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Periodicity and chaos amidst twisting and folding in

2-dimensional maps

S. Garst A.E. Sterk

May 7, 2018

Abstract

We study the dynamics of three planar, non-invertible maps which rotate and

fold the plane. Two maps are inspired by real-world applications whereas the third

map is constructed to serve as a toy model for the other two maps. The dynamics

of the three maps are remarkably similar. A stable fixed point bifurcates through a

Hopf–Nĕımark–Sacker which leads to a countably infinite set of resonance tongues

in the parameter plane of the map. Within a resonance tongue a periodic point

can bifurcate through a period doubling cascade. At the end of the cascade we

detect Hénon-like attractors which are conjectured to be the closure of the unstable

manifold of a saddle periodic point. These attractors have a folded structure which

can be explained by means of the concept of critical lines. We also detect snap-back

repellers which can either coexist with Hénon-like attractors or which can be formed

when the saddle-point of a Hénon-like attractor becomes a source.

Key words: non-invertible maps, bifurcations, Hénon-like attractors, snap-back re-

pellers
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1 Introduction

In this paper we compare the dynamics of three planar, non-invertible maps which all

rotate and fold the plane. Two of these maps are related to phenomena in biology and

physics, whereas the the third map is constructed to serve as a toy model for the other

two maps.

1.1 Motivation

An important problem in the mathematical theory of dynamical systems is to determine

the geometric structure of chaotic attractors and the bifurcations leading to their for-

mation. Inspiration for the development of the theory often comes from the analytical

and numerical study of particular examples, but of course the goal is to understand the

dynamics of a large class of systems. Ideally, one would like to classify the behavior of dy-

namical systems according to some equivalence relation. For example, dynamical systems

that are topologically conjugate have identical topological properties, and in particular

they share the same number of fixed points and periodic orbits of the same stability types.

However, topological conjugacy can only be proved in specific cases. In the vicinity of

bifurcations one can use the theory of normal forms. All systems exhibiting a certain

type of bifurcation are locally (i.e., around the equilibrium) topologically equivalent to

the normal form of the bifurcation Broer and Takens [2010], Guckenheimer and Holmes

[1983], Kuznetsov [2004].

A fruitful strategy to understand chaotic dynamics is to construct representative ex-

amples that explain the dynamical behavior observed in concrete applications. A well-

known example is the horseshoe map introduced in Smale [1967, 1998] which has become

the hallmark of chaos. The horseshoe map is an Axiom A diffeomorphism that serves

as a model for the generic behavior at a transverse homoclinic point at which the stable

and unstable manifolds of a periodic point intersect. Another example of this strategy is

given by the so-called geometric Lorenz models that were constructed to understand the

attractor of the Lorenz-63 system [Afraimovich et al., 1977, Guckenheimer and Williams,

1979, Viana, 2000, Williams, 1979]. Such toy models, or models of models, are of great

help to understand complex dynamics.

In many works a similar strategy has been adopted to unravel generic dynamical
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features in the vicinity of particular bifurcations. A simplified global model for the re-

turn map of a dissipative diffeomorphism near a homoclinic bifurcation was presented

in Broer et al. [1998]. This map is a perturbation of the Arnold family of circle maps

and its dynamics involves periodicity, quasi-periodicity and chaos, between which there

are various transitions bifurcations. This map has a universal character in the setting of

2-dimensional diffeomorphisms and can be compared with examples like the Hénon map

and the standard map. Detailed studies of 3-dimensional diffeomorphisms, in particular

near a Hopf-saddle-node bifurcation, can be found in [Broer et al., 2008a,b, Vitolo et al.,

2010]. These studies were mainly inspired by results obtained for the Poincaré map of

the periodically driven Lorenz–84 atmospheric model [Broer et al., 2002]. In the latter

map so-called quasi-periodic Hénon-like attractors, which are conjectured to coincide with

the unstable manifold of a hyperbolic invariant circle of saddle-type, have been detected

[Broer et al., 2005]. The existence of such attractors has been rigorously proved for a map

on the solid torus [Broer et al., 2010].

In this paper we are concerned with the study of non-invertible, planar maps. The

study of such maps goes back to at least the works [Gumowski and Mira, 1965, 1969, Mira,

1964] in which the role of critical lines in the formation of basin boundaries and their

bifurcations was studied. Since the 1990s the interest for 2-dimensional endomorphisms

has increased tremendously. For a detailed account, the reader is referred to the textbook

of Mira et al. [1996] and the references therein. The aim of this paper is to present a case

study of three maps that rotate and fold the plane. Two of these maps are taken from

the literature, whereas the third map is constructed to mimic the dynamical features of

the other maps. The dynamics of the three maps are remarkable similar, which suggests

that their dynamics is generic among planar maps that exhibit rotation and folding.

1.2 Maps of study

We first describe two particular planar maps which rotate and fold the plane. Next, we

introduce a model map which is intended to serve as a representative toy model for the

other maps.
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1.2.1 A predator-prey model

Consider the following planar map

P :





x

y



 7→





ax(1− x− y)

bxy



 . (1)

This map is a simplification of the predator-prey model studied in Beddington et al.

[1976]; also see Mira et al. [1996] and references therein. In this paper we restrict to the

parameter range 1 < a < 5 and b > 5/2.

The map P is not invertible. Indeed, in the region defined by ab− 4bx− 4ay > 0 the

map P has two preimages. Moreover, this map has a fixed point (1
b
, 1 − 1

a
− 1

b
), which

has complex eigenvalues for the parameters b > (a +
√
a)/(2a − 2). Hence, the map P

rotates points near this fixed point.

1.2.2 A discretized Lorenz-63 model

Our second example arises from the classical Lorenz-63 model Lorenz [1963, 1989] for

Rayleigh-Bénard convection:

dx

dt
= −σ(x− y),

dy

dt
= ρx− y − xz,

dz

dt
= −βz + xy.

Taking the limit σ → ∞ and replacing x with y gives a system of two differential equations:

dy

dt
= (ρ− 1)y − yz,

dz

dt
= −βz + y2.

In what follows, we will relabel the variables (y, z) as (x, y) again. In this 2-dimensional

system we can assume without loss of generality that β = 1 by a suitable rescaling (but

note that this property does not hold for the 3-dimensional system). After discretizing

these equations by means of a forward Euler scheme with time step τ we obtain the map

L :





x

y



 7→





(1 + ατ)x− τxy

(1− τ)y + τx2



 , (2)

where α = ρ − 1. In this paper, we restrict to the parameter range 0 < α < 1 and

0 < τ < 4.

First note, that the map L is noninvertible. The curve defined by the equation

4τ(y − cb)3 = 27c2x2, c = 1− τ, b = (1 + ατ)/τ,
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separates two regions in the plane in which the map has either one or three preimages.

In addition, the map has a fixed point (±√
α, α) of which the eigenvalues are complex for

α > 1

8
, see Proposition 2.

1.2.3 The fold-and-twist map

The maps P and L rotate points and fold the plane. Our aim is to study the combination

of these effects in a map that is as simple as possible. To that end, we first define the

map

F :





x

y



 7→





f(x)

y



 ,

where f : R → R is a continuous two-to-one map. Observe that F maps vertical lines

onto vertical lines. In the following we will take

f(x) = 1

4
(a− 2)− ax2

which is conjugate to the logistic family g(x) = ax(1 − x). Indeed, for ψ(x) = x − 1

2
we

have that f ◦ ψ = ψ ◦ g. Hence, we will restrict to the parameter range a ∈ [0, 4]. Next,

we consider a rigid rotation around the origin given by

R :





x

y



 7→





x cosϕ− y sinϕ

x sinϕ+ y cosϕ



 .

The “fold-and-twist map” T is defined as the composition

T = R ◦ F :





x

y



 7→





f(x) cosϕ− y sinϕ

f(x) sinϕ+ y cosϕ



 . (3)

The angle ϕ is measured in radians. However, for numerically obtained results values

are reported in degrees, which is indicated by means of a subscript: ϕd = 180ϕ/π. It is

easy to verify that the maps Tϕ,a and T2π−ϕ,a are conjugate via Ψ(x, y) = (x,−y). In

particular, the bifurcation diagram in the (ϕ, a)-plane is symmetric with respect to the

line ϕ = π. Therefore, it suffices to study the family Tϕ,a for 0 ≤ ϕ ≤ π.

The dynamical properties of the map T were explored in Garst and Sterk [2016]. The

advantage of the map T is that the folding and twisting can be controlled separately

using the parameters a and ϕ, and the idea of this paper is that the map T may serve

as a “guide” to study and explain phenomena in the maps P and L .
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Table 1: Color coding for the Lyapunov diagram of Figures 1, 2, and 3. The diagrams

suggest that periodic attractors and chaotic attractors with 1 or 2 positive Lyapunov

exponents occur for regions in the parameter plane with positive Lebesgue measure.

Color Lyapunov exponents Attractor type

cyan 0 > λ1 > λ2 periodic point of node type

blue 0 > λ1 = λ2 periodic point of focus type

green 0 = λ1 > λ2 invariant circle

red λ1 > 0 ≥ λ2 chaotic attractor

black λ1 ≥ λ2 > 0 chaotic attractor

white no attractor detected

1.3 Overview of the dynamics

The Lyapunov diagrams in Figures 1–3 show a classification of the dynamical behavior of

the maps P, L , and T in different regions of their parameter planes. See Appendix A

for a description of the algorithm used to compute Lyapunov exponents. Note that the

three diagrams have a very similar geometric organization. In particular, one can observe

a prevalence of periodic dynamics and chaotic dynamics. In all three diagrams one can

observe tongue-shaped regions emanating along a curve. This suggests the presence of

a Hopf–Nĕımark–Sacker bifurcation. Propositions 1–3 in Section 2.2 confirm that this is

indeed the case.

The Lyapunov diagrams also suggest that chaotic attractors with one or two posi-

tive Lyapunov exponents occur for regions in the parameter plane with positive Lebesgue

measure, and the question is how these attractors are formed and what their geometric

structure is. Numerical evidence suggest that strange attractors having one positive Lya-

punov exponent are of Hénon-like type, i.e., they are formed by the closure of the unstable

manifold of a periodic point of saddle type. However, unlike in diffeomorphisms, these

attractors have a folded structure in our maps.

2 Twisting and (quasi-)periodic dynamics

In this section we discuss periodic and quasi-periodic dynamics of the maps P, L , and

T . The Lyapunov diagrams already indicate that these type of dynamics occur in large
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regions of the parameter plane.

2.1 Preliminaries

We first present some elementary observations that will make the proofs in the following

section shorter.

2.1.1 Stability of periodic points

The stability of a period-p point of any differentiable map F : R2 → R2 can be determined

from the so-called stability triangle [Barreto et al., 1997]. Let T and D denote respectively

the trace and the determinant of the Jacobian matrix of F p evaluated at the period-p

point. The eigenvalues of this matrix are given by

λ± =
T ±

√
T 2 − 4D

2
.

The periodic point is stable when |λ±| < 1, which is the case if and only if

−1 < D < 1 and − 1−D < T < 1 +D. (4)

These inequalities determine a triangular region in the (T,D)-plane, see Figure 4. The

eigenvalues are real (resp. complex) for D ≤ T 2/4 (resp. D > T 2/4). The periodic point

loses stability by crossing the boundaries of the stability triangle in the following ways:

• Crossing the line D = 1 implies that the complex pair λ± crosses the unit circle;

• Crossing the line T = 1 +D implies that λ+ passes through 1;

• Crossing the line T = −1 −D implies that λ− passes through −1.

2.1.2 The normal form of the Hopf-Nĕımark-Sacker bifurcation

Assume that a differentiable map F : R2 → R2 has a fixed point x0 at which the Jacobian

matrix J has two complex conjugate eigenvalues e±iθ on the unit circle. This indicates

that the fixed point x0 bifurcates through a Hopf-Nĕımark-Sacker (HNS) bifurcation. Let

p, q ∈ C2 be vectors satisfying the relations

Jq = λq, J⊤p = λ̄p, 〈p, q〉 = 1, (5)

8



where 〈·, ·〉 denotes the standard innerproduct on C2 which is conjugate linear in the first

component and linear in the second component. Define the function

H(z, z̄) = 〈p,F (x0 + zq + z̄q̄)− x0〉

and consider its Taylor expansion around (z, z̄) = (0, 0):

H(z, z̄) = eiθz +
∑

2≤j+k≤3

1

j!k!
hjkz

j z̄k +O(|z|4).

The first Lyapunov coefficient is then defined by

ℓ1 = Re

(

e−iθh21
2

− (1− 2eiθ)e−2iθ

2(1− eiθ)
h20h11

)

− 1

2
|h11|2 −

1

4
|h02|2. (6)

Theorem 4.6 of Kuznetsov [2004] implies that if ℓ1 < 0 then the HNS bifurcation is

supercritical, which means that a unique stable, closed invariant curve is born as the

fixed point loses stability. Note that for maps with only quadratic nonlinear terms we

always have that h21 = 0 which leads to a simplification of the expression for ℓ1.

If J is a real 2 × 2 matrix, then the vectors p, q ∈ C
2 satisfying equation (5) can be

chosen as

q =





a12

eiθ − a11



 , p =
1

a12a21 + (e−iθ − a11)2





a21

e−iθ − a11



 , (7)

or, alternatively as

q =





eiθ − a22

a21



 , p =
1

(e−iθ − a22)2 + a12a21





e−iθ − a22

a12



 . (8)

2.2 The Hopf-Nĕımark-Sacker bifurcation

The following three results confirm what is already suggested by the Lyapunov diagrams of

Figures 1–3: along a curve in the parameter plane a stable fixed point bifurcates through

a Hopf-Nĕımark-Sacker (HNS) bifurcation.

Proposition 1 (HNS bifurcation of the predator-prey map). The predator-prey map P

has a fixed point (1
b
, 1− 1

a
− 1

b
) which is stable if and only if

1 < a < 9 and max

{

a

a− 1
,

3a

a + 3

}

< b <
2a

a− 1
.

Along the curve b = 2a/(a−1) the fixed point loses stability through a supercritical HNS bi-

furcation and gives birth to a unique stable, closed invariant circle. The strong resonances

are located at the values a ∈ {1, 5, 7, 9}.
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Proof. Evaluating the Jacobian matrix of the map P at the fixed point (1
b
, 1 − 1

a
− 1

b
)

gives

J =





1− a/b −a/b
b− b/a− 1 1



 ,

which implies that det(J) = a − 2a/b and tr(J) = 2 − a/b. From equation (4) it follows

that the fixed point is stable if and only if the inequalities

1 < a < 9 and max

{

a

a− 1
,

3a

a + 3

}

< b <
2a

a− 1

are satisfied. Along the curve b = 2a/(a− 1) the fixed point loses stability as a complex

conjugate pair of eigenvalues crosses the unit circle with nonzero speed. At the HNS

bifurcation the eigenvalues are given by

λ± =
5− a± i

√

16− (5− a)2

4
= e±iθ where tan θ =

√

16− (5− a)2

5− a
. (9)

Strong resonances occur when λ± = 1 (1:1 resonance), λ± = −1 (1:2 resonance), λ± =

−1

2
± 1

2

√
3i (1:3 resonance), and λ = ±i (1:4 resonance). From equation (9) it follows

that these values of λ± are attained at a = 1, a = 9, a = 7 and a = 5, respectively.

We use equation (8) with a22 = 1, a21 = 1, and a12 = (1 − a)/2. Computations with

the computer algebra package Mathematica Wolfram Research, Inc. [2016] then gives the

following normal form coefficients:

h20 =
−4a + 8aeiθ − 8ae2iθ + 4ae3iθ

−3 + a + 4eiθ − 2e2iθ
,

h11 =
−4a + 10aeiθ − 8ae2iθ + 2ae3iθ

(3− a)eiθ − 4e2iθ + 2e3iθ
,

h02 =
8a− 12ae−iθ + 4ae−2iθ

3− a− 4eiθ + 2e2iθ
,

h21 = 0.

The expression of the first Lyapunov coefficient is rather complicated and will therefore

be omitted. Figure 5 shows a graph of ℓ1 as a function of the parameter a. Indeed, ℓ1 < 0

for 1 < a < 9. This completes the proof.

Proposition 2 (HNS bifurcation of the Lorenz map). The Lorenz map L has two fixed

points (±√
α, α) which are stable when

α > 0 and 0 < τ < min

{

1−
√
1− 8α

2α
,
1

2α

}

.

10



Along the curve τ = 1/2α both fixed points lose stability through a supercritical HNS

bifurcation which gives birth to a pair of coexisting stable invariant circles. The strong

resonances are located at the values α ∈ {1

4
, 1
6
, 1
8
}.

Proof. Evaluating the Jacobian matrix of the map L at the fixed points (±√
α, α) is

given by

J =





1 ∓τ√α
±2τ

√
α 1− τ



 ,

which implies that det(J) = 1− τ +2ατ 2 and tr(J) = 2− τ . From equation (4) it follows

that a sufficient condition for stability of the fixed points is given by

α > 0 and 0 < τ < min

{

1−
√
1− 8α

2α
,
1

2α

}

.

Along the curve τ = (1 −
√
1− 8α)/2α the fixed points lose stability as one eigenvalue

passes −1. The eigenvalues become complex along the line α = 1

8
. Along the curve

τ = 1/2α, where α > 1

8
, the fixed points lose stability through a complex conjugate pair

of eigenvalues crossing the unit circle with nonzero speed. At the HNS bifurcation the

eigenvalues are given by

λ± =
4α− 1± i

√
8α− 1

4α
= e±iθ where tan θ =

√
8α− 1

4α− 1
. (10)

Strong resonances occur when eigenvalues λ± = 1 (1:1 resonance), λ± = −1 (1:2 reso-

nance), λ± = −1

2
± 1

2

√
3i (1:3 resonance), and λ = ±i (1:4 resonance). From equation

(10) it follows that the 1:1 resonance does not occur. The remaning strong resonances

occur for the values α = 1

8
, α = 1

6
, and α = 1

4
, respectively.

We use equation (7) with a11 = 1, a12 = −1/2
√
α, and a21 = 1/

√
α. Computations

with the computer algebra package Mathematica then gives the following normal form

coefficients:

h20 =
−3 + 3eiθ

−2α + 4α2 − 8α2eiθ + 4α2e2iθ
,

h11 =
−3 + e−iθ + 2eiθ

−2α + 4α2 − 8α2eiθ + 4α2e2iθ
,

h02 =
−3 + 2e−iθ + eiθ

−2α + 4α2 − 8α2eiθ + 4α2e2iθ
,

h21 = 0.
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The expression of the first Lyapunov coefficient is rather complicated and will therefore

be omitted. Figure 6 shows a graph of ℓ1 as a function of the parameter α. Indeed, ℓ1 < 0

for 1

8
< α. This completes the proof.

Proposition 3 (HNS bifurcation of the fold-and-twist map). For 0 < ϕ < 2π the map

T has a fixed point (2−a
2a
,−2−a

2a
cot 1

2
ϕ) which loses stability through a supercritical HNS

bifurcation along the line a = 3 and gives birth to a unique stable, closed invariant circle.

The strong resonances are located at the values ϕ ∈ {π/2, 2π/3, π}.

Proof. Evaluating the Jacobian matrix of the map T at the fixed point (2−a
2a
,−2−a

2a
cot 1

2
ϕ)

gives the matrix

J =





(a− 2) cosϕ − sinϕ

(a− 2) sinϕ cosϕ



 ,

which implies that det(J) = a− 2 and tr(J) = (a− 1) cosϕ. From equation (4) it follows

that the fixed point is stable if and only if 1 < a < 3. Along the line a = 3 the fixed

point loses stability as a complex conjugate pair of eigenvalues crosses the unit circle with

nonzero speed. At the HNS bifurcation the eigenvalues are simply given by λ± = e±iϕ. It

immediately follows that the strong resonances occur for ϕ ∈ {π/2, 2π/3, π}.
We use equation (7) with a11 = cosϕ, a12 = − sinϕ, and a21 = sinϕ. Computations

with the computer algebra package Mathematica then gives the following normal form

coefficients:

h20 = 3eiϕ sinϕ, h11 = 3eiϕ sinϕ, h02 = 3eiϕ sinϕ, h21 = 0,

so that the first Lyapunov coefficient is given by

ℓ1 = −27

2
sin2 ϕ.

Clearly, ℓ1 < 0 for 0 < ϕ < π. This completes the proof.

Along each HNS bifurcation curve the eigenvalues of a fixed point are of the form e±iθ.

At points where θ = p/q is rational so-called resonance tongues of order p:q emanate.

These are indeed clearly visible in the Lyapunov diagrams of Figures 1–3. The boundaries

of these tongues are formed by two saddle-node bifurcations, and for parameter values

within a tongue a stable periodic point coexists with a saddle periodic point. The unstable

manifold of the saddle periodic point forms an invariant circle. For the 1:5 resonance
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tongue of the map P such an invariant circle is shown in Figure 7. The invariant circles

of the maps L and T are qualitatively similar and hence not shown. The points along

the bifurcation curve for which θ ∈ {2π, π, 2π/3, π/2} are so-called strong resonances. For

such parameter values more than one closed invariant curve can appear, or such a curve

may not exist at all [Kuznetsov, 2004].

Upon parameter variation, the invariant circle can be destroyed by homoclinic tan-

gencies between the stable and unstable manifolds of the unstable periodic point, or the

circle can interact with other objects via heteroclinic tangencies. This scenario will not

be considered in the present paper, but see Broer et al. [1993, 1998] for an extensive

discussion. Instead, we will focus on chaotic dynamics arising through bifurcations of the

periodic points in the resonance tongues.

3 Folding and chaotic dynamics

In this section we discuss the implications of the non-invertible nature of the three maps.

We will discuss Hénon-like attractors and their folded structure. In addition, we discuss

the existence of snap-back repellers which is also a consequence of non-invertibility.

3.1 Critical lines

An important tool in the study of non-invertible planar maps is the so-called critical

manifold Mira et al. [1994, 1996]. For a smooth map F : R2 → R2 we define the set

LC−1 = {(x, y) ∈ R
2 : detDF (x, y) = 0}.

The critical line LC (in French: “ligne critique”) is then defined as the image of LC−1

under the map F . The critical line LC and its iterates play an important role in the

bifurcations of basin boundaries and in bounding invariant regions. The critical line for

the maps studied in this work are given by the following propositions. These results follow

in a straightforward manner from the definitions given above, and therefore their proofs

are omitted.

Proposition 4 (Critical line of the predator-prey map). For the map P the critical line
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and its inverse image are given by the equations

LC−1 : x = 1

2
,

LC : bx+ ay = 1

4
ab.

Proposition 5 (Critical line of the Lorenz map). For the map L with τ > 0 and τ 6= 1

the critical line and its inverse image are given by the equations

LC−1 : y =
1 + ατ

τ
+

2τx2

1− τ
,

LC :

(

y − (1− τ)(1 + ατ)

τ

)3

=
27(1− τ)2x2

4τ
.

If τ = 1 then LC−1 is given by the line x = 0 so that LC reduces to the single point (0, 0).

Proposition 6 (Critical line of the fold-and-twist map). For the map T the critical line

and its inverse image are given by the equations

LC−1 : x = 0,

LC : x cosϕ+ y sinϕ = 1

4
(a− 2).

Now consider any smooth, noninvertible map F : R2 → R2. Under general conditions

the set LC−1 is a smooth curve in R2. A sufficient condition for this is, for example, that

0 is a regular value of the map (x, y) 7→ detDF (x, y). This is indeed the case for the

maps P, L , and T . Assume that LC−1 is parameterized with λ : I → R2, where I is

an open interval around 0. Now let γ : I → R2 be any other smooth curve that intersects

the curve LC−1 = λ. Without loss of generality we may assume that γ(0) = λ(0). The

vectors γ′(0) and λ′(0) are the tangent vectors to the curves γ and λ at their point of

intersection.

The image F (λ) is by definition the critical line LC. Note that the image F (γ)

may have self-intersections due to the noninvertibility of F . Away from such self-

intersections F (γ) is again a smooth curve which intersects the critical line LC at the

point F (γ(0)) = F (λ(0)). The tangent vectors at this point are given by DF (γ(0))γ′(0)

and DF (λ(0))λ′(0). Since γ(0) = λ(0) ∈ LC−1 it follows that the matrix DF (γ(0))

has rank 1 which means that the vectors DF (γ(0))γ′(0) and DF (λ(0))λ′(0) are parallel.

This implies that the curve F (γ) is tangent to LC at F (γ(0)). An exception to this

situation is when the vector γ′(0) belongs to the null space of DF (γ(0)) in which case

F (γ) has a cusp point intersection with LC. These two cases are illustrated for the

fold-and-twist map T with (a, ϕ) = (3.2, 2π/5) in Figures 8 and 9.
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3.2 Routes to chaos and Hénon-like attractors

In this section we investigate the routes to chaos and the structure of chaotic attractors

for the three maps. The discussion will be restricted to resonance tongues of order 1:4,

1:5, and 2:5 since these tongues are the largest in the parameter plane in the sense of

Lebesgue measure. Near other tongues we expect similar dynamical behavior.

Near a HNS bifurcation a resonance tongue contains a pair of stable and unstable

periodic points. The stable periodic point is either a node (real eigenvalues) or a fo-

cus (complex eigenvalues). Periodic points of focus type typically bifurcate through a

secondary HNS bifurcation, which leads to a new set of resonance tongues. The newly

created periodic points in these secondary tongues can undergo period-doubling bifur-

cations or HNS bifurcations. For this reason we restrict the discussion to the primary

resonance tongues in which the stable periodic point is a node.

The periodic points of node type typically undergo a period-doubling cascade upon

parameter variation. This is illustrated by means of Lyapunov diagrams for the maps P,

L , and T in Figures 10–12. Period doubling cascades lead to the creation of infinitely

many unstable periodic points. These points play a key role in the formation of chaotic

attractors in two different ways. One scenario is that a periodic point of source type

becomes a so-called snap-back repeller, which provides a sufficient condition for chaotic

dynamics. We will discuss snap-back repellers in more detail in Section 3.3.

Another scenario is that a periodic point of saddle type has an unstable manifold which

shows a strong resemblance to the chaotic attractor observed for the same parameter

values. Such attractors will be referred to as Hénon-like attractors. Numerical evidence

of Hénon-like attractors for the maps P (in the 1:5 tongue), L (in the 1:4 tongue), and T

(in the 2:5 tongue) is presented in Figures 13–15. Each figure shows a chaotic attractor

together with the unstable manifold of a saddle periodic point. Due to the striking

resemblance we conjecture that each chaotic attractor shown is in fact the closure of an

unstable manifold of the saddle point.

Note that strictly speaking, we must speak of an “unstable set” instead of an “unstable

manifold”. Indeed, since the maps P, L , and T are not diffeomorphisms the unstable set

can have self-intersections which are indeed clearly visible in the aforementioned figures.

An explanation of this phenomenon is already provided in Section 3.1 where it is shown

that the image of any curve under a noninvertible map may have self-intersections. Figure
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16 shows a close up of the Hénon-like attractor of Figure 13 together with iterates of the

critical line LC. Clearly, the unstable manifolds forms tangencies along the iterates of

LC. Observe that LC is described by a linear equation and its iterate is an algebraic curve

of degree 2. Therefore, the n-th iterate of LC is an algebraic curve of degree 2n. Hence,

iterates of LC become very complex and so do the foldings of the unstable manifolds.

3.3 Snap-back repellers

In his 1989 paper, in which the map L was introduced, Lorenz pointed out the following

sufficient condition for a non-invertible map to exhibit sensitive dependence on initial con-

ditions: if the map has an attractor containing two distinct points which are mapped to the

same point, then the map exhibits sensitive dependence on initial conditions. Lorenz only

provided a heuristic argument and suggested that his observation is part of mathematical

folklore. However, already in 1978 Marotto proved a theorem in this spirit that provides

a sufficient condition for chaotic dynamics of multi-dimensional maps. In what follows

‖ · ‖ denotes the standard Euclidean norm on Rn and Br(p) := {x ∈ Rn : ‖x − p‖ ≤ r}
denotes a closed ball with radius r around the point p.

Definition 1 (Marotto 1978, 2005). Let F : Rn → Rn be a differentiable map. A fixed

point p of F is called a snap-back repeller if the following two conditions are satisfied:

(i) the fixed point p is expanding, which means that there exists an r > 0 such that the

eigenvalues of DF (x) exceed 1 in absolute value for all x ∈ Br(p);

(ii) there exists a point x0 ∈ Br(p) with x0 6= p and m ∈ N such that xm = p and

det(DF (xk)) 6= 0 for all 1 ≤ k ≤ m where xk = F k(x0).

Theorem 1 (Marotto 1978). If F : Rn → R
n has a snap-back repeller, then F is chaotic

in the sense of Marotto. That is, there exist

(i) N ∈ N such that for each p ≥ N the map F has a periodic point of period p;

(ii) a scrambled set for F , i.e., an uncountable set S containing no periodic points such

that

(a) F (S) ⊂ S,

16



(b) for every x, y ∈ S with x 6= y we have

lim sup
k→∞

‖F k(x)− F
k(y)‖ > 0,

(c) for every x ∈ S and any periodic point y we have

lim sup
k→∞

‖F k(x)− F
k(y)‖ > 0,

(d) an uncountable subset S0 of S such that for every x, y ∈ S0 we have

lim sup
k→∞

‖F k(x)− F
k(y)‖ = 0.

Of course, invertible maps cannot have snap-back repellers. For these maps the oc-

currence of chaotic dynamics is often proved via the existence of bifurcations that lead to

homoclinic tangencies of stable and unstable manifolds of periodic points of saddle type,

see Palis and Takens [1993] for a general account. Marotto’s theorem provides a sufficient

condition for chaotic dynamics of non-invertible maps based on expanding periodic points

and circumvents the computation of stable and unstable manifolds and their intersections.

In this sense proving the occurrence of chaotic dynamics for noninvertible maps is easier

than for invertible maps. Note that the existence of a snap-back repeller does not reveal

the structure of a chaotic attractor. Below we will give numerical evidence of a snap-back

repeller that coexists with a saddle periodic point giving rise to a Hénon-like attractor.

The following theorem, of which the proof is based on the implicit function theorem,

will be useful to prove the existence of snap-back repellers for a range of parameters of

the fold-and-twist map T .

Theorem 2 (Li & Lyu 2009). Denote by ‖ · ‖ and ‖ · ‖op the Euclidean norm and the

induced operator norm, respectively. Let F : Rn → Rn be a C1 map with a snap-back

repeller. If G : Rn → Rn is a C1 map such that ‖F − G ‖+ ‖DF −DG ‖op is sufficiently

small, then G has a snap-back repeller.

The concept of snap-back repellers is not new, but it is still the subject of intensive

study. Some works that appeared in the last ten years are [Chen et al., 2016, Peng, 2007,

Ren et al., 2017, Salman et al., 2016, Shi and Yu, 2008, Yuan et al., 2011, Zhao and Li,

2016]. Note that differentiability of the map is an essential condition for Theorem 1, but

see Gardini and Tramontana [2010a,b] for results which do not require smoothness.
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3.3.1 Existence of snap-back repellers for the map T

In this section we prove the existence of snap-back repellers for the map T in the special

case ϕ = π/2. First note that for this parameter value the periodic point born at the

HNS bifurcation described in Proposition 3 can be computed explicitly.

Proposition 7. For ϕ = π/2 and a > 3 the fold-and-twist map T has three period-4

points which are given by (−p1, p3), (−p2, p3), and (−p4, p4), where

p1 = −1

2
, p2 =

a− 2

2a
, p3 =

1 +
√

(a− 3)(a+ 1)

2a
, p4 =

1−
√

(a− 3)(a+ 1)

2a
.

The points (−p1, p3) and (−p2, p3) are unstable. The point (−p4, p4) is stable for 3 < a <

1 +
√
6, but loses stability at a = 1 +

√
6 as two Floquet multipliers pass through −1. At

a = 3 all three period-4 points coalesce with a fixed point.

Proof. Recall that f(x) = 1

4
(a− 2)− ax2. For ϕ = π/2 we have T (x, y) = (−y, f(x)) so

that T 4(x, y) = (−f 2(x), f 2(y)). Hence, (x, y) is a period-4 point of T if and only if −x
and y are fixed points of f 2. For 3 < a < 4 the fixed points for f 2 are given by p1, . . . , p4.

This implies that there are 16 candidates for a period-4 point of T which are given by

(−pi, pj) for 1 ≤ i, j ≤ 4. Straightforward computations show that:

• (−p1, p1) and (−p2, p2) are unstable fixed points;

• (−p1, p2) 7→ (−p2, p1) is an unstable period-2 orbit;

• (−p1, p3) 7→ (−p3, p1) 7→ (−p1, p4) 7→ (−p4, p1) is a period-4 orbit;

• (−p2, p3) 7→ (−p3, p2) 7→ (−p2, p4) 7→ (−p4, p2) is a period-4 orbit;

• (−p4, p4) 7→ (−p4, p3) 7→ (−p3, p3) 7→ (−p3, p4) is a period-4 orbit.

This exhausts all period-4 orbits. The Floquet multipliers of a period-4 point (−pi, pj)
are given by λ1 = 4a2pif(pi) and λ2 = 4a2pjf(pj). This implies the following conclusions:

• (−p1, p3) has Floquet multipliers λ1 = a2 and λ2 = 1 − (a − 3)(a + 1), and since

a > 3 this point is unstable;

• (−p2, p3) has Floquet multipliers λ1 = (2 − a)2 and λ2 = 1 − (a − 3)(a + 1), and

since a > 3 this point is unstable;
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• (−p4, p4) has Floquet multipliers λ1 = λ2 = 1− (a− 3)(a+ 1). Note that |λ1,2| < 1

for 3 < a < 1 +
√
6, and at a = 1 +

√
6 both multipliers pass through −1.

This completes the proof.

We now prove that p4 is a snap-back repeller for f 2 when a = 4. Next, we use this

result to show that (−p4, p4) is a snap-back repeller for T 4.

Lemma 1. For 1 +
√
6 < a ≤ 4 the point p =

(

1−
√

(a+ 1)(a− 3)
)

/2a is an expanding

fixed point of the second iterate of the map f(x) = 1

4
(a− 2)− ax2.

Proof. Let g = f 2, then g(p) = p. Note that g′(x) = −4a3x3 + a2(a − 2)x has a local

minimum atm = −
√

(a− 2)/12a. It is straightforward to verify that g′(m) is a decreasing

function of a and that g′(m) = −1 for a = 3. Since g′(−1

2
) = a2 > 0 and g′(0) = 0 it

follows from the intermediate value theorem that for a > 3 there exist numbers −1

2
<

ξ < m < η < 0 such that g′(x) = −1 for x = ξ and x = η. Hence, g′(x) < −1 for all

x ∈ U := (ξ, η). For a = 1 +
√
6 we have that p = ξ = (1 −

√
2)/(2 + 2

√
6) so that the

point p lies on the boundary of U . For 1 +
√
6 < a ≤ 4 the point p is contained in U . In

this case the ball Br(p) with r < min{|p− ξ|, |p−η|} is a repelling neighborhood of p.

Lemma 2. For a = 4 the second iterate of the map f(x) = 1

4
(a−2)−ax2 has a snap-back

repeller.

Proof. Let a = 4 and define g(x) = f 2(x) = −1

2
+ 16x2 − 64x4. Lemma 1 shows that

p = (1 −
√
5)/8 is an expanding fixed point of g. Hence, there exists r > 0 such that

|g′(x)| > 1 for all x ∈ Br(p). Set x1 = −p so that g(x1) = p. Consider the sequence

xk+1 = h(xk) where

h(x) = −1

4

√

2−
√
2− 4x

is one of the four branches of the multi-valued inverse of g. Since h is strictly decreasing

we have that I := h([−1

2
, 1
2
]) = [− 1

2
√
2
, 0]. Note that h maps I into itself so that xk ∈ I for

all k ≥ 2. Since |h′(x)| < 1 for all x ∈ I the mean value theorem shows that h : I → I is

a contractive mapping. Since p ∈ I is a fixed point of h it follows that xk → p as k → ∞.

Hence, for m ∈ N sufficiently large we have xm ∈ Br(p) and g
m(xm) = p. First note that

g′(x1) = g′(−p) = 4, and then observe that for k ≥ 2 the points xk lie in the interior of

the interval I and g′(x) is only zero at the boundary points of I. Therefore, g′(xi) 6= 0

for all i = 1, . . . , m.
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Proposition 8. Let ǫ > 0 be sufficiently small. For 4 − ǫ < a ≤ 4 and π/2 − ǫ < ϕ <

π/2 + ǫ the fourth iterate of the fold-and-twist map T has a snap-back repeller.

Proof. Note that for ϕ = π/2 we have T (x, y) = (−y, f(x)) so that T 4(x, y) = (−f 2(x), f 2(y)).

Lemma 2 shows that f 2 has a snap-back repeller p in some repelling neighbourhood

(p− r, p + r) for a = 4. It is straightforward to check that (−p, p) in the neighbourhood

Br((−p, p)) is a snap-back repeller for T 4 for (a, ϕ) = (4, π/2). Applying the persistence

result of Theorem 2 completes the proof.

3.3.2 Numerical evidence of snap-back repellers

In theory the conditions for a snap-back repeller are easy to verify since the computation

of invariant manifolds is circumvented. However, rigorous proofs for the existence of a

snap-back repeller are only possible in cases for which the “return time” m in Definition 1

is relatively small. Indeed, if F : Rd → Rd is a k-to-1 map, then the number of preimages

of a fixed point under Fm is km. Therefore, the explicit computation of preimages is only

possible for small values of m. In general, it can be expected that when the radius of the

repelling neighborhood decreases, a larger number of preimages may be needed in order to

return to the neighborhood of the periodic point. Figure 17 illustrates this phenomenon

for the map T .

The three maps P, L , and T all have a fixed point which becomes a source through

the HNS bifurcation described in Section 2.2. The numerical evidence presented in Figures

18-20 suggests that for suitable choices of the parameter values the fixed point can become

a snap-back repeller. For the three maps we have numerically computed a sequence of

preimages by recursively applying the formulas for the inverses presented in Appendix A.

Then we checked whether such a preimage returns to an expanding neighborhood ball

the fixed point. Note that the number of inverses grows exponentially fast, and for this

reason this algorithm is only applicable to snap-back repellers with small “return times”.

The period-p points that are born through the HNS bifurcation can also become snap-

back repellers for the maps Pp, L p, and T p for suitable parameter values. We consider

two different scenario’s. In the first scenario a saddle periodic point forming a Hénon-like

attractor becomes unstable through a period doubling bifurcation. As an example we

consider the map P in the 1:5 resonance tongue. For (a, b) = (3.85, 3.2) the Hénon-like

attractor is shown in Figure 13. Numerical continuation shows that the saddle period-5
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point becomes a source due to a period doubling bifurcation at b ≈ 3.404. At b = 3.6 the

period-5 points are expanding fixed points of the map P , and in fact they are snap-back

repellers. One such snap-back repeller is shown in Figure 21; the remaining four snap-back

repellers are not shown.

Another scenario is the coexistence of a saddle periodic point leading to a Hénon-like

attractor with a snap-back repeller. As an example we consider the 1:4 resonance tongue

for the map L . For (α, τ) = (0.28, 2.25) the Hénon-like attractor is shown in Figure 14.

Within the resonance tongue the saddle period-4 points coexists with a period-4 point

which is a source. The numerical evidence of Figure 22 suggests that this point is a

snap-back repeller for the map L 4.

3.4 Loss of hyperbolicity

The Lyapunov diagrams of Figures 1–3 suggest that chaotic attractors with two positive

Lyapunov exponents occur within sets of positive measure in the parameter plane of each

of the maps P, L , and T . It is an interesting question what bifurcation sequences lead

to the formation of such attractors and what their geometric structure is. For the map

T the latter question can be answered in the case ϕ = π/2 since then T 2 is just given

by decoupled iterates of the logistic map in the x and y components. This implies that

the attractor is simply the Cartesian product of two cantor sets.

The Lyapunov diagrams in Figures 10–12 suggest that the second Lyapunov exponent

becomes positive in a continuous manner as a parameter is varied. This phenomenon

might be related to loss of hyperbolicity. Abraham and Smale [1970] constructed an

example of a map for which dimension of the unstable subspace changes from point to

point. The terminology unstable dimension variability was coined in Kostelich et al.

[1997]. In our maps the following scenario is possible. In a chaotic attractor the unstable

periodic points are dense, and upon parameter variation more and more periodic points

change from saddles to sources. We will not investigate this in the present paper since

this scenario is not specific to non-invertible maps, but for more details see [Alligood and

Sander, 2006, Auerbach et al., 1987, Davidchack and Lay, 2000, Dos Santos et al., 2016].

21



4 Discussion

In this paper we have studied the dynamics of three non-invertible, planar maps. These

maps have as common properties that they rotate and fold the plane. It is clear that

the maps are not related to each other by conjugation. Indeed, the map L cannot be

conjugate to the maps P and T due to different number of pre-images. The maps P and

T cannot be conjugate since otherwise the bifurcation sequences in their 1:5 resonance

tongue would be the same.

Despite the lack of conjugacy the three maps share many similarities in both their

dynamics and their bifurcations. We have analytically proven the existence of a Hopf–

Nĕımark–Sacker bifurcation, which gives rise to resonance tongues in the parameter plane

of the map. Inside a resonance tongue a periodic attractor typically either undergoes a

period doubling cascade, which leads to chaotic dynamics, or a another Hopf–Nĕımark–

Sacker bifurcation, which in turn leads to a new family of tongues. For all maps we have

detected chaotic attractors of Hénon-like type: these attractors are conjectured to be the

closure of an unstable manifold of a saddle periodic point. Due to the non-invertibility of

the map these attractors have a folded structure which can be explained by means of the

iterates of the critical line. In addition, we have detected snap-back repellers which may

coexist with Hénon-like attractors.

We conjecture that the dynamics described above is typical for planar maps that rotate

and fold the plane. We even conjecture that the map T may serve as a prototype for

such maps. The advantage of the map T is that the action of folding and rotation can

be controlled separately through the parameters a and ϕ. In particular, for ϕ = π/2 we

were able to analytically prove the existence of snap-back repellers for the fourth iterate

of T . Note that our definition of T can also be used to consider more complicated non-

invertible maps. For example, in (3) we can replace the function f(x) = 1

4
(a − 2)− ax2

by a function that has more than two preimages. A concrete example of such a map

could be f(x) = ax(x2 − 1). Another choice for f would be the so-called tent map. In

this case the fold-and-twist map F is not smooth, but it may be amenable to a more

rigorous investigation. This approach is comparable to the Lozi map that was devised to

get a better understanding of the Hénon map. We hope that our map T with various

choices of the map f will inspire other researchers to obtain rigorous theorems for classes

of planar, non-invertible maps.
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A Preimages of the maps

Preimages of the predator-prey map

Given a point (u, v) ∈ R
2 we want to find all points (x, y) such that (u, v) = P(x, y), or

equivalently,

u = ax(1 − x− y),

v = bxy.

This gives

bu+ av = abx(1 − x),

so that

x = 1

2
±

√

1

4
− u

a
− v

b
.

After solving for x we find y = v/bx.

Preimages of the Lorenz map

Given a point (u, v) ∈ R2 we want to find all points (x, y) such that (u, v) = L (x, y), or

equivalently,

u = (1 + ατ)x− τxy,

v = (1− τ)y + τx2.

From the second equation we obtain y = (v − τx2)/(1 − τ). Substitution into the first

equation then gives the cubic equation x3 + px+ q = 0, where

p = −1

τ

(

v − (1− τ)(1 + ατ)

τ

)

, q = −(1− τ)u

τ 2
,
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provided that τ > 0. If we know one solution of the cubic equation, say ξ, then a long

division gives the quadratic equation x2+ ξx+ p+ ξ2 = 0 by which we can find remaining

solutions whenever −3ξ2 − 4p ≥ 0. In numerical computations of preimages the initial

solution ξ can be found using the Newton-Raphson method.

Preimages of the fold-and-twist map

Given a point (u, v) ∈ R2 we want to find all points (x, y) such that (u, v) = T (x, y), or

equivalently,

u = f(x) cosϕ− y sinϕ,

v = f(x) sinϕ+ y cosϕ.

This gives

u cosϕ+ v sinϕ = f(x) = 1

4
(a− 2)− ax2,

so that

x = ±
√

a− 2− 4u cosϕ− 4v sinϕ

4a
.

Finally,

y = v cosϕ− u sinϕ.

Numerical methods

In this Section we briefly describe the numerical algorithms that we have used to

compute Lyapunov exponents and unstable manifolds of saddle points. The algorithms

apply to any general smooth map F : Rd → Rd.

Computation of Lyapunov exponents

We estimate Lyapunov exponents using the algorithm described in Benettin et al. [1980a,b].

Given an initial condition we first iterate the map Ntrans times to obtain a point x1 on the

attractor. Let u1,k denote the k-th standard basis vector of Rd. At each point xn on the

orbit we apply the Jacobian matrix DF (xn) to each of the vectors un,k. Each vector tends

to align itself along the direction of maximal expansion (or of minimal compression). To

prevent the vectors un,k from collapsing onto one direction the Gram-Schmidt process is

used. The average of the logarithms of the rescaling factors then gives an approximation

of the k-th Lyapunov exponent.
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Let 〈·, ·〉 denote the standard inner product on Rd. For n ≥ 1 we have applied the

following iteration scheme:

vn,k = DF (xn)un,k,

un,1 = vn,1,

un,k = vn,k −
k−1
∑

j=1

〈vn,k, un,j〉
〈un,j, un,j〉

un,j,

un+1,k = un,k/‖un,k‖,

xn+1 = F (xn).

Iterating this scheme N times then gives the following approximation for the k-th Lya-

punov exponent:

λk =
1

N

N
∑

n=1

log ‖un,k‖.

Typical values used in our computations are Ntrans = 103 and N = 104.

Computation of unstable manifolds

We compute unstable manifolds of periodic points by means of techniques based on it-

erating fundamental domains described in [Broer and Takens, 2010, Simó, 1990]. Note

that for non-invertible maps the unstable manifold can have self-intersections. Hence the

terminology “manifold” is strictly speaking not correct.

Let x be a fixed point of the map F . Assume that the Jacobian matrix DF (x) has

one real eigenvalue λ > 1 with corresponding eigenvector v and all the other eigenvalues

have absolute value strictly smaller than 1. If we want to approximate N points on the

manifold, we first compute a linear approximation of the manifold in a small neighborhood

of the point x:

sj = ε exp(j log(λ2)/N),

wL
0,j = x− sjv,

wR
0,j = x+ sjv,

where j = 1, . . . , N . The superscripts L and R indicate the “left” and “right” branch of

the manifold, respectively. Then, for 1 ≤ k ≤ m we define inductively

wL
k,j = F (wL

k−1,j),

wR
k,j = F (wR

k−1,j).
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Table 2: Parameters used in the computation of unstable manifolds.

Figure no. ε N m

7 0.001 10 25

13 0.0001 1000 8

14 0.0001 1000 9

15 0.0001 1000 9

The “left” branch of the unstable manifold is then approximated by connecting the points

w0,1, . . . , w0,N , w1,1, . . . , w1,N , . . . , wm,1, . . . , wm,N

by line segments. The “right” branch is computed in the same way. For a periodic point

x with period p we apply the above procedure with F replaced by F p to each of the

points x,F (x), . . . ,F p−1(x) along the periodic orbit. Table 2 lists the parameters ε, N ,

and m that were used to produce our figures.
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Figure 1: Lyapunov diagram of attractors for the map P as a function of the parameters
a and b. For the color coding see Table 1.
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Figure 2: As Figure 1, but for the map L .
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Figure 3: As Figure 1, but for the map T .

-1

 0

 1

-2  0  2

D

T

real

complex

Figure 4: Let T and D respectively denote the trace and determinant of the Jacobian
matrix of a map F evaluated at a periodic point. For values of (T,D) within the grey
triangle the periodic point is stable. For D > T 2/4 the Floquet multipliers of the periodic
point are complex.
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Figure 5: Lyapunov coefficient as a function of the parameter a for the HNS bifurcation
of the map P.
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Figure 6: Lyapunov coefficient as a function of the parameter α for the HNS bifurcation
of the map L .
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Figure 7: Invariant circle in the 1:5 resonance tongue of the map P with (a, b) = (3.9, 2.9)
formed by the unstable manifolds of the saddle period-5 points (squares). The stable
period-5 points are indicated by circles.
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LC in a cusp.
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Figure 10: Left panel: 1:5 resonance tongue of P in the (a, b)-plane. Right panel: Lya-
punov exponents as a function of the parameter b while keeping the parameter a = 3.85
fixed.
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Figure 11: As Figure 10, but for the 1:4 resonance tongue of the map L . In the right
panel the parameter α = 0.28 is kept fixed.
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Figure 12: As Figure 10, but for the 2:5 resonance tongue of the map T . In the right
panel the parameter ϕd = 148 is kept fixed.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

y

x

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

y

x

Figure 13: A chaotic attractor of the map P for (a, b) = (3.85, 3.2) (left panel) and the
unstable manifold of a saddle period-5 point (right panel).
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Figure 14: As Figure 13, but for the map L with (α, τ) = (0.28, 2.25).
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Figure 15: As Figure 13, but for the map T with (a, ϕd) = (3.43, 148).
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Figure 16: Close up of the Hénon-like attractor of Figure 13 together with some iterates
of the critical line LC (in blue).
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Figure 17: Period-4 points as snapback repellers for T 4 with ϕ = π/2. The grey areas
indicate regions in which the eigenvalues of the matrix DT 4 have an absolute value larger
than 1. Line segments between iterates are added for clarity. In the left panel a = 3.6
and 20 iterations of T (i.e., 5 iterations of T 4) are needed to end up in a fixed point of
T 4. In the right panel a = 4 and only 8 iterations (i.e., 2 iterations of T 4) are needed.
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Figure 18: A chaotic attractor of the predator-prey map P for (a, b) = (3.6, 3.6). The
regions for which the Jacobian matrix of P has two unstable eigenvalues are indicated in
grey. The point (0.277778, 0.444444) is an expanding fixed point which is in fact a snap-
back repeller: an orbit of length 6 of preimages (indicated with dots and line segments to
guide the eye) of this point enters a ball of radius r = 0.12 around the fixed point.
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Figure 19: As Figure 19, but for the map L with (α, τ) = (0.35, 2.1), the fixed point
(0.591608, 0.35), m = 4, and r = 0.08.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

y

x

Figure 20: As Figure 19, but for the map T with (a, ϕd) = (3.6, 72), the fixed point
(−0.222222, 0.305863), m = 9, and r = 0.08.
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Figure 21: A period-5 point for P acting as a snap-back repeller for P5 for (a, b) =
(3.85, 3.6). Note that there are 4 more period-5 points which are a snap-back repeller for
P5, but these are not shown.
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Figure 22: A period-4 point of L acting as a snap-back repeller for L 4 for (α, τ) =
(0.28, 2.25). Note that there are 3 more period-4 points which are a snap-back repeller for
T 4, but these are not shown. These snap-back repellers coexist the Hénon-like attractor
for Figure 14.
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