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Chapter 1

Introduction

In the 1980’s Hans Lauwerier (1923–1997) gave a keynote talk on dynamical
systems at the Dutch Mathematical Congress in Delft. At the end of his
talk he mentioned a 2-dimensional discrete-time predator-prey model and
he showed the chaotic attractor in Figure 1.1 that he had detected in nu-
merical experiments on his personal computer. This figure suggests that the
dynamics of this predator-prey model can be understood in terms of the com-
position of a rotation and fold of the plane. Lauwerier’s concluding remark
was that there is still a lot of work to do in fully understanding the dynamics
of this model. This formed the inspiration of the present work. The aim of
this thesis is to provide a coherent overview of the dynamics of 2-dimensional
iterated maps that exhibit folding and twisting using both analytical and nu-
merical techniques. The present work is the result of a research project that
started within the “Leraar in Onderzoek” program of the Netherlands Organ-
isation for Scientific Research that aims at enabling mathematics teachers at
secondary schools to participate in scientific research. The results presented
in this thesis have been published in the form of two journal articles [12, 13].

1.1 Understanding dynamical systems

1.1.1 Studying geometric structures

The general background of the present work is formed by the mathemat-
ical theory of dynamical systems as it evolved since Henri Poincaré, Stephen
Smale, René Thom, and many others. The general aim is to understand
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Figure 1.1. Chaotic attractor of a planar, non-invertible map. This figure
suggests that the map can be understood as the composition of a fold and a
rotation.

the long-term behaviour of nonlinear deterministic systems and qualitative
changes in dynamics upon variation of parameters. The transition from or-
derly to complex chaotic dynamics is particularly important. Rather than
studying individual evolutions, the goal is to obtain a global and qualitat-
ive overview of the dynamics by studying the geometric organisation of the
product of state and parameter spaces.

An important problem in the theory of dynamical systems is to determine
the geometric structure of chaotic attractors and the bifurcations leading to
their formation. Inspiration for the development of the theory often comes
from the analytical and numerical study of particular examples, but the
goal is to understand the dynamics of a large class of systems. Ideally, one
would like to classify the behavior of dynamical systems according to some
equivalence relation. For example, dynamical systems that are topologically
conjugate have identical topological properties, and in particular they share
the same number of fixed points and periodic orbits of the same stability
types. However, topological conjugacy can only be proved in specific cases.

In the vicinity of bifurcations one can use the theory of normal forms. All
systems exhibiting a certain type of bifurcation are locally (i.e., around the

2



equilibrium) topologically equivalent to the normal form of the bifurcation
[11, 14, 19].

A fruitful strategy to understand chaotic dynamics is to construct repres-
entative examples that explain the dynamical behavior observed in concrete
applications. A well-known example is the horseshoe map introduced by
Smale [28] which has become one of the hallmarks of chaos. The horseshoe
map is an Axiom A diffeomorphism that serves as a model for the generic
behavior at a transverse homoclinic point at which the stable and unstable
manifolds of a periodic point intersect. Another example of this strategy
is given by the so-called geometric Lorenz models that were constructed to
understand the attractor of the Lorenz-63 system [1, 15, 29, 31]. Such toy
models, or models of models, are of great help to understand complex dynam-
ics.

In many works a similar strategy has been adopted to unravel generic dy-
namical features in the vicinity of particular bifurcations. A simplified global
model for the return map of a dissipative diffeomorphism near a homoclinic
bifurcation was presented in [5]. This map is a perturbation of the Arnold
family of circle maps and its dynamics involves periodicity, quasi-periodicity
and chaos, between which there are various transitions bifurcations. This
map has a universal character in the setting of 2-dimensional diffeomorphisms
and can be compared with examples like the Hénon map and the standard
map.

Detailed studies of 3-dimensional diffeomorphisms, in particular near a
Hopf-saddle-node bifurcation, can be found in [8, 9, 30]. These studies were
mainly inspired by results obtained for the Poincaré map of the periodically
driven Lorenz–84 atmospheric model [6]. In the latter map so-called quasi-
periodic Hénon-like attractors, which are conjectured to coincide with the
unstable manifold of a hyperbolic invariant circle of saddle-type, have been
detected [7]. The existence of such attractors has been rigorously proved for
a map on the solid torus [10].

1.1.2 Maps that fold and twist the plane

In this work we are concerned with the study of non-invertible, planar maps.
The study of such maps goes back to at least the works of Gumowski and
Mira [16, 17, 25] who studied the role of critical lines in the formation of
basin boundaries and their bifurcations. Since the 1990s the interest for
2-dimensional endomorphisms has increased tremendously. For a detailed
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account, the reader is referred to the textbook of Mira et al. [26] and the
references therein.

The aim of this work is to understand the the dynamics of 2-dimensional
maps that rotate and fold the plane. In accordance with the philosophy
outlined above we will construct a toy model that is intended to serve as a
representative example for this class of maps. The inspiration for this map
is taken from two examples that appeared in the literature.

1.1.2.1 A predator-prey model

Consider for x > 0 and y > 0 the following planar map

P :

(
x
y

)
�→

(
ax(1 − x− y)

bxy

)
. (1.1)

This map is a simplification of the predator-prey model studied in [2]; also
see [26] and references therein. It was precisely this map that was mentioned
in Lauwerier’s key note talk at the Dutch Mathematical Congress.

The map P folds the plane along the line ab− 4bx− 4ay = 0 and hence
is not invertible. In the half-plane ab − 4bx − 4ay > 0 the map P has two
preimages. Moreover, this map has a fixed point (1

b
, 1 − 1

a
− 1

b
), which has

complex eigenvalues for the parameters b > (a +
√
a)/(2a − 2). Hence, the

map P rotates points near this fixed point.

1.1.2.2 A discretized Lorenz-63 model

Our second example arises from the classical Lorenz-63 model [21, 22] for
Rayleigh-Bénard convection:

dx

dt
= −σ(x− y),

dy

dt
= ρx− y − xz,

dz

dt
= −βz + xy.

Taking the limit σ → ∞ gives a system of two differential equations:

dy

dt
= (ρ− 1)y − yz,

dz

dt
= −βz + y2.

In what follows, we will relabel the variables (y, z) as (x, y) again. In this
2-dimensional system we can assume without loss of generality that β = 1
by a suitable rescaling (but note that this property does not hold for the
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3-dimensional system). After discretizing these equations by means of a
forward Euler scheme with time step τ we obtain the map

L :

(
x
y

)
�→

(
(1 + ατ)x− τxy
(1− τ)y + τx2

)
, (1.2)

where α = ρ− 1.
First note that the map L is noninvertible. The curve defined by the

equation

4τ(y − cb)3 = 27c2x2, c = 1− τ, b = (1 + ατ)/τ,

separates two regions in the plane in which the map has either one or three
preimages. In addition, the map has a fixed point (±√

α, α) of which the
eigenvalues are complex for α > 1

8
, which means that points near the fixed

point are rotated by the map.

1.2 Setting of the problem

1.2.1 Main research question

Considering the properties of the maps P and L the main research ques-
tion can be formulated as: can a map be constructed which fundamentally
describes the dynamics of maps with a fold and a twist.
In this work (see next subsection) the fold-and-twist map F is defined as an
educated guess for the stated question. Then in [12] which is in Chapter 2 of
this work, the dynamics of this fold-and-twist map is described. In Chapter
3 of this work, published in [13], the Lyapunov diagrams, the snap-back re-
pellers and the folded Hénon-like attractors for the three maps P, L and
F are compared.

1.2.2 The fold-and-twist map

The maps P and L rotate points and fold the plane. Our aim is to study the
combination of these effects in a representative toy model that is as simple
as possible. To that end, we first define the map

F :

(
x
y

)
�→

(
f(x)
y

)
,
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where f : R → R is a continuous two-to-one map. Observe that F maps
vertical lines onto vertical lines. In the following we will take

f(x) = 1
4
(a− 2)− ax2

which is conjugate to the logistic family g(x) = ax(1 − x). Indeed, for
ψ(x) = x − 1

2
we have that f ◦ ψ = ψ ◦ g. Hence, we will restrict to the

parameter range a ∈ [0, 4]. Next, we consider a rigid rotation around the
origin given by

R :

(
x
y

)
�→

(
x cosϕ− y sinϕ
x sinϕ+ y cosϕ

)
.

The fold-and-twist map T is defined as the composition

T = R ◦ F :

(
x
y

)
�→

(
f(x) cosϕ− y sinϕ
f(x) sinϕ+ y cosϕ

)
. (1.3)

The angle ϕ is measured in radians. However, for numerically obtained res-
ults values are reported in degrees, which is indicated by means of a subscript:
ϕd = 180ϕ/π.

The dynamical properties of the map T were explored in [12]. The
advantage of the map T is that the folding and twisting can be controlled
separately using the parameters a and ϕ, and the philosophy of this work is
that the map T may serve as a “guide” to study and explain phenomena
that are observed in the maps P and L .

1.3 Sketch of the results

The dynamics of the maps P, L , and T will be explored using both ana-
lytical and numerical tools. Sometimes educated guesses obtained from nu-
merical explorations replace rigorous mathematical theorems, which is a way
of thinking that is often referred to as experimental mathematics.

1.3.1 Lyapunov diagrams

The Lyapunov diagrams in Figure 1.2 show a classification of the dynamical
behavior of the maps P, L , and T in different regions of their parameter
planes. See Appendix B.1 for a description of the algorithm used to com-
pute Lyapunov exponents. Note that the three diagrams have a very similar
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geometric organization. In particular, one can observe a prevalence of peri-
odic dynamics and chaotic dynamics. In all three diagrams one can observe
tongue-shaped regions emanating along a curve. This suggests the presence
of a Hopf–Nĕımark–Sacker bifurcation [11, 19].

The Lyapunov diagrams also suggest that chaotic attractors with one or
two positive Lyapunov exponents occur for regions in the parameter plane
with positive Lebesgue measure, and the question is how these attractors are
formed and what their geometric structure is. Numerical evidence suggest
that strange attractors having one positive Lyapunov exponent are of Hénon-
like type, i.e., they are formed by the closure of the unstable manifold of a
periodic point of saddle type. However, unlike in diffeomorphisms, these
attractors have a folded structure in our maps.

1.3.2 Snap-back repellers

Providing rigorous proofs for the occurrence of chaotic dynamics in a dy-
namical system is often challenging. In 1975, Li and Yorke published their
classical article in which they proved that the existence of a period-3 point
implies chaos for interval maps [20]. This theorem inspired Marotto in 1978
to introduce the concept of a snap-back repeller as a sufficient condition for
chaos in maps of higher dimensions [23]. Years later a technical flaw was dis-
covered and Marotto published a revised definition of the snap-back repeller
[24].

In what follows � · � denotes the standard Euclidean norm on Rn and
Br(p) := {x ∈ Rn : �x− p� ≤ r} denotes a closed ball with radius r around
the point p.

Definition 1 (Marotto [23, 24]). Let F : Rn → Rn be a differentiable map.
A fixed point p of F is called a snap-back repeller if the following two con-
ditions are satisfied:

(i) the fixed point p is expanding, which means that there exists an r > 0
such that the eigenvalues of DF (x) exceed 1 in absolute value for all
x ∈ Br(p);

(ii) there exists a point x0 ∈ Br(p) with x0 �= p and m ∈ N such that xm = p
and det(DF (xk)) �= 0 for all 1 ≤ k ≤ m where xk = F k(x0).

Invertible maps cannot have snap-back repellers. For these maps the oc-
currence of chaotic dynamics is often proved via the existence of bifurcations

7
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Figure 1.2. Lyapunov diagram of attractors for the maps P, L , and T

as a function of their parameters. For the color coding see Table 1.2d.
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that lead to homoclinic tangencies of stable and unstable manifolds of peri-
odic points of saddle type, see Palis and Takens [27] for a general account.
Marotto’s theorem showed that the existence of a snap-back repeller is a
sufficient condition for chaotic dynamics of non-invertible maps. Remark-
ably, this theorem only requires conditions on expanding periodic points and
circumvents the computation of stable and unstable manifolds and their in-
tersections. In this sense proving the occurrence of chaotic dynamics for
noninvertible maps is easier than for invertible maps.

Figure 1.3 shows an example of snap-back repellers that have been nu-
merically detected in the maps P and T . For the map T the existence of
snap-back repellers can be rigorously proved when |ϕ − π/2| is sufficiently
small.
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Figure 1.3. Left panel: a chaotic attractor of the predator-prey map P for
(a, b) = (3.6, 3.6). The regions for which the Jacobian matrix of P has two
unstable eigenvalues are indicated in grey. The point (0.277778, 0.444444)
is an expanding fixed point which is in fact a snap-back repeller: an orbit of
length 6 of preimages (indicated with dots and line segments to guide the eye)
of this point enters a ball of radius r = 0.12 around the fixed point. Right
panel: a snap-back repeller for the map T with (a, ϕd) = (3.6, 72), the fixed
point (−0.222222, 0.305863), m = 9, and r = 0.08.
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1.3.3 Folded Hénon-like attractors

The existence of a snap-back repeller only proves the existence of chaotic
dynamics, but a central problem in the mathematical theory of dynamical
systems is to also determine the geometric structure of chaotic attractors and
the bifurcations leading to their formation. A classical example for which
rigorous results are available is the well-known Hénon-map [18]. Benedicks
and Carleson [3, 4] proved that there exists a set of positive measure in the
parameter plane for which the Hénon map has a strange attractor which
coincides with the closure of the unstable manifold of a saddle fixed point.

Detailed studies of the attractors in 3-dimensional diffeomorphisms, in
particular near a Hopf-saddle-node bifurcation, can be found in [8, 9, 30].
These studies were mainly inspired by results obtained for the Poincaré map
of the periodically driven Lorenz–84 atmospheric model [6]. In the latter
map so-called quasi-periodic Hénon-like attractors, which are conjectured to
coincide with closure of the unstable manifold of a saddle invariant circle,
have been detected [7]. The existence of such attractors has been rigorously
proved for a map on the solid torus [10].

Periodic attractors in the maps P, L , and T typically bifurcate through
an infinite cascade of period doublings. Figure 1.4 present numerical evid-
ence that the chaotic attractors detected near the end of this cascade are
of Hénon-like type, which means that they are equal to the closure of the
unstable manifold of a saddle periodic point. Note that strictly speaking, we
must speak of an “unstable set” instead of an “unstable manifold”. Indeed,
since the maps P, L , and T are not diffeomorphisms the unstable set can
have self-intersections which are indeed clearly visible in the aforementioned
figures. An explanation of this phenomenon in terms of critical lines will be
provided in Chapter 3.

1.4 Concluding remarks

The philosophy of introducing toy models is very useful to understand more
complex dynamical systems. The fold-and-twist map T shares many dy-
namical features with the predator-prey map P and Lorenz’ map L . We
have analytically proven the existence of a Hopf–Nĕımark–Sacker bifurca-
tion, which gives rise to resonance tongues in the parameter plane of the
map. Inside a resonance tongue a periodic attractor typically either under-
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Figure 1.4. Left panel: a chaotic attractor of the map P for the parameter
values (a, b) = (3.85, 3.2). Right panel: a chaotic attractor of the map T

for the parameter values (a, ϕd) = (3.43, 148). These attractors resemble a
“fattened curve”. In fact, numerical evidence suggests that these attractors
are the closure of the unstable manifold of a saddle periodic point. Since
the maps are non-invertible the unstable manifolds can have self-interections
which can be explained by means of the concept of critical lines.

goes a period doubling cascade, which leads to chaotic dynamics, or a an-
other Hopf–Nĕımark–Sacker bifurcation, which in turn leads to a new family
of tongues. For all maps we have detected chaotic attractors of Hénon-like
type: these attractors are conjectured to be the closure of an unstable mani-
fold of a saddle periodic point. Due to the non-invertibility of the map these
attractors have a folded structure which can be explained by means of the
iterates of the critical line. In addition, we have detected snap-back repellers
which may coexist with Hénon-like attractors.

We conjecture that the dynamics described above is typical for planar
maps that rotate and fold the plane. We even conjecture that the map T

may serve as a prototype for such maps. The advantage of the map T is that
the action of folding and rotation can be controlled separately through the
parameters a and ϕ. In particular, for ϕ = π/2 we were able to analytically
prove the existence of snap-back repellers for the fourth iterate of T .
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1.5 Further research

Note that our definition of T can also be used to consider more complic-
ated non-invertible maps. For example, in (3.3) we can replace the function
f(x) = 1

4
(a − 2) − ax2 by a function that has more than two preimages. A

concrete example of such a map could be f(x) = ax(x2 − 1). Another choice
for f would be the so-called tent map. In this case the fold-and-twist map
F is not smooth, but it may be amenable to a more rigorous investigation.
This approach is comparable to the Lozi map that was introduced to obtain
a better understanding of the Hénon map.
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Mathématiques de l’Institut des Hautes Études Scientifiques, 50:72–99,
1979.

16



Chapter 2

The dynamics of a

fold-and-twist map

2.1 Introduction

In this Chapter we study the dynamics of a planar endomorphism which is
composed of a fold and a rigid rotation. We present both analytic computa-
tions and numerical experiments in which educated guesses are inspired by
the available theory.

The construction of the fold-and-twist map is inspired by the maps P

and L in equations (3.1) and (3.2) which rotate points and fold the plane.
Our aim is to study the combination of these effects in a map that is as
simple as possible. To that end, we first define the map

F (x, y) = (f(x), y),

where f is a continuous two-to-one map. Observe that F maps vertical lines
onto vertical lines. In the following we will take

f(x) = 1
4
(a− 2)− ax2

which is conjugate to the logistic family g(x) = ax(1 − x): for ψ(x) = x− 1
2

we have that f ◦ψ = ψ◦g. Hence, we will restrict our focus to the parameter
range a ∈ [0, 4]. Next, we consider a rigid rotation around the origin given
by

R(x, y) = (x cosϕ− y sinϕ, x sinϕ+ y cosϕ).
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The fold-and-twist map T , hereafter referred to as FAT, is defined as the
composition

T (x, y) = (R ◦ F )(x, y) = (f(x) cosϕ− y sinϕ, f(x) sinϕ+ y cosϕ). (2.1)

The angle ϕ is measured in radians. However, for numerically obtained res-
ults values are reported in degrees, which is indicated by means of a subscript:
ϕd = ϕ · (180/π).

Lemma 1. For 0 ≤ ϕ ≤ π the maps Tϕ,a and T2π−ϕ,a are conjugate.

Proof. For ϕ = 0 and ϕ = π the statement is trivial. For 0 < ϕ < π we
define the map Ψ(x, y) = (x,−y). A straightforward computation shows
that Tϕ,a ◦Ψ = Ψ ◦T2π−ϕ,a. Note that this proof holds for any function f in
equation (3.3).

In particular, the preceding Lemma implies that the bifurcation diagram
in the (ϕ, a)-plane is symmetric with respect to the line ϕ = π. Therefore, it
suffices to study the family Tϕ,a for 0 ≤ ϕ ≤ π.

2.1.1 Overview of the dynamics

The Lyapunov diagram in Figure 2.1 shows a classification of the dynamical
behaviour in different regions of the (ϕ, a)-plane. See Appendix B.1 for a
description of the algorithm used to compute Lyapunov exponents. The
diagram suggests that periodic dynamics occurs in regions in the (ϕ, a)-plane
having positive Lebesgue measure. In particular, along the line a = 3 one
can observe tongue-shaped regions with periodic dynamics. This already
suggests that at a = 3 a fixed point loses stability through a Hopf–Nĕımark–
Sacker bifurcation. Proposition 2 in Section 2.2.1 shows that this is indeed
the case.

In addition, Figure 2.1 suggests that chaotic attractors with one positive
or two positive Lyapunov exponents occur for regions in the (ϕ, a)-plane
having positive Lebesgue measure, and the question is how these attractors
are formed and what their geometric structure is. Numerical evidence suggest
that strange attractors having one positive Lyapunov exponent are of Hénon-
like type, i.e., they are formed by the closure of the unstable manifold of
a periodic point of saddle type. However, unlike in diffeomorphisms, the
attractors in our map have a folded structure.
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Figure 2.1. Lyapunov diagram for the attractors of the map Tϕ,a. See Table
2.1 for the colour coding.

2.2 Analytical results

The Lyapunov diagram suggests an abundance of periodic attractors. In
this section we analytically prove the existence of such attractors and their
bifurcations for special values of the parameters (ϕ, a).

2.2.1 Fixed points and their stability

The simplest attractors are those consisting of a single point. As explained
in Appendix A.1 the stability of periodic points can be easily determined
from the trace and determinant. The following Lemma is helpful.

Lemma 2. A fixed point (x, y) of the map Tϕ,a with 0 < ϕ < π is stable if
and only if −1 < −2ax < 1.

Proof. The determinant and trace of the Jacobian matrix of Tϕ,a are given
by D = f ′(x) and T = (1 + f ′(x)) cosϕ. Equation (A.1) implies that a fixed
point (x, y) is stable if and only if

−1 < f ′(x) < 1 and − (1 + f ′(x)) < (1 + f ′(x)) cosϕ < (1 + f ′(x)).

Since −1 < cosϕ < 1 the second inequality is satisfied without any further
condition. The proof is completed by recalling that f ′(x) = −2ax.
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Colour Lyapunov exponents Attractor type
cyan 0 > λ1 > λ2 periodic point of node type
blue 0 > λ1 = λ2 periodic point of focus type
green 0 = λ1 > λ2 invariant circle
red λ1 > 0 ≥ λ2 chaotic attractor
black λ1 ≥ λ2 > 0 chaotic attractor
white no attractor detected

Table 2.1. Colour coding for the Lyapunov diagram of Figure 2.1. The
diagram suggests that periodic attractors and chaotic attractors with 1 or 2
positive Lyapunov exponents occur for regions in the (ϕ, a)-plane with positive
Lebesgue measure.

The next Proposition shows that the map Tϕ,a has precisely two fixed
points and explains how their stability changes by varying the parameters
(ϕ, a).

Proposition 1. For a > 0 and 0 < ϕ < π the map Tϕ,a has two fixed points
given by

F1 =

(
1

2
,−1

2
cot 1

2
ϕ

)
and F2 =

(
2− a

2a
,−2− a

2a
cot 1

2
ϕ

)
.

Moreover, F1 is stable for 0 ≤ a < 1 and F2 is stable for 1 < a < 3.
In particular, F1 and F2 coalesce and exchange stability in a transcritical
bifurcation at a = 1.

Proof. Fixed points of the fold-and-twist satisfy the equations

f(x) cosϕ− y sinϕ = x

f(x) sinϕ+ y cosϕ = y

which, for 0 < ϕ < 2π, implies that

y = f(x)
sinϕ

1− cosϕ
= f(x) cot(1

2
ϕ) and f(x) = −x.

For 0 < a < 4 the equation f(x) = −x has the solutions x = 1/2 and
x = (2− a)/2a so that the fixed points of Tϕ,a are given by

F1 =

(
1

2
,−1

2
cot 1

2
ϕ

)
and F2 =

(
2− a

2a
,−2− a

2a
cot 1

2
ϕ

)
.
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Note that F1 and F2 coincide for a = 1. Lemma 2 shows that F1 is stable
if and only if −1 < a < 1 and F2 is stable if and only if 1 < a < 3. This
completes the proof.

The next objects in terms of dynamical complexity are invariant circles
on which the dynamics can be periodic or quasi-periodic. The existence of
such circles for the map Tϕ,a is implied by the next result.

Proposition 2. For 0 < ϕ < π and ϕ �= 2π/3, π/2 the fixed point F2 loses
stability through a supercritical Hopf–Nĕımark–Sacker (HNS) bifurcation at
a = 3 and gives birth to a unique stable, closed invariant circle.

Proof. Evaluating the Jacobian matrix of the map Tϕ,a at the fixed point F2

gives the matrix

J =

(
(a− 2) cosϕ − sinϕ
(a− 2) sinϕ cosϕ

)
,

which implies that det(J) = a− 2 and tr(J) = (a− 1) cosϕ. From equation
(A.1) it follows that the fixed point is stable if and only if 1 < a < 3.
Along the line a = 3 the fixed point loses stability as a complex conjugate
pair of eigenvalues crosses the unit circle with nonzero speed. At the HNS
bifurcation the eigenvalues are simply given by λ± = e±iϕ. It immediately
follows that the strong resonances occur for ϕ ∈ {π/2, 2π/3, π}.

We use equation (A.4) with a11 = cosϕ, a12 = − sinϕ, and a21 = sinϕ.
Computations with the computer algebra package Mathematica then gives
the following normal form coefficients:

h20 = 3eiϕ sinϕ, h11 = 3eiϕ sinϕ, h02 = 3eiϕ sinϕ, h21 = 0,

so that the first Lyapunov coefficient is given by

ℓ1 = −27

2
sin2 ϕ.

Clearly, ℓ1 < 0 for 0 < ϕ < π. Applying Theorem 4.6 of [34] implies that a
unique stable, closed invariant curve bifurcates from the fixed point F2 as a
passes through 3. This completes the proof.

Along the line a = 3 the eigenvalues of the fixed point F2 are given by
λ± = e±iϕ. Hence, from points of the form (ϕ, a) = (2πp/q, 3) with p, q ∈ N

so-called Arnold tongues will emanate, which are indeed clearly visible in the
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Lyapunov diagram of Figure 2.1. The boundaries of these tongues are formed
by two saddle-node bifurcations, and for parameter values within a tongue a
stable periodic point coexists with a saddle periodic point. In this case the
invariant circle is formed by the unstable manifold of the saddle point, see
Figure 2.2 for a numerical illustration near the 1:5 resonance tongue.

The points (ϕ, 3) with ϕ ∈ {2π, π, 2π/3, π/2} correspond to so-called
strong resonances. For such parameter values more than one closed invari-
ant curve can appear, or such a curve may not exist at all [34]. However,
numerical evidence, which is presented in Figure 2.3, clearly suggests that in
our case the invariant circle does exist for ϕ = π/2.

When changing the parameters (ϕ, a), the invariant circle can be des-
troyed by homoclinic tangencies between the stable and unstable manifolds
of the unstable periodic point, or the circle can interact with other objects
via heteroclinic tangencies. See [11, 12] for an extensive discussion.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05  0  0.05

y

x

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05  0  0.05

y

x

Figure 2.2. For a = 3.2 and ϕd = 73 (left) and ϕd = 73.8 (right) a stable
period-5 point (circles) coexists with a saddle period-5 point (squares). The
unstable manifold of the saddle forms an invariant circle. Observe that for
increasing ϕ the two periodic orbits will coalesce in a saddle-node bifurcation
which forms one of the boundaries of the 1:5 resonance tongue.
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Figure 2.3. As Figure 2.2, but for period 4 and parameters (ϕd, a) =
(90, 3.2) (left) and (ϕd, a) = (92, 3.2) (right).

2.2.2 Period-4 orbits for ϕ = π/2

For the special angle ϕ = π/2 the periodic point born at the HNS bifurcation
described in Proposition 2 can be explicitly computed.

Proposition 3. For ϕ = π/2 and a > 3 the map Tϕ,a has two period-4 orbits
given by

P
(4)
1 = (p+,−p+) �→ (p+,−p−) �→ (p−,−p−) �→ (p−,−p+),

P
(4)
2 = (q,−p−) �→ (p−,−q) �→ (q,−p+) �→ (p+,−q),

where

p± =
−1±

√
(a− 3)(a+ 1)

2a
and q =

2− a

2a
.

The point P
(4)
1 loses stability at a = 1 +

√
6 as two Floquet multipliers pass

through −1. The point P
(4)
2 is unstable. At a = 3 they both coalesce with the

fixed point F2.

Proof. Recall that f(x) = 1
4
(a− 2)− ax2. Since f(x) = f(−x) we have

T
4
a,π/2(x, y) = (−f(f(x)), f(f(y))).
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Therefore, the period-4 points of Ta,π/2 and their stability follow immediately
from the fixed points of f 2 and −f 2. For 3 < a < 4 the fixed points for −f 2

are given by

p1 =
1

2
, p2 =

2− a

2a
, p3 =

−1 −
√

(a− 3)(a+ 1)

2a
, p4 =

−1 +
√

(a− 3)(a+ 1)

2a
.

Note that p is a fixed point of −f 2 if and only if −p is a fixed point of
f 2. Hence, there are 16 candidates for a period-4 point which are given by
(pi,−pj) for 1 ≤ i, j ≤ 4. The Floquet multipliers are given by

λ1 = −4a2pif(pi) and λ2 = −4a2pjf(pj).

Straightforward computations reveal that:

• (p1,−p1) and (p2,−p2) are fixed points.

• (p1,−p2) �→ (p2,−p1) is an unstable period-2 orbit.

• (p1,−p3) �→ (p3,−p1) �→ (p1,−p4) �→ (p4,−p1) is a period-4 orbit with
Floquet multipliers λ1 = a2 and λ2 = 1 − (a − 3)(a + 1). Since a > 3
the orbit is unstable.

• (p2,−p3) �→ (p3,−p2) �→ (p2,−p4) �→ (p4,−p2) is a period-4 orbit with
Floquet multipliers λ1 = (2 − a)2 and λ2 = 1 − (a − 3)(a + 1). Since
a > 3 the orbit is unstable.

• (p4,−p4) �→ (p4,−p3) �→ (p3,−p3) �→ (p3,−p4) is a period-4 orbit with
Floquet multipliers λ1 = λ2 = 1− (a− 3)(a + 1). Note that |λ1,2| < 1
for 3 < a < 1 +

√
6, and at a = 1 +

√
6 the multipliers pass through

−1.

Note that the periodic points (p2,−p3) and (p4,−p4) coalesce in a saddle-
node bifurcation at a = 3. This completes the proof.

Note that for a = 3 the periodic points P
(4)
1 and P

(4)
2 both have two

Floquet multipliers equal to one, since the two saddle-node bifurcation curves
forming the boundaries of the 1:4 tongue join in a cusp at the point (π/2, 3).

The unstable manifold of the saddle point P
(4)
2 forms an invariant circle for

parameter values sufficiently close to the origin of the tongue; see Figure 2.3
for an illustration.
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2.2.3 Period-3 orbits for ϕ = 2π/3

For the special angle ϕ = 2π/3 there exist two period-3 orbits which are
not related to the HNS bifurcation described in Proposition 2. In fact, these
period-3 orbits already exist for parameter values a < 3.

Proposition 4. For ϕ = 2π/3 the map Tϕ,a has two period-3 orbits given
by

P
(3)
± =

(
−1 ±

√
∆

6a
,
(−5 ∓ 7

√
∆)

√
3

54a

)
�→

(
−1±

√
∆

6a
,
(19∓ 5

√
∆)

√
3

54a

)

�→
(
−5∓

√
∆

6a
,
(7∓

√
∆)

√
3

54a

)
,

where ∆ = 9a2 − 18a− 23. The point P
(3)
+ is stable for a0 < a < a1, where

a0 =
1
3
(3 + 4

√
2) ≈ 2.85 and a1 = 1 + 1

6

√
174− 6

√
5 ≈ 3.11.

At a = a0 the points P
(3)
± coalesce in a saddle-node bifurcation and at a = a1

the point P
(3)
+ loses stability as two Floquet multipliers cross the unit circle.

The point P
(3)
− is unstable for all a > a0.

Proof. In this section we fix ϕ = 2π/3. We have that (xi+1, yi+1) = T (xi, yi)
if and only if

f(xi) = −1
2
xi+1 +

1
2

√
3yi+1,

yi = −1
2

√
3xi+1 +

1
2
yi+1.

Therefore, the points (x1, y1), (x2, y2), and (x3, y3) form a period-3 orbit if
and only if the following equations are satisfied:

f(x1) = −1
2
x2 +

1
2

√
3y2,

f(x2) = −1
2
x3 +

1
2

√
3y3,

f(x3) = −1
2
x1 +

1
2

√
3y1,

y1 = −1
2

√
3x2 +

1
2
y2,

y2 = −1
2

√
3x3 +

1
2
y3,

y3 = −1
2

√
3x1 +

1
2
y1.
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The last three equations are linear in the variables yi, and therefore we can
use Cramer’s rule to express the y-coordinates in terms of the x-coordinates:

y1 = −
√
3

9
(4x2 − 2x3 + x1),

y2 = −
√
3

9
(4x3 − 2x1 + x2), (2.2)

y3 = −
√
3

9
(4x1 − 2x2 + x3).

Substituting this in the first three equations gives the following equations for
the x-coordinates:

3f(x1) = x1 − 2x2 − 2x3,

3f(x2) = x2 − 2x1 − 2x3,

3f(x3) = x3 − 2x1 − 2x2.

By substituting f(x) = 1
4
(a − 2) − ax2, multiplying the equations by 12a,

and setting ui = 6axi + 1 we can rewrite these equations as

u2
1 − 4u2 − 4u3 = 9a2 − 18a− 7,

u2
2 − 4u1 − 4u3 = 9a2 − 18a− 7,

u2
3 − 4u1 − 4u2 = 9a2 − 18a− 7.

Subtracting the second equation from the first gives (u1 + 2)2 = (u2 + 2)2

which implies that

u2 = u1 or u2 = −(u1 + 4).

Subtracting the third equation from the second gives (u2 + 2)2 = (u3 + 2)2

which implies that

u3 = u2 or u3 = −(u2 + 4).

This gives four different quadratic equations for u1.

(i) If u1 = u2 = u3, then x1 = x2 = x3. Equations (2.2) then imply that
y1 = y2 = y3. Hence, in this case we do not obtain a period-3 orbit,
but a fixed point.
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(ii) For u2 = u1 and u3 = −(u2 + 4) we obtain the equation

u2
1 = 9a2 − 18a− 23.

(iii) For u2 = −(u1 + 4) and u3 = u2 we obtain the equation

(u1 + 4)2 = 9a2 − 18a− 23.

In this case we obtain the same period-3 orbits as in case (ii).

(iv) For u2 = −(u1 + 4) and u3 = −(u2 + 4) we again obtain the equation

u2
1 = 9a2 − 18a− 23.

In this case we obtain the same period-3 orbits as in case (ii).

Setting ∆ = 9a2 − 18a− 23 we obtain from case (ii) the solutions

u1 = ±
√
∆, u2 = ±

√
∆, u3 = −4∓

√
∆.

This gives the two period-3 orbits

(x1, y1) =

(
−1 ±

√
∆

6a
,
(−5 ∓ 7

√
∆)

√
3

54a

)
,

(x2, y2) =

(
−1 ±

√
∆

6a
,
(19∓ 5

√
∆)

√
3

54a

)
,

(x3, y3) =

(
−5 ∓

√
∆

6a
,
(7∓

√
∆)

√
3

54a

)
.

These orbits exist only for ∆ ≥ 0 which is the case for a ≤ a− and a ≥ a+
where a± = 1

3
(3 ± 4

√
2). At a = a± the orbits coalesce in a saddle-node

bifurcation. Since a− < 0 we only consider the case a ≥ a+.
The Jacobian matrix of T 3 evaluated at (x1, y1) is given by

J =

(
ax3 −1

2

√
3

−a
√
3x3 −1

2

)(
ax2 −1

2

√
3

−a
√
3x2 −1

2

)(
ax1 −1

2

√
3

−a
√
3x1 −1

2

)

Its determinant and trace are respectively given by

D = −8a3x1x2x3,

T =
1

8
(−1 + 8a3x1x2x3 + 12a2(x1x2 + x2x3 + x1x3)− 6a(x1 + x2 + x3)).
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We investigate the stability for the two periodic orbits seperately.
For the period-3 orbit obtained for the positive sign we have that D =

p+(
√
∆) and T = q+(

√
∆) where

p+(t) =
1

27

(
5− 9t+ 3t2 + t3

)
and q+(t) =

1

216

(
256− 108t− 12t2 − t3

)
.

Solving p+(t) = 1 for t ≥ 0 gives t = 1
2
(−1 + 3

√
5). Clearly, q+(t) decreases

for t ≥ 0. Moreover we have that

q(0) = 1 + p(0),

q(1
2
(−1 + 3

√
5) = 1

8
(7− 6

√
5) < −2 = −1− p(1

2
(−1 + 3

√
5).

This means that for 0 < t < 1
2
(−1 + 3

√
5) we have that

−1 < p+(t) < 1 and − 1− p+(t) < q+(t) < 1 + p+(t).

We conclude that for 1
3
(3 + 4

√
2) < a < 1 + 1

6

√
174− 6

√
5 we have that

−1 < D < 1 and − 1−D < T < 1 +D,

so that equation (A.1) implies that the orbit is stable. At the critical value

a = 1 + 1
6

√
174− 6

√
5 the periodic orbit loses stability as the line D = 1 is

crossed, which means that two complex eigenvalues cross the unit circle.
Choosing the negative sign gives that D = p−(

√
∆) and T = q−(

√
∆)

where

p−(t) =
1

27

(
5 + 9t+ 3t2 − t3

)
and q−(t) =

1

216

(
256 + 108t− 12t2 + t3

)
.

Note that

q−(t)− (1 + p−(t)) =
t(t− 2)2

24
,

for all t ≥ 0, which implies that

T ≥ 1 +D

for all a ≥ a+ so that the orbit is unstable. This completes the proof.

In particular, Propositions 1 and 4 imply that for ϕ = 2π/3 and 1
3
(3 +

4
√
2) < a < 3 the stable fixed point F2 coexists with the stable period-3

point P
(3)
+ . Figure 2.4 shows their basin of attraction for a = 2.886 and

a = 2.95. As the parameter a approaches the value aHNS = 3 the basin of
attraction of the fixed point becomes smaller.
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Figure 2.4. For ϕ = 2π/3 and 1
3
(3 + 4

√
2) < a < 3 a stable period-3 point

coexists with a fixed point. Top panels: the basins of attraction of the period-
3 point (left) and the fixed point (right) for a = 2.886. Bottom panels: the
same basins, but for a = 2.95. Note that the basin of the fixed point becomes
smaller as the parameter a approaches the value 3.

2.2.4 Critical manifolds

The critical manifold [43, 44] is an important tool in the study of non-
invertible maps. We define the set

LC−1 = {(x, y) ∈ R
2 : detDT (x, y) = 0} = {(x, y) ∈ R

2 : x = 0}.

29



The critical line (French: “ligne critique”) of the fold-and-twist map is defined
as

LC = Tϕ,a(LC−1) = {(x, y) ∈ R
2 : x cosϕ+ y sinϕ = 1

4
(a− 2)}.

The line LC separates the following regions in the plane:

Z0 = {(x, y) ∈ R
2 : x cosϕ+ y sinϕ > 1

4
(a− 2)},

Z2 = {(x, y) ∈ R
2 : x cosϕ+ y sinϕ < 1

4
(a− 2)}.

Points in Z0 have no preimage under T , and points in Z2 have two preimages
under T . In the terminology of Mira et al. [44] the fold-and-twist map T is
of Z0 − Z2 type. For all parameters (ϕ, a) the map remains of this type. In
particular, foliation bifurcations, as described in Mira’s book, do not occur.
The critical line LC and its iterates play an important role in the bifurcations
of basin boundaries and in bounding invariant regions.

2.3 The dynamics near Arnold tongues

In this section we numerically study the dynamics of the FAT in and outside
the Arnold tongues. We particularly focus on bifurcations of periodic points
and their basins and the geometrical structure of chaotic attractors. For
purposes of illustration we restrict the discussion to tongues of order 1:4, 1:5,
1:6, and 2:5, which have the largest size in the sense of Lebesgue measure.
Similar dynamics is expected to be found near the other tongues.

2.3.1 Basins of attraction of periodic points

In this section we study the geometry of the basins of attraction of stable
periodic points and the possible bifurcations of these basins. Unlike for dif-
feomorphisms, basins of attractions in noninvertible maps need not be simply
connected [44].

Basin bifurcations in the 1:6 tongue. Figure 2.5 shows magnifications
of the Lyapunov diagram of Figure 2.1 near the 1:6 resonance tongue. Within
this tongue a stable period-6 attractor exists. Figure 2.6 shows basins of
attraction of this attractor for ϕd = 62.70 and several values of a.
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For a = 3.35 the basin for each point along the period-6 orbit is discon-
nected. Indeed, the magnification in Figure 2.6 suggests that the basin for
each point consists of infinitely many components. We define the immediate
basin to be the largest connected component which contains the attracting
fixed point under T 6. For a = ac, with 3.36 < ac < 3.37, a contact bifurc-
ation between the critical line LC and the boundary of a basin takes place.
After this bifurcation the immediate basins become multiply connected as
they are filled with islands which are part of the basin of another fixed point.
As a increases the number of islands increases leading to a fractalization of
the basin boundaries.
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Figure 2.5. Left: magnification of Lyapunov diagram in Figure 2.1 near
the 1:6 resonance tongue. Right: magnification showing the overlap of the
1:6 and 1:7 tongues. See Table 2.1 for the colour coding.

Coexistence of period-6 and period-7 attractors. The parameter val-
ues (ϕd, a) = (62.7, 3.57) belong to both the 1:6 tongue and the 1:7 tongue,
see Figure 2.5. For these parameter values we detected a stable period-6
point (−0.368, 0.270) having complex Floquet multipliers −0.52± 0.45i and
a stable period-7 point (−0.423, 0.130) having real Floquet multipliers −0.16
and −0.91. Figure 2.7 shows the basin of attraction of each of these periodic
attractors. Observe that the basin of the period-7 point occupies a much
larger part of the (x, y)-plane than the basin of the period-6 point.
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Figure 2.6. Bifurcations of the basin of attraction of a period-6 attractor
for the parameter values ϕd = 62.7 and a = 3.35 (left) and a = 3.37 (right).
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Figure 2.7. For (ϕd, a) = (62.7, 3.57) the 1:6 and 1:7 Arnold tongues overlap
(see Figure 2.5) which leads to the coexistence of a period-6 and a period-7
attractor. The basin of the period-6 point (left) occupies a smaller fraction
of the (x, y)-plane than that of the period-7 point (right).

Coexistence of a period-6 and a chaotic attractor. The parameter
values (ϕd, a) = (62.83, 3.468) lie in a region of the parameter plane where
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a narrow “horn” with chaotic dynamics overlaps with the 1:6 tongue, see
Figure 2.5. A stable period-6 point (−0.370, 0.265) having complex Floquet
multipliers −0.53± 0.77i is detected, and its basin (left panel of Figure 2.8)
does not completely fill the region of no escape. With the initial condition
(0.193, 0.066) and 1000 transient iterations we also detect a strange attractor
(right panel of Figure 2.8). Hence, a stable period-6 point and a chaotic
attractor coexist for these parameter values.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

y

x

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3

y

x

Figure 2.8. For the parameter values (ϕd, a) = (62.83, 3.468) a period-6
attractor coexists with a chaotic attractor. Left panel: the basin of attractor
of the period-6 attractor. Right panel: the chaotic attractor.

2.3.2 Chaotic dynamics and Hénon-like attractors

Figure 2.1 suggests that chaotic attractors with one positive or two posit-
ive Lyapunov exponents occur for regions in (ϕ, a)-plane having positive Le-
besgue measure, and the question is how these attractors are formed. Moving
parameters through a resonance tongue typically leads to a cascade of period
doublings. We conjecture that strange attractors detected near the end of
this cascade are Hénon-like, which means that they are equal to the closure
of the unstable manifold of a saddle periodic point. Alternatively, a periodic
point may first bifurcate via a secondary Hopf–Nĕımark–Sacker bifurcation
leading to a new family of resonance tongues.
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Near the 2:5 tongue. The parameter values (ϕd, a) = (148, 3.3) belong
to the 2:5 resonance tongue. When ϕd = 148 is kept constant and a is in-
creased, a stable period-5 point bifurcates through a period doubling cascade
into a strange attractor, see Figure 2.9. Observe that the second Lyapunov
exponent becomes positive for a ≈ 3.5. In the chaotic range one can observe
periodic windows. In fact, they are conjectured to be dense, but this cannot
be visualized with the finite resolution of the numerical computations.

Figures 2.10–2.12 show orbits of the map T and their power spectra for
ϕd = 148 and three values of the parameter a. The power spectra show
dominant peaks at the frequencies f = 0.2 and f = 0.4. These frequencies
are inherited from the period-5 attractor having rotation number ρ = 0.4.
As a increases the peak at f = 0.2 becomes weaker. In addition, broadband
spectrum can be observed, which is typical for chaos.

At a ≈ 3.338 a stable period-5 point loses stability through a period
doubling bifurcation. The Lyapunov diagram in Figure 2.9 suggests that
this is followed by an infinite cascade of period doublings. By numerical
continuation we obtain a saddle period-5 point for the parameter values a ∈
{3.442, 3.48, 3.52}. Figures 2.10–2.12 show the unstable manifold computed
for these saddle points. They have a remarkable resemblance to the orbits
shown in the left panels. Hence, we conjecture that these attractors are in
fact the closure of the unstable manifold of a saddle periodic point. This is
akin to the classical Hénon map.

Strictly speaking, we must speak of an unstable set instead of an unstable
manifold. Since the map T is not a diffeomorphism the unstable set can have
self-intersections, and these can indeed be observed in Figures 2.10–2.12. The
book by Mira et al. [44] describe possible mechanisms behind the formation
of self-intersections of an unstable set of a saddle Z0 − Z2 maps. However,
these results do not apply to T as we are now speaking of the unstable
manifold of fixed points for T 5 which is no longer of type Z0 − Z2.

Near the 1:5 tongue. Figure 2.13 shows a Lyapunov diagram for ϕd =
72.5 as a function of the parameter a. At a ≈ 3.416 a stable period-5 point
(having rotation number ρ = 0.2) loses stability through a period doubling
bifurcation. Again an infinite cascade seems to take place afterwards. By
numerical continuation we detect a saddle period-5 point for a = 3.477. The
unstable manifold again is very similar to the strange attractor, see Figure
2.14.
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Figure 2.9. Bifurcation diagram for ϕd = 148 and varying a. Top: Lya-
punov exponents; a grey line indicating a zero LE has been added for clarity.
Bottom: x-coordinates of the attractor.

Note that the periodic point in the 1:5 tongue can also have complex
Floquet multipliers Hence, it can also bifurcate through a secondary Hopf–
Nĕımark–Sacker bifurcation, which leads to a new family of resonance tongues.
This indeed happens, as is illustrated in the Lyapunov diagram of Figure 2.15.
Also near these new tongues period doubling bifurcations take place. Hence,
we can expect Hénon-like strange attractors in those regions of the parameter
plane.

Near the 1:4 tongue. At (ϕd, a) = (91.5, 3.) a stable period-4 point loses
stability through a period doubling bifurcation. Again a cascade follows
(Lyapunov diagram not shown). For a = 3.54 a strange attractor is detected,
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Figure 2.10. An attractor detected for (ϕd, a) = (148, 3.442) and its power
spectrum. For these parameter values a period-5 point of saddle type exists
and its unstable set shows a remarkable resemblance to the attractor.

see Figure 2.16. This case is different from the previous ones: now it is not
the period-4 point turning into a saddle. Indeed, the power spectrum of
the attractor shows dominant peaks at the frequencies f = 0.125, f = 0.25,
and f = 0.375. For the parameter value a = 3.54 no saddle period-4 point
is detected. However, a saddle period-8 point does exist, and its unstable
manifold resembles the attractor.
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Figure 2.11. As Figure 2.10, but for (ϕd, a) = (148, 3.48).

For ϕd = 90 the map Tϕ,a is given by

Tϕ,a(x, y) =

(
−y
f(x)

)
⇒ T

2
ϕ,a(x, y) =

(
−f(x)
f(y)

)
,

so that T 2 just gives the iterates of the quadratic map f in both the x- and
y-directions. For a sufficiently large the quadratic map has a chaotic orbit,
and this leads, again via a period doubling cascade, to chaotic sets with two
positive Lyapunov exponents. Some examples are shown in Figure 2.17.
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Figure 2.12. As Figure 2.10, but for (ϕd, a) = (148, 3.52).

2.4 Discussion

In this Chapter we have studied the dynamics of a planar endomorphism
which is composed of a fold and a rigid rotation.

We have proven analytically the existence of a Hopf–Nĕımark–Sacker bi-
furcation, which gives rise to Arnold tongues in the parameter plane of the
map. Inside an Arnold tongue a periodic attractor typically either undergoes
a period doubling cascade, which leads to chaotic dynamics, or a another
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Figure 2.13. Bifurcation diagram for ϕd = 72.5 and varying a. Top: Lya-
punov exponents; a grey line indicating a zero LE has been added for clarity.
Bottom: x-coordinates of the attractor.

Hopf–Nĕımark–Sacker bifurcation, which in turn leads to a new family of
Arnold tongues.

Our numerical experiments suggest that the map Tϕ,a has attractors of
Hénon-like type, i.e., attractors formed by the closure of an unstable set
of a periodic point of saddle type. The Lyapunov diagram of Figure 2.1
suggests that these attractors occur within sets of positive measure in the
(ϕ, a)-plane. However, a fundamental difference with Hénon-like observed in
diffeomorphisms is that the attractors in this Chapter have a folded structure
which is caused by the existence of (the iterates) of the critical line which
divides the plane in regions for which the map Tϕ,a has a different number
of preimages. In particular, the unstable set of a saddle periodic point can
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Figure 2.14. As Figure 2.10, but for (ϕd, a) = (72.5, 3.477).

have self-intersections, which is not possible in diffeomorphisms.

An open question, which warrants further research, is whether the ex-
istence of Hénon-like strange attractors in endomorphisms can be rigorously
proved. The current literature does provide existence proofs for some classes
of diffeomorphisms, and essentially they are all obtained by perturbations of
1-dimensional maps [21, 45, 54]. Adapting the arguments to the setting of
the map T could be a direction for future research. Apart from the existence
question it is also important to investigate the prevalence of such attractors
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Figure 2.15. Top: magnification of Lyapunov diagram in Figure 2.1 near
the 1 : 5 resonance tongue. Bottom: magnification of the top panel. See
Table 2.1 for the colour coding.

in parameter space.
Another open question is what bifurcation sequences lead to the form-

ation of chaotic sets with two positive Lyapunov exponents and how they
can be characterized geometrically. Numerical evidence suggests that these
attractors occur within sets of positive measure in the parameter plane. For
ϕ = π/2 the second iterate of the map Tϕ,a is just given by decoupled iter-
ates of the logistic map in the x and y components, which implies that the
attractor is simply the Cartesian product of two cantor sets. However, for
ϕ �= π/2 the structure might be different.
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Figure 2.16. As Figure 2.10, but for (ϕd, a) = (91.5, 3.54).
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Figure 2.17. Chaotic sets with two positive Lyapunov exponents for ϕd =
90.
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Chapter 3

Dynamics near folding and

twisting

3.1 Introduction

In this Chapter we compare the dynamics of three planar, non-invertible
maps which all rotate and fold the plane. Two of these maps are related to
phenomena in biology and physics, whereas the the third map is constructed
to serve as a toy model for the other two maps.

A predator-prey model. Consider the following planar map

P :

(
x
y

)
�→

(
ax(1− x− y)

bxy

)
. (3.1)

This map is a simplification of the predator-prey model studied in [6]; also
see [44] and references therein. In this Chapter we restrict to the parameter
range 1 < a < 5 and b > 5/2.

The map P is not invertible. Indeed, in the region defined by ab −
4bx − 4ay > 0 the map P has two preimages. Moreover, this map has a
fixed point (1

b
, 1− 1

a
− 1

b
), which has complex eigenvalues for the parameters

b > (a +
√
a)/(2a − 2). Hence, the map P rotates points near this fixed

point.
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A discretized Lorenz-63 model. Our second example arises from the
classical Lorenz-63 model [37, 38] for Rayleigh-Bénard convection:

dx

dt
= −σ(x− y),

dy

dt
= ρx− y − xz,

dz

dt
= −βz + xy.

Taking the limit σ → ∞ and replacing x with y gives a system of two
differential equations:

dy

dt
= (ρ− 1)y − yz,

dz

dt
= −βz + y2.

In what follows, we will relabel the variables (y, z) as (x, y) again. In this
2-dimensional system we can assume without loss of generality that β = 1
by a suitable rescaling (but note that this property does not hold for the
3-dimensional system). After discretizing these equations by means of a
forward Euler scheme with time step τ we obtain the map

L :

(
x
y

)
�→

(
(1 + ατ)x− τxy
(1− τ)y + τx2

)
, (3.2)

where α = ρ − 1. In this Chapter, we restrict to the parameter range 0 <
α < 1 and 0 < τ < 4.

First note, that the map L is noninvertible. The curve defined by the
equation

4τ(y − cb)3 = 27c2x2, c = 1− τ, b = (1 + ατ)/τ,

separates two regions in the plane in which the map has either one or three
preimages. In addition, the map has a fixed point (±√

α, α) of which the
eigenvalues are complex for α > 1

8
, see Proposition 6.

The fold-and-twist map. The maps P and L rotate points and fold the
plane. Our aim is to study the combination of these effects in a map that is
as simple as possible. To that end, we first define the map

F :

(
x
y

)
�→

(
f(x)
y

)
,

where f : R → R is a continuous two-to-one map. Observe that F maps
vertical lines onto vertical lines. In the following we will take

f(x) = 1
4
(a− 2)− ax2
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which is conjugate to the logistic family g(x) = ax(1 − x). Indeed, for
ψ(x) = x − 1

2
we have that f ◦ ψ = ψ ◦ g. Hence, we will restrict to the

parameter range a ∈ [0, 4]. Next, we consider a rigid rotation around the
origin given by

R :

(
x
y

)
�→

(
x cosϕ− y sinϕ
x sinϕ+ y cosϕ

)
.

The “fold-and-twist map” T is defined as the composition

T = R ◦ F :

(
x
y

)
�→

(
f(x) cosϕ− y sinϕ
f(x) sinϕ+ y cosϕ

)
. (3.3)

The angle ϕ is measured in radians. However, for numerically obtained res-
ults values are reported in degrees, which is indicated by means of a subscript:
ϕd = 180ϕ/π. It is easy to verify that the maps Tϕ,a and T2π−ϕ,a are con-
jugate via Ψ(x, y) = (x,−y). In particular, the bifurcation diagram in the
(ϕ, a)-plane is symmetric with respect to the line ϕ = π. Therefore, it suffices
to study the family Tϕ,a for 0 ≤ ϕ ≤ π.

The dynamical properties of the map T were explored in [26]. The
advantage of the map T is that the folding and twisting can be controlled
separately using the parameters a and ϕ, and the idea of this Chapter is that
the map T may serve as a “guide” to study and explain phenomena in the
maps P and L .

3.2 Overview of the dynamics

The Lyapunov diagrams in Figures 3.1–3.3 show a classification of the dy-
namical behavior of the maps P, L , and T in different regions of their
parameter planes. See Appendix B.1 for a description of the algorithm used
to compute Lyapunov exponents. Note that the three diagrams have a very
similar geometric organization. In particular, one can observe a prevalence
of periodic dynamics and chaotic dynamics. In all three diagrams one can
observe tongue-shaped regions emanating along a curve. This suggests the
presence of a Hopf–Nĕımark–Sacker bifurcation. Propositions 5–7 in Section
3.3.1 confirm that this is indeed the case.

The Lyapunov diagrams also suggest that chaotic attractors with one or
two positive Lyapunov exponents occur for regions in the parameter plane
with positive Lebesgue measure, and the question is how these attractors are
formed and what their geometric structure is. Numerical evidence suggest
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Color Lyapunov exponents Attractor type
cyan 0 > λ1 > λ2 periodic point of node type
blue 0 > λ1 = λ2 periodic point of focus type
green 0 = λ1 > λ2 invariant circle
red λ1 > 0 ≥ λ2 chaotic attractor
black λ1 ≥ λ2 > 0 chaotic attractor
white no attractor detected

Table 3.1. Color coding for the Lyapunov diagram of Figures 3.1, 3.2, and
3.3. The diagrams suggest that periodic attractors and chaotic attractors with
1 or 2 positive Lyapunov exponents occur for regions in the parameter plane
with positive Lebesgue measure.

that strange attractors having one positive Lyapunov exponent are of Hénon-
like type, i.e., they are formed by the closure of the unstable manifold of a
periodic point of saddle type. However, unlike in diffeomorphisms, these
attractors have a folded structure in our maps.

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 2  2.5  3  3.5  4

b

a

Figure 3.1. Lyapunov diagram of attractors for the map P as a function
of the parameters a and b. For the color coding see Table 3.1.
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Figure 3.2. As Figure 3.1, but for the map L .

3.3 Twisting and (quasi-)periodic dynamics

In this section we discuss periodic and quasi-periodic dynamics of the maps
P, L , and T . The Lyapunov diagrams already indicate that these type of
dynamics occur in large regions of the parameter plane.

3.3.1 The Hopf-Nĕımark-Sacker bifurcation

The following three results confirm what is already suggested by the Lya-
punov diagrams of Figures 3.1–3.3: along a curve in the parameter plane a
stable fixed point bifurcates through a Hopf-Nĕımark-Sacker (HNS) bifurca-
tion.

Proposition 5 (HNS bifurcation of the predator-prey map). The predator-
prey map P has a fixed point (1

b
, 1− 1

a
− 1

b
) which is stable if and only if

1 < a < 9 and max

{
a

a− 1
,

3a

a + 3

}
< b <

2a

a− 1
.

Along the curve b = 2a/(a− 1) the fixed point loses stability through a super-
critical HNS bifurcation and gives birth to a unique stable, closed invariant
circle. The strong resonances are located at the values a ∈ {1, 5, 7, 9}.
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Figure 3.3. As Figure 3.1, but for the map T .

Proof. Evaluating the Jacobian matrix of the map P at the fixed point
(1
b
, 1− 1

a
− 1

b
) gives

J =

(
1− a/b −a/b

b− b/a− 1 1

)
,

which implies that det(J) = a − 2a/b and tr(J) = 2 − a/b. From equation
(A.1) it follows that the fixed point is stable if and only if the inequalities

1 < a < 9 and max

{
a

a− 1
,

3a

a+ 3

}
< b <

2a

a− 1

are satisfied. Along the curve b = 2a/(a−1) the fixed point loses stability as
a complex conjugate pair of eigenvalues crosses the unit circle with nonzero
speed. At the HNS bifurcation the eigenvalues are given by

λ± =
5− a± i

√
16− (5− a)2

4
= e±iθ where tan θ =

√
16− (5− a)2

5− a
.

(3.4)
Strong resonances occur when λ± = 1 (1:1 resonance), λ± = −1 (1:2 reson-
ance), λ± = −1

2
± 1

2

√
3i (1:3 resonance), and λ = ±i (1:4 resonance). From

equation (3.4) it follows that these values of λ± are attained at a = 1, a = 9,
a = 7 and a = 5, respectively.
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We use equation (A.5) with a22 = 1, a21 = 1, and a12 = (1 − a)/2.
Computations with the computer algebra package Mathematica [58] then
gives the following normal form coefficients:

h20 =
−4a+ 8aeiθ − 8ae2iθ + 4ae3iθ

−3 + a+ 4eiθ − 2e2iθ
,

h11 =
−4a+ 10aeiθ − 8ae2iθ + 2ae3iθ

(3− a)eiθ − 4e2iθ + 2e3iθ
,

h02 =
8a− 12ae−iθ + 4ae−2iθ

3− a− 4eiθ + 2e2iθ
,

h21 = 0.

The expression of the first Lyapunov coefficient is rather complicated and
will therefore be omitted. Figure 3.4 shows a graph of ℓ1 as a function of the
parameter a. Indeed, ℓ1 < 0 for 1 < a < 9. This completes the proof.
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Figure 3.4. Lyapunov coefficient as a function of the parameter a for the
HNS bifurcation of the map P.

Proposition 6 (HNS bifurcation of the Lorenz map). The Lorenz map L

has two fixed points (±√
α, α) which are stable when

α > 0 and 0 < τ < min

{
1−

√
1− 8α

2α
,
1

2α

}
.
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Figure 3.5. Lyapunov coefficient as a function of the parameter α for the
HNS bifurcation of the map L .

Along the curve τ = 1/2α both fixed points lose stability through a supercrit-
ical HNS bifurcation which gives birth to a pair of coexisting stable invariant
circles. The strong resonances are located at the values α ∈ {1

4
, 1
6
, 1
8
}.

Proof. Evaluating the Jacobian matrix of the map L at the fixed points
(±√

α, α) is given by

J =

(
1 ∓τ

√
α

±2τ
√
α 1− τ

)
,

which implies that det(J) = 1− τ + 2ατ 2 and tr(J) = 2− τ . From equation
(A.1) it follows that a sufficient condition for stability of the fixed points is
given by

α > 0 and 0 < τ < min

{
1−

√
1− 8α

2α
,
1

2α

}
.

Along the curve τ = (1 −
√
1− 8α)/2α the fixed points lose stability as

one eigenvalue passes −1. The eigenvalues become complex along the line
α = 1

8
. Along the curve τ = 1/2α, where α > 1

8
, the fixed points lose stability

through a complex conjugate pair of eigenvalues crossing the unit circle with
nonzero speed. At the HNS bifurcation the eigenvalues are given by

λ± =
4α− 1± i

√
8α− 1

4α
= e±iθ where tan θ =

√
8α− 1

4α− 1
. (3.5)
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Strong resonances occur when eigenvalues λ± = 1 (1:1 resonance), λ± = −1
(1:2 resonance), λ± = −1

2
± 1

2

√
3i (1:3 resonance), and λ = ±i (1:4 resonance).

From equation (3.5) it follows that the 1:1 resonance does not occur. The
remaning strong resonances occur for the values α = 1

8
, α = 1

6
, and α = 1

4
,

respectively.
We use equation (A.4) with a11 = 1, a12 = −1/2

√
α, and a21 = 1/

√
α.

Computations with the computer algebra package Mathematica then gives
the following normal form coefficients:

h20 =
−3 + 3eiθ

−2α + 4α2 − 8α2eiθ + 4α2e2iθ
,

h11 =
−3 + e−iθ + 2eiθ

−2α + 4α2 − 8α2eiθ + 4α2e2iθ
,

h02 =
−3 + 2e−iθ + eiθ

−2α + 4α2 − 8α2eiθ + 4α2e2iθ
,

h21 = 0.

The expression of the first Lyapunov coefficient is rather complicated and
will therefore be omitted. Figure 3.5 shows a graph of ℓ1 as a function of the
parameter α. Indeed, ℓ1 < 0 for 1

8
< α. This completes the proof.

Proposition 7 (HNS bifurcation of the fold-and-twist map). For 0 < ϕ < 2π
the map T has a fixed point (2−a

2a
,−2−a

2a
cot 1

2
ϕ) which loses stability through

a supercritical HNS bifurcation along the line a = 3 and gives birth to a
unique stable, closed invariant circle. The strong resonances are located at
the values ϕ ∈ {π/2, 2π/3, π}.
Proof. Evaluating the Jacobian matrix of the map T at the fixed point
(2−a

2a
,−2−a

2a
cot 1

2
ϕ) gives the matrix

J =

(
(a− 2) cosϕ − sinϕ
(a− 2) sinϕ cosϕ

)
,

which implies that det(J) = a− 2 and tr(J) = (a− 1) cosϕ. From equation
(A.1) it follows that the fixed point is stable if and only if 1 < a < 3.
Along the line a = 3 the fixed point loses stability as a complex conjugate
pair of eigenvalues crosses the unit circle with nonzero speed. At the HNS
bifurcation the eigenvalues are simply given by λ± = e±iϕ. It immediately
follows that the strong resonances occur for ϕ ∈ {π/2, 2π/3, π}.

53



We use equation (A.4) with a11 = cosϕ, a12 = − sinϕ, and a21 = sinϕ.
Computations with the computer algebra package Mathematica then gives
the following normal form coefficients:

h20 = 3eiϕ sinϕ, h11 = 3eiϕ sinϕ, h02 = 3eiϕ sinϕ, h21 = 0,

so that the first Lyapunov coefficient is given by

ℓ1 = −27

2
sin2 ϕ.

Clearly, ℓ1 < 0 for 0 < ϕ < π. This completes the proof.

Along each HNS bifurcation curve the eigenvalues of a fixed point are
of the form e±iθ. At points where θ = p/q is rational so-called resonance
tongues of order p:q emanate. These are indeed clearly visible in the Lya-
punov diagrams of Figures 3.1–3.3. The boundaries of these tongues are
formed by two saddle-node bifurcations, and for parameter values within a
tongue a stable periodic point coexists with a saddle periodic point. The
unstable manifold of the saddle periodic point forms an invariant circle. For
the 1:5 resonance tongue of the map P such an invariant circle is shown in
Figure 3.6. The invariant circles of the maps L and T are qualitatively sim-
ilar and hence not shown. The points along the bifurcation curve for which
θ ∈ {2π, π, 2π/3, π/2} are so-called strong resonances. For such parameter
values more than one closed invariant curve can appear, or such a curve may
not exist at all [34].

Upon parameter variation, the invariant circle can be destroyed by homo-
clinic tangencies between the stable and unstable manifolds of the unstable
periodic point, or the circle can interact with other objects via heteroclinic
tangencies. This scenario will not be considered in the present work, but
see [11, 12] for an extensive discussion. Instead, we will focus on chaotic
dynamics arising through bifurcations of the periodic points in the resonance
tongues.

3.4 Folding and chaotic dynamics

In this section we discuss the implications of the non-invertible nature of the
three maps. We will discuss Hénon-like attractors and their folded structure.
In addition, we discuss the existence of snap-back repellers which is also a
consequence of non-invertibility.
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Figure 3.6. Invariant circle in the 1:5 resonance tongue of the map P with
(a, b) = (3.9, 2.9) formed by the unstable manifolds of the saddle period-5
points (squares). The stable period-5 points are indicated by circles.

3.4.1 Critical lines

An important tool in the study of non-invertible planar maps is the so-called
critical manifold [43, 44]. For a smooth map F : R2 → R2 we define the set

LC−1 = {(x, y) ∈ R
2 : detDF (x, y) = 0}.

The critical line LC (in French: “ligne critique”) is then defined as the im-
age of LC−1 under the map F . The critical line LC and its iterates play an
important role in the bifurcations of basin boundaries and in bounding invari-
ant regions. The critical line for the maps studied in this work are given by
the following propositions. These results follow in a straightforward manner
from the definitions given above, and therefore their proofs are omitted.

Proposition 8 (Critical line of the predator-prey map). For the map P the
critical line and its inverse image are given by the equations

LC−1 : x = 1
2
,

LC : bx+ ay = 1
4
ab.
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Proposition 9 (Critical line of the Lorenz map). For the map L with τ > 0
and τ �= 1 the critical line and its inverse image are given by the equations

LC−1 : y =
1 + ατ

τ
+

2τx2

1− τ
,

LC :

(
y − (1− τ)(1 + ατ)

τ

)3

=
27(1− τ)2x2

4τ
.

If τ = 1 then LC−1 is given by the line x = 0 so that LC reduces to the single
point (0, 0).

Proposition 10 (Critical line of the fold-and-twist map). For the map T

the critical line and its inverse image are given by the equations

LC−1 : x = 0,

LC : x cosϕ + y sinϕ = 1
4
(a− 2).

Now consider any smooth, noninvertible map F : R2 → R2. Under
general conditions the set LC−1 is a smooth curve in R

2. A sufficient con-
dition for this is, for example, that 0 is a regular value of the map (x, y) �→
detDF (x, y). This is indeed the case for the maps P, L , and T . Assume
that LC−1 is parameterized with λ : I → R2, where I is an open interval
around 0. Now let γ : I → R2 be any other smooth curve that intersects the
curve LC−1 = λ. Without loss of generality we may assume that γ(0) = λ(0).
The vectors γ′(0) and λ′(0) are the tangent vectors to the curves γ and λ at
their point of intersection.

The image F (λ) is by definition the critical line LC. Note that the image
F (γ) may have self-intersections due to the noninvertibility of F . Away
from such self-intersections F (γ) is again a smooth curve which intersects the
critical line LC at the point F (γ(0)) = F (λ(0)). The tangent vectors at this
point are given by DF (γ(0))γ ′(0) and DF (λ(0))λ′(0). Since γ(0) = λ(0) ∈
LC−1 it follows that the matrix DF (γ(0)) has rank 1 which means that the
vectors DF (γ(0))γ ′(0) and DF (λ(0))λ′(0) are parallel. This implies that
the curve F (γ) is tangent to LC at F (γ(0)). An exception to this situation
is when the vector γ′(0) belongs to the null space of DF (γ(0)) in which case
F (γ) has a cusp point intersection with LC. These two cases are illustrated
for the fold-and-twist map T with (a, ϕ) = (3.2, 2π/5) in Figures 3.7 and
3.8.
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Figure 3.7. The curve γ(t) = (t, t3) intersects the line LC−1. Its image
intersects the line LC in a cusp.

3.4.2 Routes to chaos and Hénon-like attractors

In this section we investigate the routes to chaos and the structure of chaotic
attractors for the three maps. The discussion will be restricted to resonance
tongues of order 1:4, 1:5, and 2:5 since these tongues are the largest in the
parameter plane in the sense of Lebesgue measure. Near other tongues we
expect similar dynamical behavior.

Near a HNS bifurcation a resonance tongue contains a pair of stable and
unstable periodic points. The stable periodic point is either a node (real
eigenvalues) or a focus (complex eigenvalues). Periodic points of focus type
typically bifurcate through a secondary HNS bifurcation, which leads to a
new set of resonance tongues. The newly created periodic points in these
secondary tongues can undergo period-doubling bifurcations or HNS bifurc-
ations. For this reason we restrict the discussion to the primary resonance
tongues in which the stable periodic point is a node.

The periodic points of node type typically undergo a period-doubling
cascade upon parameter variation. This is illustrated by means of Lyapunov
diagrams for the maps P, L , and T in Figures 3.9–3.11. Period doubling
cascades lead to the creation of infinitely many unstable periodic points.
These points play a key role in the formation of chaotic attractors in two
different ways. One scenario is that a periodic point of source type becomes
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Figure 3.8. The curve γ(t) = (t, t(t + 1
2
)(t, (t − 1

2
)) intersects the line

LC−1. Its image is tangent to LC. Note that the image of γ also has a
self-intersection.

a so-called snap-back repeller, which provides a sufficient condition for chaotic
dynamics. We will discuss snap-back repellers in more detail in Section 3.4.3.

Another scenario is that a periodic point of saddle type has an unstable
manifold which shows a strong resemblance to the chaotic attractor observed
for the same parameter values. Such attractors will be referred to as Hénon-
like attractors. Numerical evidence of Hénon-like attractors for the maps
P (in the 1:5 tongue), L (in the 1:4 tongue), and T (in the 2:5 tongue) is
presented in Figures 3.12–3.14. Each figure shows a chaotic attractor together
with the unstable manifold of a saddle periodic point. Due to the striking
resemblance we conjecture that each chaotic attractor shown is in fact the
closure of an unstable manifold of the saddle point.

Note that strictly speaking, we must speak of an “unstable set” instead
of an “unstable manifold”. Indeed, since the maps P, L , and T are not
diffeomorphisms the unstable set can have self-intersections which are in-
deed clearly visible in the aforementioned figures. An explanation of this
phenomenon is already provided in Section 3.4.1 where it is shown that the
image of any curve under a noninvertible map may have self-intersections.
Figure 3.15 shows a close up of the Hénon-like attractor of Figure 3.12 to-
gether with iterates of the critical line LC. Clearly, the unstable manifolds
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Figure 3.9. Left panel: 1:5 resonance tongue of P in the (a, b)-plane. Right
panel: Lyapunov exponents as a function of the parameter b while keeping the
parameter a = 3.85 fixed.

forms tangencies along the iterates of LC. Observe that LC is described by
a linear equation and its iterate is an algebraic curve of degree 2. Therefore,
the n-th iterate of LC is an algebraic curve of degree 2n. Hence, iterates of
LC become very complex and so do the foldings of the unstable manifolds.

3.4.3 Snap-back repellers

In his 1989 paper, in which the map L was introduced, Lorenz [38] pointed
out the following sufficient condition for a non-invertible map to exhibit sens-
itive dependence on initial conditions: if the map has an attractor containing
two distinct points which are mapped to the same point, then the map ex-
hibits sensitive dependence on initial conditions. Lorenz only provided a
heuristic argument and suggested that his observation is part of mathem-
atical folklore. However, already in 1978 Marotto [39] proved a theorem in
this spirit that provides a sufficient condition for chaotic dynamics of multi-
dimensional maps. In what follows �·� denotes the standard Euclidean norm
on R

n and Br(p) := {x ∈ R
n : �x−p� ≤ r} denotes a closed ball with radius

r around the point p.

Definition 2 (Marotto [39, 41]). Let F : Rn → Rn be a differentiable map.
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Figure 3.10. As Figure 3.9, but for the 1:4 resonance tongue of the map
L . In the right panel the parameter α = 0.28 is kept fixed.

A fixed point p of F is called a snap-back repeller if the following two con-
ditions are satisfied:

(i) the fixed point p is expanding, which means that there exists an r > 0
such that the eigenvalues of DF (x) exceed 1 in absolute value for all
x ∈ Br(p);

(ii) there exists a point x0 ∈ Br(p) with x0 �= p and m ∈ N such that xm = p
and det(DF (xk)) �= 0 for all 1 ≤ k ≤ m where xk = F k(x0).

Theorem 1 (Marotto [39]). If F : Rn → Rn has a snap-back repeller, then
F is chaotic in the sense of Marotto. That is, there exist

(i) N ∈ N such that for each p ≥ N the map F has a periodic point of
period p;

(ii) a scrambled set for F , i.e., an uncountable set S containing no periodic
points such that

(a) F (S) ⊂ S,

(b) for every x, y ∈ S with x �= y we have

lim sup
k→∞

�F k(x)− F
k(y)� > 0,
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Figure 3.11. As Figure 3.9, but for the 2:5 resonance tongue of the map
T . In the right panel the parameter ϕd = 148 is kept fixed.

(c) for every x ∈ S and any periodic point y we have

lim sup
k→∞

�F k(x)− F
k(y)� > 0,

(d) an uncountable subset S0 of S such that for every x, y ∈ S0 we
have

lim inf
k→∞

�F k(x)− F
k(y)� = 0.

Of course, invertible maps cannot have snap-back repellers. For these
maps the occurrence of chaotic dynamics is often proved via the existence
of bifurcations that lead to homoclinic tangencies of stable and unstable
manifolds of periodic points of saddle type, see Palis and Takens [46] for
a general account. Marotto’s theorem provides a sufficient condition for
chaotic dynamics of non-invertible maps based on expanding periodic points
and circumvents the computation of stable and unstable manifolds and their
intersections. In this sense proving the occurrence of chaotic dynamics for
noninvertible maps is easier than for invertible maps. Note that the existence
of a snap-back repeller does not reveal the structure of a chaotic attractor.
Below we will give numerical evidence of a snap-back repeller that coexists
with a saddle periodic point giving rise to a Hénon-like attractor.
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Figure 3.12. A chaotic attractor of the map P for (a, b) = (3.85, 3.2) (left
panel) and the unstable manifold of a saddle period-5 point (right panel).

The following theorem, of which the proof is based on the implicit function
theorem, will be useful to prove the existence of snap-back repellers for a
range of parameters of the fold-and-twist map T .

Theorem 2 (Li & Lyu [35]). Denote by � · � and � · �op the Euclidean norm
and the induced operator norm, respectively. Let F : Rn → R

n be a C1

map with a snap-back repeller. If G : Rn → Rn is a C1 map such that
�F − G � + �DF − DG �op is sufficiently small, then G has a snap-back
repeller.

The concept of snap-back repellers is not new, but it is still the subject
of intensive study. Some works that appeared in the last ten years are [19,
47, 48, 49, 50, 59, 60]. Note that differentiability of the map is an essential
condition for Theorem 1, but see [24, 25] for results which do not require
smoothness.

3.4.3.1 Existence of snap-back repellers for the map T

In this section we prove the existence of snap-back repellers for the map T

in the special case ϕ = π/2. First note that for this parameter value the
periodic point born at the HNS bifurcation described in Proposition 7 can
be computed explicitly.
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Figure 3.13. As Figure 3.12, but for the map L with (α, τ) = (0.28, 2.25).

Proposition 11. For ϕ = π/2 and a > 3 the fold-and-twist map T has
three period-4 points which are given by (−p1, p3), (−p2, p3), and (−p4, p4),
where

p1 = −1

2
, p2 =

a− 2

2a
, p3 =

1 +
√

(a− 3)(a+ 1)

2a
, p4 =

1−
√

(a− 3)(a+ 1)

2a
.

The points (−p1, p3) and (−p2, p3) are unstable. The point (−p4, p4) is stable
for 3 < a < 1+

√
6, but loses stability at a = 1+

√
6 as two Floquet multipliers

pass through −1. At a = 3 all three period-4 points coalesce with a fixed point.

Proof. Recall that f(x) = 1
4
(a − 2) − ax2. For ϕ = π/2 we have T (x, y) =

(−y, f(x)) so that T 4(x, y) = (−f 2(x), f 2(y)). Hence, (x, y) is a period-4
point of T if and only if −x and y are fixed points of f 2. For 3 < a < 4
the fixed points for f 2 are given by p1, . . . , p4. This implies that there are
16 candidates for a period-4 point of T which are given by (−pi, pj) for
1 ≤ i, j ≤ 4. Straightforward computations show that:

• (−p1, p1) and (−p2, p2) are unstable fixed points;

• (−p1, p2) �→ (−p2, p1) is an unstable period-2 orbit;

• (−p1, p3) �→ (−p3, p1) �→ (−p1, p4) �→ (−p4, p1) is a period-4 orbit;
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Figure 3.14. As Figure 3.12, but for the map T with (a, ϕd) = (3.43, 148).

• (−p2, p3) �→ (−p3, p2) �→ (−p2, p4) �→ (−p4, p2) is a period-4 orbit;

• (−p4, p4) �→ (−p4, p3) �→ (−p3, p3) �→ (−p3, p4) is a period-4 orbit.

This exhausts all period-4 orbits. The Floquet multipliers of a period-4 point
(−pi, pj) are given by λ1 = 4a2pif(pi) and λ2 = 4a2pjf(pj). This implies the
following conclusions:

• (−p1, p3) has Floquet multipliers λ1 = a2 and λ2 = 1− (a− 3)(a+ 1),
and since a > 3 this point is unstable;

• (−p2, p3) has Floquet multipliers λ1 = (2−a)2 and λ2 = 1−(a−3)(a+1),
and since a > 3 this point is unstable;

• (−p4, p4) has Floquet multipliers λ1 = λ2 = 1 − (a − 3)(a + 1). Note
that |λ1,2| < 1 for 3 < a < 1 +

√
6, and at a = 1+

√
6 both multipliers

pass through −1.

This completes the proof.

We now prove that p4 is a snap-back repeller for f 2 when a = 4. Next,
we use this result to show that (−p4, p4) is a snap-back repeller for T 4.

Lemma 3. For 1+
√
6 < a ≤ 4 the point p =

(
1−

√
(a+ 1)(a− 3)

)
/2a is an

expanding fixed point of the second iterate of the map f(x) = 1
4
(a− 2)− ax2.
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Figure 3.15. Close up of the Hénon-like attractor of Figure 3.12 together
with some iterates of the critical line LC (in blue).

Proof. Let g = f 2, then g(p) = p. Note that g′(x) = −4a3x3 + a2(a − 2)x
has a local minimum at m = −

√
(a− 2)/12a. It is straightforward to verify

that g′(m) is a decreasing function of a and that g′(m) = −1 for a = 3.
Since g′(−1

2
) = a2 > 0 and g′(0) = 0 it follows from the intermediate value

theorem that for a > 3 there exist numbers −1
2
< ξ < m < η < 0 such that

g′(x) = −1 for x = ξ and x = η. Hence, g′(x) < −1 for all x ∈ U := (ξ, η).
For a = 1 +

√
6 we have that p = ξ = (1−

√
2)/(2 + 2

√
6) so that the point

p lies on the boundary of U . For 1 +
√
6 < a ≤ 4 the point p is contained

in U . In this case the ball Br(p) with r < min{|p− ξ|, |p− η|} is a repelling
neighborhood of p.

Lemma 4. For a = 4 the second iterate of the map f(x) = 1
4
(a − 2) − ax2

has a snap-back repeller.

Proof. Let a = 4 and define g(x) = f 2(x) = −1
2
+ 16x2 − 64x4. Lemma 3

shows that p = (1 −
√
5)/8 is an expanding fixed point of g. Hence, there

exists r > 0 such that |g′(x)| > 1 for all x ∈ Br(p). Set x1 = −p so that
g(x1) = p. Consider the sequence xk+1 = h(xk) where

h(x) = −1
4

√
2−

√
2− 4x
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is one of the four branches of the multi-valued inverse of g. Since h is strictly
decreasing we have that I := h([−1

2
, 1
2
]) = [− 1

2
√
2
, 0]. Note that h maps I

into itself so that xk ∈ I for all k ≥ 2. Since |h′(x)| < 1 for all x ∈ I the
mean value theorem shows that h : I → I is a contractive mapping. Since
p ∈ I is a fixed point of h it follows that xk → p as k → ∞. Hence, for
m ∈ N sufficiently large we have xm ∈ Br(p) and gm(xm) = p. First note
that g′(x1) = g′(−p) = 4, and then observe that for k ≥ 2 the points xk lie
in the interior of the interval I and g′(x) is only zero at the boundary points
of I. Therefore, g′(xi) �= 0 for all i = 1, . . . , m.

Proposition 12. Let ǫ > 0 be sufficiently small. For 4 − ǫ < a ≤ 4 and
π/2− ǫ < ϕ < π/2 + ǫ the fourth iterate of the fold-and-twist map T has a
snap-back repeller.

Proof. Note that for ϕ = π/2 we have T (x, y) = (−y, f(x)) so that T 4(x, y) =
(−f 2(x), f 2(y)). Lemma 4 shows that f 2 has a snap-back repeller p in some
repelling neighbourhood (p − r, p + r) for a = 4. It is straightforward to
check that (−p, p) in the neighbourhood Br((−p, p)) is a snap-back repeller
for T 4 for (a, ϕ) = (4, π/2). Applying the persistence result of Theorem 2
completes the proof.

3.4.3.2 Numerical evidence of snap-back repellers

In theory the conditions for a snap-back repeller are easy to verify since
the computation of invariant manifolds is circumvented. However, rigorous
proofs for the existence of a snap-back repeller are only possible in cases
for which the “return time” m in Definition 2 is relatively small. Indeed, if
F : Rd → Rd is a k-to-1 map, then the number of preimages of a fixed point
under Fm is km. Therefore, the explicit computation of preimages is only
possible for small values of m. In general, it can be expected that when the
radius of the repelling neighborhood decreases, a larger number of preimages
may be needed in order to return to the neighborhood of the periodic point.
Figure 3.16 illustrates this phenomenon for the map T .

The three maps P, L , and T all have a fixed point which becomes
a source through the HNS bifurcation described in Section 3.3.1. The nu-
merical evidence presented in Figures 3.17-3.19 suggests that for suitable
choices of the parameter values the fixed point can become a snap-back re-
peller. For the three maps we have numerically computed a sequence of
preimages by recursively applying the formulas for the inverses presented in
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Figure 3.16. Period-4 points as snapback repellers for T 4 with ϕ = π/2.
The grey areas indicate regions in which the eigenvalues of the matrix DT 4

have an absolute value larger than 1. Line segments between iterates are
added for clarity. In the left panel a = 3.6 and 20 iterations of T (i.e., 5
iterations of T 4) are needed to end up in a fixed point of T 4. In the right
panel a = 4 and only 8 iterations (i.e., 2 iterations of T 4) are needed.

Appendix A.3. Then we checked whether such a preimage returns to an ex-
panding neighborhood ball the fixed point. Note that the number of inverses
grows exponentially fast, and for this reason this algorithm is only applicable
to snap-back repellers with small “return times”.

The period-p points that are born through the HNS bifurcation can also
become snap-back repellers for the maps Pp, L p, and T p for suitable para-
meter values. We consider two different scenario’s. In the first scenario
a saddle periodic point forming a Hénon-like attractor becomes unstable
through a period doubling bifurcation. As an example we consider the map
P in the 1:5 resonance tongue. For (a, b) = (3.85, 3.2) the Hénon-like at-
tractor is shown in Figure 3.12. Numerical continuation shows that the
saddle period-5 point becomes a source due to a period doubling bifurcation
at b ≈ 3.404. At b = 3.6 the period-5 points are expanding fixed points of
the map P , and in fact they are snap-back repellers. One such snap-back
repeller is shown in Figure 3.20; the remaining four snap-back repellers are
not shown.
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Figure 3.17. A chaotic attractor of the predator-prey map P for (a, b) =
(3.6, 3.6). The regions for which the Jacobian matrix of P has two unstable
eigenvalues are indicated in grey. The point (0.277778, 0.444444) is an ex-
panding fixed point which is in fact a snap-back repeller: an orbit of length 6
of preimages (indicated with dots and line segments to guide the eye) of this
point enters a ball of radius r = 0.12 around the fixed point.

Another scenario is the coexistence of a saddle periodic point leading to
a Hénon-like attractor with a snap-back repeller. As an example we consider
the 1:4 resonance tongue for the map L . For (α, τ) = (0.28, 2.25) the Hénon-
like attractor is shown in Figure 3.13. Within the resonance tongue the
saddle period-4 points coexists with a period-4 point which is a source. The
numerical evidence of Figure 3.21 suggests that this point is a snap-back
repeller for the map L 4.

3.4.4 Loss of hyperbolicity

The Lyapunov diagrams of Figures 3.1–3.3 suggest that chaotic attractors
with two positive Lyapunov exponents occur within sets of positive measure
in the parameter plane of each of the maps P, L , and T . It is an interesting
question what bifurcation sequences lead to the formation of such attractors
and what their geometric structure is. For the map T the latter question can
be answered in the case ϕ = π/2 since then T 2 is just given by decoupled
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Figure 3.18. As Figure 3.18, but for the map L with (α, τ) = (0.35, 2.1),
the fixed point (0.591608, 0.35), m = 4, and r = 0.08.

iterates of the logistic map in the x and y components. This implies that the
attractor is simply the Cartesian product of two cantor sets.

The Lyapunov diagrams in Figures 3.9–3.11 suggest that the second Lya-
punov exponent becomes positive in a continuous manner as a parameter is
varied. This phenomenon might be related to loss of hyperbolicity. Abraham
and Smale [1] constructed an example of a map for which dimension of the
unstable subspace changes from point to point. The terminology unstable
dimension variability was coined in [33]. In our maps the following scenario
is possible. In a chaotic attractor the unstable periodic points are dense,
and upon parameter variation more and more periodic points change from
saddles to sources. We will not investigate this in the present work since
this scenario is not specific to non-invertible maps, but for more details see
[3, 4, 20, 22].

3.5 Discussion

In this Chapter we have studied the dynamics of three non-invertible, planar
maps. These maps have as common properties that they rotate and fold the
plane. It is clear that the maps are not related to each other by conjugation.
Indeed, the map L cannot be conjugate to the maps P and T due to
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Figure 3.19. As Figure 3.18, but for the map T with (a, ϕd) = (3.6, 72),
the fixed point (−0.222222, 0.305863), m = 9, and r = 0.08.

different number of pre-images. The maps P and T cannot be conjugate
since otherwise the bifurcation sequences in their 1:5 resonance tongue would
be the same.

Despite the lack of conjugacy the three maps share many similarities in
both their dynamics and their bifurcations. We have analytically proven the
existence of a Hopf–Nĕımark–Sacker bifurcation, which gives rise to resonance
tongues in the parameter plane of the map. Inside a resonance tongue a
periodic attractor typically either undergoes a period doubling cascade, which
leads to chaotic dynamics, or a another Hopf–Nĕımark–Sacker bifurcation,
which in turn leads to a new family of tongues. For all maps we have detected
chaotic attractors of Hénon-like type: these attractors are conjectured to be
the closure of an unstable manifold of a saddle periodic point. Due to the
non-invertibility of the map these attractors have a folded structure which can
be explained by means of the iterates of the critical line. In addition, we have
detected snap-back repellers which may coexist with Hénon-like attractors.

We conjecture that the dynamics described above is typical for planar
maps that rotate and fold the plane. We even conjecture that the map T

may serve as a prototype for such maps. The advantage of the map T is that
the action of folding and rotation can be controlled separately through the
parameters a and ϕ. In particular, for ϕ = π/2 we were able to analytically
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Figure 3.20. A period-5 point for P acting as a snap-back repeller for P5

for (a, b) = (3.85, 3.6). Note that there are 4 more period-5 points which are
a snap-back repeller for P5, but these are not shown.

prove the existence of snap-back repellers for the fourth iterate of T . Note
that our definition of T can also be used to consider more complicated non-
invertible maps. For example, in (3.3) we can replace the function f(x) =
1
4
(a− 2)− ax2 by a function that has more than two preimages. A concrete

example of such a map could be f(x) = ax(x2 − 1). Another choice for f
would be the so-called tent map. In this case the fold-and-twist map F is
not smooth, but it may be amenable to a more rigorous investigation. This
approach is comparable to the Lozi map that was devised to get a better
understanding of the Hénon map. We hope that our map T with various
choices of the map f will inspire other researchers to obtain rigorous theorems
for classes of planar, non-invertible maps.
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Figure 3.21. A period-4 point of L acting as a snap-back repeller for L 4

for (α, τ) = (0.28, 2.25). Note that there are 3 more period-4 points which
are a snap-back repeller for T 4, but these are not shown. These snap-back
repellers coexist the Hénon-like attractor for Figure 3.13.
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Appendix A

Technical details

A.1 Stability of periodic points

The stability of a period-p point of any differentiable map F : R2 → R
2 can

be easily determined from the so-called stability triangle [5]. Let T and D
denote respectively the trace and the determinant of the Jacobian matrix of
F p evaluated at the period-p point. The eigenvalues of this matrix are then
given by

λ± =
T ±

√
T 2 − 4D

2
.

The periodic point is stable when |λ±| < 1, which is the case if and only if

−1 < D < 1 and − 1−D < T < 1 +D. (A.1)

These inequalities determine a triangular region in the (T,D)-plane, see Fig-
ure A.1. The eigenvalues are real (resp. complex) for D ≤ T 2/4 (resp.
D > T 2/4). The periodic point loses stability by crossing the boundaries
of the stability triangle in the following way:

• Crossing the line D = 1 implies that the complex pair λ± crosses the
unit circle;

• Crossing the line T = 1 +D implies that λ+ passes through 1;

• Crossing the line T = −1−D implies that λ− passes through −1.
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Figure A.1. Let T and D respectively denote the trace and determinant of
the Jacobian matrix of a map F evaluated at a periodic point. For values of
(T,D) within the grey triangle the periodic point is stable. For D > T 2/4 the
Floquet multipliers of the periodic point are complex.

A.2 Normal form coefficients

Assume that a differentiable map F : R2 → R2 has a fixed point x0 at which
the Jacobian matrix J has two complex conjugate eigenvalues e±iθ on the
unit circle. This indicates that the fixed point x0 bifurcates through a Hopf-
Nĕımark-Sacker (HNS) bifurcation. Let p, q ∈ C2 be vectors satisfying the
relations

Jq = λq, J⊤p = λ̄p, �p, q� = 1, (A.2)

where �·, ·� denotes the standard innerproduct on C2 which is conjugate lin-
ear in the first component and linear in the second component. Define the
function

H(z, z̄) = �p,F (x0 + zq + z̄q̄)− x0�

and consider its Taylor expansion around (z, z̄) = (0, 0):

H(z, z̄) = eiθz +
∑

2≤j+k≤3

1

j!k!
hjkz

j z̄k +O(|z|4).
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The first Lyapunov coefficient is then defined by

ℓ1 = Re

(
e−iθh21

2
− (1− 2eiθ)e−2iθ

2(1− eiθ)
h20h11

)
− 1

2
|h11|2 −

1

4
|h02|2. (A.3)

Theorem 4.6 of [34] implies that if ℓ1 < 0 then the HNS bifurcation is su-
percritical, which means that a unique stable, closed invariant curve is born
as the fixed point loses stability. Note that for maps with only quadratic
nonlinear terms we always have that h21 = 0 which leads to a simplification
of the expression for ℓ1.

If J is a real 2× 2 matrix, then the vectors p, q ∈ C2 satisfying equation
(A.2) can be chosen as

q =

(
a12

eiθ − a11

)
, p =

1

a12a21 + (e−iθ − a11)2

(
a21

e−iθ − a11

)
, (A.4)

or, alternatively as

q =

(
eiθ − a22

a21

)
, p =

1

(e−iθ − a22)2 + a12a21

(
e−iθ − a22

a12

)
. (A.5)

A.3 Preimages of the maps P, L , and T

Preimages of the predator-prey map. Given a point (u, v) ∈ R2 we
want to find all points (x, y) such that (u, v) = P(x, y), or equivalently,

u = ax(1 − x− y),

v = bxy.

This gives

bu + av = abx(1 − x),

so that

x = 1
2
±
√

1
4
− u

a
− v

b
.

After solving for x we find y = v/bx.
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Preimages of the Lorenz map. Given a point (u, v) ∈ R2 we want to
find all points (x, y) such that (u, v) = L (x, y), or equivalently,

u = (1 + ατ)x− τxy,

v = (1− τ)y + τx2.

From the second equation we obtain y = (v−τx2)/(1−τ). Substitution into
the first equation then gives the cubic equation x3 + px+ q = 0, where

p = −1

τ

(
v − (1− τ)(1 + ατ)

τ

)
, q = −(1− τ)u

τ 2
,

provided that τ > 0. If we know one solution of the cubic equation, say
ξ, then a long division gives the quadratic equation x2 + ξx + p + ξ2 = 0
by which we can find remaining solutions whenever −3ξ2 − 4p ≥ 0. In
numerical computations of preimages the initial solution ξ can be found using
the Newton-Raphson method.

Preimages of the fold-and-twist map. Given a point (u, v) ∈ R2 we
want to find all points (x, y) such that (u, v) = T (x, y), or equivalently,

u = f(x) cosϕ− y sinϕ,

v = f(x) sinϕ+ y cosϕ.

This gives
u cosϕ+ v sinϕ = f(x) = 1

4
(a− 2)− ax2,

so that

x = ±
√

a− 2− 4u cosϕ− 4v sinϕ

4a
.

Finally,
y = v cosϕ− u sinϕ.

76



Appendix B

Numerical methods

In this Section we briefly describe the numerical algorithms that we have used
to compute Lyapunov exponents and unstable manifolds of saddle points.
The algorithms apply to any general smooth map F : Rd → Rd.

B.1 Computation of Lyapunov exponents

We estimate Lyapunov exponents using the algorithm described in [9, 10].
Given an initial condition we first iterate the map Ntrans times to obtain a
point x1 on the attractor. Let u1,k denote the k-th standard basis vector of
Rd. At each point xn on the orbit we apply the Jacobian matrix DF (xn) to
each of the vectors un,k. Each vector tends to align itself along the direction of
maximal expansion (or of minimal compression). To prevent the vectors un,k

from collapsing onto one direction the Gram-Schmidt process is used. The
average of the logarithms of the rescaling factors then gives an approximation
of the k-th Lyapunov exponent.

Let �·, ·� denote the standard inner product on Rd. For n ≥ 1 we have
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applied the following iteration scheme:

vn,k = DF (xn)un,k,

un,1 = vn,1,

un,k = vn,k −
k−1∑

j=1

�vn,k, un,j�
�un,j, un,j�

un,j,

un+1,k = un,k/�un,k�,
xn+1 = F (xn).

Iterating this scheme N times then gives the following approximation for the
k-th Lyapunov exponent:

λk =
1

N

N∑

n=1

log �un,k�.

Typical values used in our computations are Ntrans = 103 and N = 104.

B.2 Computation of power spectra

By evaluating a scalar observable ω : Rd → R along an orbit of the map F
we produce a scalar time series of length N . First, we subtract the mean of
the time series. Next, a Hamming window is applied to reduce leakage of
frequencies: we multiply the k-th element of the time series by the number

Hk = 0.54− 0.46 cos

(
2πk

N

)
, k = 0, . . . , N − 1.

Finally, we normalize the time series by dividing each element by the norm
of the array (Hk)

N−1
k=0 . Denote the resulting time series by (ck)

N−1
k=0 . From this

time we compute a discrete Fourier transform (DFT) by

ĉk =
1

N

N−1∑

n=0

cn exp

(
−2πi

nk

N

)
. (B.1)

The power spectrum is a plot of |ĉk|2 against the Fourier frequency fk = k/N .
All frequencies are computed modulo 1, and since our time series is real-
valued its DFT is symmetric around the frequency f = 1/2. Indeed, from
(B.1) it follows that ĉN−k = ĉ∗k.
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For the fold-and-twistmap (3.3) we have used the observable ω(x, y) = x
and computed the DFT (B.1) by means of a fast Fourier transform imple-
mented in the FFTW library [23].

B.3 Computation of unstable manifolds

We compute unstable manifolds of periodic points by means of techniques
based on iterating fundamental domains described in [18, 51]. Note that for
non-invertible maps the unstable manifold can have self-intersections. Hence
the terminology “manifold” is strictly speaking not correct.

Let x be a fixed point of the map F . Assume that the Jacobian matrix
DF (x) has one real eigenvalue λ > 1 with corresponding eigenvector v and
all the other eigenvalues have absolute value strictly smaller than 1. If we
want to approximate N points on the manifold, we first compute a linear
approximation of the manifold in a small neighborhood of the point x:

sj = ε exp(j log(λ2)/N),

wL
0,j = x− sjv,

wR
0,j = x+ sjv,

where j = 1, . . . , N . The superscripts L and R indicate the “left” and “right”
branch of the manifold, respectively. Then, for 1 ≤ k ≤ m we define induct-
ively

wL
k,j = F (wL

k−1,j),

wR
k,j = F (wR

k−1,j).

The “left” branch of the unstable manifold is then approximated by connect-
ing the points

w0,1, . . . , w0,N , w1,1, . . . , w1,N , . . . , wm,1, . . . , wm,N

by line segments. The “right” branch is computed in the same way. For a
periodic point x with period p we apply the above procedure with F replaced
by F p to each of the points x,F (x), . . . ,F p−1(x) along the periodic orbit.
Table B.1 lists the parameters ε, N , and m that were used to produce our
figures.
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Figure no. ε N m
3.6 0.001 10 25
3.12 0.0001 1000 8
3.13 0.0001 1000 9
3.14 0.0001 1000 9

Table B.1. Parameters used in the computation of unstable manifolds.
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Samenvatting

De aanleiding

De oorsprong van dit proefschrift ligt in de jaren tachtig als H. Lauwerier op
het Mathematisch Congres in Delft het dynamisch gedrag van onder andere
een prooi-roofdier model bespreekt. Zijn plaatjes tonen verrassende struc-
turen die met een eenvoudige computer te maken zijn. Een eerste analyse
van de prooi-roofdier afbeelding was al beschreven in [2] waarbij het werk
van Mira [3] een waardevolle aanvulling is. In Mira’s werk wordt de rol van
kritieke krommen die voorkomen in de prooi-roofdier afbeelding uitbundig
beschreven.

Eerste analyse

Na een inventarisatie van de eigenschappen van de prooi-roofdier afbeelding,
zoals welke gebieden worden op welke andere gebieden afgebeeld, wordt de
dynamica die de herhaalde toepassing van de afbeelding genereert het onder-
werp van studie. In één van de dekpunten heeft de afgeleide (de Jacobiaan)
complexe eigenwaarden en voor geschikt gekozen waarden van de parameters
is de norm van die eigenwaarden groter dan één. Binnen het invariante gebied
van de afbeelding zijn er punten waarbij de determinant van de Jacobiaan
gelijk is aan nul. Het beeld van deze punten vormen de kritieke lijn die sa-
men met de eerst volgende iteraties de rand van een invariant gebied vormen.
De kritieke lijn en de complexe eigenwaarden in een van de fixpunten zijn
de inspiratie voor de definitie van de vouw en draai afbeelding, de Fold and
Twist.

87



Fold and Twist

Voor de definitie van de Fold and Twist beschouwen we de verzameling van
verticale lijnen x = c in het vlak. We passen op die lijnen een met de logisti-
sche afbeelding geconjungeerde afbeelding f(x) = 1

4
(a−2)−ax2 toe en laten

daarbij de y-coördinaten van de punten op die lijnen onveranderd. Op de nu
ontstane verzameling verticale lijnen wordt een rotatie om de oorsprong over
een hoek ϕ uitgevoerd.
De Fold and Twist heeft twee dekpunten waarvan er de ene op de rand en de
andere in het binnengebied ligt van de verzameling van punten die niet naar
oneindig convergeren.
Omdat bij de prooi-roofdier afbeelding periode zes prominent voorkomt gaat
bij de Fold-and-Twist allereerst de aandacht uit naar een baan van die peri-
ode. Periodieke punten kunnen gevonden worden via de snijpunten van twee
krommen. Zie [1]. Er zijn dan twee banen van periode zes. De zadelpunten
van een van de twee banen liggen op de gemeenschappelijke rand van de
basins van de aantrekkende punten van de andere baan van periode zes. Zo
kan een saddle-node bifurcatie ontstaan voor een geschikt gekozen waarde
van de parameters. De Fold and Twist afbeelding is zodanig gedefineerd dat
verschillende analytische resultaten te boeken zijn. Zo kan het voorkomen
van een Hopf-Nĕımark-Sacker bifurcatie worden bewezen voor rotaties over
alle hoeken met uitzondering van ϕ = 90◦ en ϕ = 120◦. Voor ϕ = 90◦ en
ϕ = 120◦ kunnen de banen van periode vier respectievelijk periode drie exact
worden berekend.

De drie afbeeldingen

De vouw en draai eigenschap voor de Fold and Twist afbeelding zijn ook
gevonden bij de eerder genoemde prooi-roofdier afbeelding en bij de discrete
Lorenz-63 afbeelding. Dat maakt de Fold and Twist afbeelding tot een ge-
schikt toy model voor twee dimensionale afbeeldingen met een vouw en een
draai. Zo kunnen eenvoudig gevonden eigenschappen van de Fold and Twist
afbeelding gezocht en gevonden worden bij de andere twee afbeeldingen.
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Van lokaal naar globaal

Lyapunov exponenten geven aan van welk type dynamica er voor de geko-
zen waarde van de parameters sprake is. In het Lyapunov diagram worden
voor de verschillende parameterwaarden de gevonden typen dynamica weer-
gegeven. Vergelijken we de Lyapunov diagrammen van de Fold and Twist,
de prooi-roofdier afbeelding en de discrete Lorenz-63 afbeelding dan valt de
grote gelijkenis op tussen deze drie afbeeldingen. Deze gelijkenis voedt de
claim dat de Fold and Twist fundamenteel is voor 2-d afbeeldingen met een
kritieke lijn. Een deelverzameling van het Lyapunov diagram is die van de
resonantie- of Arnold tongen. Binnen zo’n resonantietong bevinden zich de
pararmeterwaarden waarvoor de afbeelding steeds een periodieke baan heeft
kenmerkend voor die resonantietong. Op de rand van zo’n resonantietong
treedt een saddle-node bifurcatie op. Binnen de resonantietongen is sprake
van een cascade van periodeverdubbelingen of een secundaire Hopf-Nĕımark-
Sacker bifurcatie.

Het chaotisch gedrag

Het Lyapunov diagram geeft aan dat er parameterwaarden zijn waarbij de af-
beelding zich chaotisch gedraagt. Het bestaan van snap-back repellers wordt
voor alle drie de afbeeldingen bewezen zodat via de stelling van Marotto het
chaotisch gedrag vast staat.
Een andere vorm van chaotisch gedrag is die waarbij de attractor eigenschap-
pen van de Hénon achtige attractor heeft. Zo zijn in de drie de afbeeldingen
parameterwaarden gevonden worden waarbij de onstabiele variëteit van een
onstabiel periodiek punt grote gelijkenis vertoont met de attractor.
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Tot slot

Een dynamisch model in 2-D inspireerde tot de definitie van een toymodel
waarvan de eigenschappen steeds in twee voorbeelden van 2-1 afbeeldingen
voorkomen. Nadere studie moet uitwijzen of de Fold and Twist afbeelding
fundamenteel is binnen de verzameling van de 2-1 afbeeldingen. Een eerste
verkenning van een afbeelding met meer dan één vouw lijkt zich te gedragen
als een Fold and Twist op de plaatsen van de vouwen. De constructie van
een goed werkend toy model voor afbeeldingen in 3-D staat hoog op een
verlanglijstje.
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