55 research outputs found

    Bifurcations of the global stable set of a planar endomorphism near a cusp singularity

    Get PDF
    The dynamics of a system defined by an endomorphism is essentially different from that of a system defined by a diffeomorphism due to interaction of invariant objects with the so-called critical locus. A planar endomorphism typically folds the phase space along curves J0 where the Jacobian of the map is singular. The critical locus, denoted J1, is the image of J0. It is often only piecewise smooth due to the presence of isolated cusp points that are persistent under perturbation. We investigate what happens when the stable set Ws of a fixed point or periodic orbit interacts with J1 near such a cusp point C1. Our approach is in the spirit of bifurcation theory, and we classify the different unfoldings of the codimension-two singularity where the curve Ws is tangent to J1 exactly at C1. The analysis uses a local normal-form setup that identifies the possible local phase portraits. These local phase portraits give rise to different global manifestations of the behavior as organized by five different global bifurcation diagrams. © 2008 World Scientific Publishing Company

    Invariant manifolds of the Bonhoeffer-van der Pol oscillator

    Full text link
    The stable and unstable manifolds of a saddle fixed point (SFP) of the Bonhoeffer-van der Pol oscillator are numerically studied. A correspondence between the existence of homoclinic tangencies (whic are related to the creation or destruction of Smale horseshoes) and the chaos observed in the bifurcation diagram is described. It is observed that in the non-chaotic zones of the bifurcation diagram, there may or may not be Smale horseshoes, but there are no homoclinic tangencies.Comment: 14 pages, 15 figure

    Chaotic dynamics of three-dimensional H\'enon maps that originate from a homoclinic bifurcation

    Full text link
    We study bifurcations of a three-dimensional diffeomorphism, g0g_0, that has a quadratic homoclinic tangency to a saddle-focus fixed point with multipliers (\lambda e^{i\vphi}, \lambda e^{-i\vphi}, \gamma), where 0<λ<1<∣γ∣0<\lambda<1<|\gamma| and ∣λ2γ∣=1|\lambda^2\gamma|=1. We show that in a three-parameter family, g_{\eps}, of diffeomorphisms close to g0g_0, there exist infinitely many open regions near \eps =0 where the corresponding normal form of the first return map to a neighborhood of a homoclinic point is a three-dimensional H\'enon-like map. This map possesses, in some parameter regions, a "wild-hyperbolic" Lorenz-type strange attractor. Thus, we show that this homoclinic bifurcation leads to a strange attractor. We also discuss the place that these three-dimensional H\'enon maps occupy in the class of quadratic volume-preserving diffeomorphisms.Comment: laTeX, 25 pages, 6 eps figure

    Dynamics amidst folding and twisting in 2-dimensional maps

    Get PDF
    Dynamica van het vouwen en draaien bij 2-dimensionale afbeeldingen Een prooi-roofdier model uit de biodynamica was de inspiratie tot een wiskundig model waarbij een vlak wordt dubbel gevouwen en daarna gedraaid. (fold and twist) Deze vouw en draai worden steeds herhaald. Dan blijkt dat een aantal belangrijke wiskundige eigenschappen, waaronder het chaotisch gedrag, in beide modellen op vergelijkbare manier terug te vinden zijn. De vouw en draai is een fundamentele eigenschap van het prooi-roofdier model. Echter niet alleen in het prooi-roofdier model is de vouw en draai fundamenteel maar ook een ander model, het discrete Lorenz-63 model afkomstig uit de weerkunde, blijkt beter te worden begrepen als het vergeleken wordt met de vouw en draai afbeelding. Daarmee is duidelijk geworden dat de vouw en draai afbeelding geschikt is als een fundamenteel model voor de bestudering van 2-dimensionale afbeeldingen met de eigenschap dat verschillende toestanden op een bepaald moment leiden tot een dezelfde toestand op het volgende moment

    Periodicity and Chaos Amidst Twisting and Folding in Two-Dimensional Maps

    Get PDF
    We study the dynamics of three planar, noninvertible maps which rotate and fold the plane. Two maps are inspired by real-world applications whereas the third map is constructed to serve as a toy model for the other two maps. The dynamics of the three maps are remarkably similar. A stable fixed point bifurcates through a Hopf-Neimark-Sacker which leads to a countably infinite set of resonance tongues in the parameter plane of the map. Within a resonance tongue a periodic point can bifurcate through a period-doubling cascade. At the end of the cascade we detect Henon-like attractors which are conjectured to be the closure of the unstable manifold of a saddle periodic point. These attractors have a folded structure which can be explained by means of the concept of critical lines. We also detect snap-back repellers which can either coexist with Henon-like attractors or which can be formed when the saddle-point of a Henon-like attractor becomes a source

    Computing one-dimensional stable manifolds of planar maps without the inverse

    Get PDF
    We present an algorithm to compute the one-dimensional stable manifold of a saddle point for a planar map. In contrast to current standard techniques, here it is not necessary to know the inverse or approximate it, for example, by using Newton's method. Rather than using the inverse, the manifold is grown starting from the linear eigenspace near the saddle point by adding a point that maps back onto an earlier segment of the stable manifold. The performance of the algorithm is compared to other methods using an example in which the inverse map is known explicitly. The strength of our method is illustrated with examples of noninvertible maps, where the stable set may consist of many different pieces, and with a piecewise-smooth model of an interrupted cutting process. The algorithm has been implemented for use in the DsTool environment and is available for download with this paper

    Bending angles of a broken line causing bifurcations and chaos

    Get PDF
    We replace the cubic characteristics in the Duffing equation by two line segments connected at a point and investigate how an angle of that broken line conducts bifurcations to periodic orbits. Firstly we discuss differences in periodic orbits between the Duffing equation and a forced planar system including the broken line. In the latter system, a grazing bifurcation split the parameter space into the linear and nonlinear response domains. Also, we show that bifurcations of non-resonant periodic orbits appeared in the former system are suppressed in the latter system. Secondly, we obtain bifurcation diagrams by changing a slant parameter of the broken line. We also find the parameter set that a homoclinic bifurcation arises and the corresponding horseshoe map. It is clarified that a grazing bifurcation and tangent bifurcations form boundaries between linear and nonlinear responses. Finally, we explore the piecewise linear functions that show the minimum bending angles exhibiting bifurcation and chaos
    • …
    corecore