.V. Vrbsky and J.W.S. Liu. An object-oriented query processor that produces mono-
tonically improving approximate answers. In [1991] Proceedings. Seventh International
Conference on Data Engineering, pages 472–481, 1991.

[5] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander join: Online aggregation via
random walks. In Proceedings of the 2016 International Conference on Management of
Data, SIGMOD ’16, pages 615–629, New York, NY, USA, 2016. Association for Com-
puting Machinery.

[6] Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert
Grandl, Surajit Chaudhuri, and Bolin Ding. Quickr: Lazily approximating complex
adhoc queries in bigdata clusters. pages 631–646, 2016.

[7] Chris Jermaine, Subramanian Arumugam, Abhijit Pol, and Alin Dobra. Scalable ap-
proximate query processing with the dbo engine. ACM Trans. Database Syst., 33(4),
December 2008.

[8] Peter J. Haas and Joseph M. Hellerstein. Ripple joins for online aggregation. In Pro-
ceedings of the 1999 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’99, pages 287–298, New York, NY, USA, 1999. Association for Computing
Machinery.

[9] Surajit Chaudhuri, Gautam Das, and Utkarsh Srivastava. Effective use of block-level
sampling in statistics estimation. In Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’04, pages 287–298, New York, NY, USA,
2004. Association for Computing Machinery.

[10] Srikanth Kandula, Kukjin Lee, Surajit Chaudhuri, and Marc Friedman. Experiences with
approximating queries in microsoft’s production big-data clusters. Proc. VLDB Endow.,
12(12):2131–2142, August 2019.

[11] https://docs.snowflake.com/en/sql-reference/constructs/sample.html.

[12] https://cwiki.apache.org/confluence/display/hive/languagemanual+sampling.

[13] Srikanth Kandula, Laurel Orr, and Surajit Chaudhuri. Pushing data-induced predicates
through joins in big-data clusters. Proc. VLDB Endow., 13(3):252–265, November 2019.

[14] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. On random sampling over
joins. SIGMOD Rec., 28(2):263–274, June 1999.

41

[15] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation. SIGMOD
Rec., 26(2):171–182, June 1997.

[16] Kai Zeng, Sameer Agarwal, Ankur Dave, Michael Armbrust, and Ion Stoica. G-ola:
Generalized on-line aggregation for interactive analysis on big data. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD
’15, pages 913–918, New York, NY, USA, 2015. Association for Computing Machinery.

[17] Kexin Rong, Yao Lu, Peter Bailis, Srikanth Kandula, and Philip Levis. approxpartition.
Proceedings of the VLDB Endowment, 13(12):2606–2619, Aug 2020.

[18] Liwen Sun, Michael J. Franklin, Jiannan Wang, and Eugene Wu. Skipping-oriented
partitioning for columnar layouts. Proc. VLDB Endow., 10(4):421–432, November 2016.

[19] Matthaios Olma, Manos Karpathiotakis, Ioannis Alagiannis, Manos Athanassoulis, and
Anastasia Ailamaki. Slalom: Coasting through raw data via adaptive partitioning and
indexing. Proc. VLDB Endow., 10(10):1106–1117, June 2017.

[20] Wilson Qin and Stratos Idreos. Adaptive data skipping in main-memory systems. In
Proceedings of the 2016 International Conference on Management of Data, SIGMOD ’16,
pages 2255–2256, New York, NY, USA, 2016. Association for Computing Machinery.

[21] Liwen Sun, Michael J. Franklin, Sanjay Krishnan, and Reynold S. Xin. Fine-grained
partitioning for aggressive data skipping. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’14, pages 1115–1126, New
York, NY, USA, 2014. Association for Computing Machinery.

[22] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. Verdictdb: Uni-
versalizing approximate query processing. In Proceedings of the 2018 International Con-
ference on Management of Data, SIGMOD ’18, pages 1461–1476, New York, NY, USA,
2018. Association for Computing Machinery.

[23] Dawei Huang, Dong Young Yoon, Seth Pettie, and Barzan Mozafari. Joins on samples:
A theoretical guide for practitioners, 2020.

[24] Yu Chen and Ke Yi. Two-level sampling for join size estimation. In Proceedings of
the 2017 ACM International Conference on Management of Data, SIGMOD ’17, pages
759–774, New York, NY, USA, 2017. Association for Computing Machinery.

[25] M. Olma, O. Papapetrou, R. Appuswamy, and A. Ailamaki. Taster: Self-tuning, elastic
and online approximate query processing. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE), pages 482–493, 2019.

[26] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. Approximate query processing:
No silver bullet. In Proceedings of the 2017 ACM International Conference on Manage-
ment of Data, SIGMOD ’17, pages 511–519, New York, NY, USA, 2017. Association for
Computing Machinery.

[27] Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris Jermaine. Synopses
for massive data: Samples, histograms, wavelets, sketches. Found. Trends Databases,
4(1â€“3):1–294, January 2012.

42

[28] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. A robust, optimization-based
approach for approximate answering of aggregate queries. SIGMOD Rec., 30(2):295–306,
May 2001.

[29] Sameer Agarwal, Aurojit Panda, Barzan Mozafari, Samuel Madden, and Ion Stoica.
Blinkdb: Queries with bounded errors and bounded response times on very large data,
2012.

[30] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy. The
aqua approximate query answering system. SIGMOD ’99, pages 574–576, New York,
NY, USA, 1999. Association for Computing Machinery.

[31] Brian Babcock, Surajit Chaudhuri, and Gautam Das. Dynamic sample selection for
approximate query processing. In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’03, pages 539–550, New York, NY, USA,
2003. Association for Computing Machinery.

[32] Moritz Kulessa, Alejandro Molina, Carsten Binnig, Benjamin Hilprecht, and Kristian
Kersting. Model-based approximate query processing, 2018.

[33] Alejandro Molina, Antonio Vergari, Nicola Di Mauro, Sriraam Natarajan, Floriana Es-
posito, and Kristian Kersting. Mixed sum-product networks: A deep architecture for
hybrid domains, 2018.

[34] S. Thirumuruganathan, S. Hasan, N. Koudas, and G. Das. Approximate query processing
for data exploration using deep generative models. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE), pages 1309–1320, 2020.

[35] Graham Cormode, Senthilmurugan Muthukrishnan, and Irina Rozenbaum. Summarizing
and mining inverse distributions on data streams via dynamic inverse sampling. pages
25–36, 01 2005.

[36] David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and S. Seshadri. Practical
skew handling in parallel joins. In Proceedings of the 18th International Conference on
Very Large Data Bases, VLDB ’92, pages 27–40, San Francisco, CA, USA, 1992. Morgan
Kaufmann Publishers Inc.

[37] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. Random sampling for his-
togram construction: How much is enough? SIGMOD Rec., 27(2):436–447, June 1998.

[38] Peter J. Haas and Christian König. A bi-level bernoulli scheme for database sampling.
In Proceedings of the 2004 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’04, pages 275–286, New York, NY, USA, 2004. Association for Com-
puting Machinery.

[39] Niketan Pansare, Vinayak Borkar, Chris Jermaine, and Tyson Condie. Online aggrega-
tion for large mapreduce jobs. 4(11):1135–1145, August 2011.

[40] Yingjie Shi, Xiaofeng Meng, Fusheng Wang, and Yantao Gan. You can stop early with
cola: Online processing of aggregate queries in the cloud. In Proceedings of the 21st ACM
International Conference on Information and Knowledge Management, CIKM ’12, pages
1223–1232, New York, NY, USA, 2012. Association for Computing Machinery.

43

[41] Vasiliki Kalavri, Vaidas Brundza, and Vladimir Vlassov. Block sampling: Efficient ac-
curate online aggregation in mapreduce. In 2013 IEEE 5th International Conference on
Cloud Computing Technology and Science, volume 1, pages 250–257, 2013.

[42] Yu Cheng, Weijie Zhao, and Florin Rusu. Bi-level online aggregation on raw data. In
Proceedings of the 29th International Conference on Scientific and Statistical Database
Management, SSDBM ’17, New York, NY, USA, 2017. Association for Computing Ma-
chinery.

[43] Salman Salloum, Joshua Zhexue Huang, and Yulin He. Random sample partition: A dis-
tributed data model for big data analysis. IEEE Transactions on Industrial Informatics,
15(11):5846–5854, 2019.

[44] Salman Salloum, Yinxu Wu, and Joshua Zhexue Huang. A sampling-based system for
approximate big data analysis on computing clusters. CIKM ’19, pages 2481–2484, New
York, NY, USA, 2019. Association for Computing Machinery.

[45] Kai Zeng, Shi Gao, Barzan Mozafari, and Carlo Zaniolo. The analytical bootstrap: A
new method for fast error estimation in approximate query processing. In Proceedings of
the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD
’14, pages 277–288, New York, NY, USA, 2014. Association for Computing Machinery.

[46] Dimitris N. Politis and Joseph P. Romano. Large Sample Confidence Regions Based
on Subsamples under Minimal Assumptions. The Annals of Statistics, 22(4):2031–2050,
1994.

[47] Jean-Daniel Fekete and Romain Primet. Progressive analytics: A computation paradigm
for exploratory data analysis, 2016.

[48] Lukas Berg, Tobias Ziegler, Carsten Binnig, and Uwe Röhm. Progressivedb: Progressive
data analytics as a middleware. Proc. VLDB Endow., 12(12):1814–1817, August 2019.

[49] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. HyperLogLog: the
analysis of a near-optimal cardinality estimation algorithm. In Philippe Jacquet, editor,
AofA: Analysis of Algorithms, volume DMTCS Proceedings vol. AH, 2007 Conference
on Analysis of Algorithms (AofA 07) of DMTCS Proceedings, pages 137–156, Juan les
Pins, France, June 2007. Discrete Mathematics and Theoretical Computer Science.

[50] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[51] Graham Cormode. Sketch techniques for approximate query processing. 2010.

[52] Florin I. Rusu. Sketches for Aggregate Estimations over Data Streams. PhD thesis, USA,
2009. AAI3367580.

[53] Florin Rusu and Alin Dobra. Sketches for size of join estimation. ACM Trans. Database
Syst., 33(3), September 2008.

[54] Viswanath Poosala and Yannis E. Ioannidis. Selectivity estimation without the attribute
value independence assumption. In Proceedings of the 23rd International Conference

44

on Very Large Data Bases, VLDB ’97, pages 486–495, San Francisco, CA, USA, 1997.
Morgan Kaufmann Publishers Inc.

[55] Tony F. Chan, Gene H. Golub, and Randall J. LeVeque. Updating formulae and a
pairwise algorithm for computing sample variances. Stanford, CA, USA, 1979. Stanford
University.

[56] http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp.

[57] https://www.microsoft.com/en-us/download/details.aspx?id=52430.

[58] http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf.

45

Appendix A

Appendix
A.1 Queries
QUERY 1

1 select
2 l_returnflag,
3 l_linestatus,
4 sum(l_quantity) as sum_qty,
5 sum(l_extendedprice) as sum_base_price,
6 sum(l_extendedprice*(1-l_discount)) as sum_disc_price,
7 sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,
8 avg(l_quantity) as avg_qty,
9 avg(l_extendedprice) as avg_price,

10 avg(l_discount) as avg_disc,
11 count(*) as count_order
12 from lineitem
13 where
14 l_shipdate < ’1998-12-01’
15 group by
16 l_returnflag,
17 l_linestatus

QUERY 3

1 select
2 sum(l_extendedprice*(1-l_discount)) as sum_revenue,
3 o_orderdate,
4 o_shippriority
5 from
6 customer join order on customer.c_custkey = order.o_custkey
7 join lineitem on order.o_orderkey = lineitem.l_orderkey
8 where
9 c_mktsegment = ’FURNITURE’

10 and o_orderdate < ’1995-03-15’
11 and l_shipdate > ’1995-03-17’
12 group by
13 o_orderdate,
14 o_shippriority

QUERY 4

1 select
2 o_orderpriority,
3 count(*) as count_orders
4 from order join lineitem on

46

5 order.o_orderkey = lineitem.l_orderkey
6 where o_orderdate > 1995-12-01
7 and o_orderdate < ’1996-01-06’
8 group by
9 o_orderpriority

QUERY 5

1 select
2 sum(l_extendedprice*(1-l_discount)) as sum_revenue, n_name
3 from customer join order on customer.c_custkey = order.o_custkey
4 join lineitem on order.o_orderkey = lineitem.l_orderkey
5 join supplier on lineitem.l_suppkey = supplier.s_suppkey
6 join nation on supplier.s_nationkey = nation.n_nationkey
7 join region on nation.n_regionkey = region.r_regionkey
8 where
9 r_name = ’AMERICA’

10 and o_orderdate > ’1994-12-01’
11 and o_orderdate < ’1994-01-01’
12 group by n_name

QUERY 10

1 select
2 sum(l_extendedprice*(1-l_discount)) as sum_revenue,
3 n_name,l_shipmode, c_nationkey
4 from nation join customer on nation.n_nationkey = customer.c_nationkey
5 join order on customer.c_custkey = order.o_custkey
6 join lineitem on order.o_orderkey = lineitem.l_orderkey
7 where o_orderdate > ’1993-10-01’
8 and o_orderdate < ’1994-10-01’
9 and l_returnflag = ’R’

10 group by
11 n_name,
12 c_nationkey,
13 l_shipmode

QUERY 12

1 select
2 l_shipmode,
3 sum(o_totalprice) as sum_price,
4 avg(o_totalprice) as avg_price
5 from order join lineitem on order.o_orderkey = lineitem.l_orderkey
6 where
7 l_receiptdate > ’1994-01-01’
8 group by
9 l_shipmode

QUERY 16

1 select
2 p_brand,

47

3 p_type,
4 p_size,
5 count(ps_suppkey) as count_supplier,
6 sum(p_retailprice) as sum_retail_price
7 from partsupp join part on partsupp.ps_partkey = part.p_partkey
8 where
9 ps_availqty > 1000

10 and ps_availqty < 1200
11 group by
12 p_brand,
13 p_type,
14 p_size

QUERY 19

1 select
2 sum(l_extendedprice*(1-l_discount)) as sum_revenue,
3 avg(l_extendedprice) as avg_price,
4 l_linenumbeR
5 from lineitem join part on lineitem.l_partkey = part.p_partkey
6 where
7 p_brand = ’Brand#12’
8 or
9 p_container = ’MED BAG’

10 or
11 l_quantity > 10
12 group by l_linenumber

QUERY 21

1 select
2 s_name,
3 avg(l_discount) as avg_disc,
4 count(*) as count_numwait
5 from
6 order join lineitem on order.o_orderkey = lineitem.l_orderkey
7 join supplier on lineitem.l_suppkey = supplier.s_suppkey
8 join nation on s_nationkey = n_nationkey
9 where

10 n_name = ’SAUDI ARABIA’
11 or n_name = ’AMERICA’
12 or n_name = ’BRAZIL’
13 group by
14 s_name

48

A.2 TPC-H schema

49

	Introduction
	Contribution
	Problem Statement

	Background and related work
	Row-level sampling based AQP
	Common sampling strategies
	Online sampling
	Offline sampling
	Hybrid models

	Partition-based sampling schemes
	Data skipping schemes
	Error estimation

	System Overview
	Design goals
	Design overview
	Progressive computation
	Supported queries

	Architecture
	Partition-level sampling using statistics: Motivation
	Statistics Builder
	Distinct values
	Rare groups
	Eliminating empty joins
	Predicate selectivity estimation

	Partition picker
	Progressive estimation and result combiner
	Error estimation

	Evaluation and discussion
	Experimental setup
	Evaluation for TPCH datasets
	Average relative errors and average percentage of missing groups
	Execution times
	Discussion and future work.

	Conclusion
	Bibliography
	Appendix
	Queries
	TPC-H schema

