152 research outputs found

    Limit cycle bifurcations from a nilpotent focus or center of planar systems

    Full text link
    In this paper, we study the analytical property of the Poincare return map and the generalized focal values of an analytical planar system with a nilpotent focus or center. Then we use the focal values and the map to study the number of limit cycles of this kind of systems with parameters, and obtain some new results on the lower and upper bounds of the maximal number of limit cycles near the nilpotent focus or center.Comment: This paper was submitted to Journal of Mathematical Analysis and Application

    Nilpotent center conditions in cubic switching polynomial Li\'enard systems by higher-order analysis

    Full text link
    The aim of this paper is to investigate two classical problems related to nilpotent center conditions and bifurcation of limit cycles in switching polynomial systems. Due to the difficulty in calculating the Lyapunov constants of switching polynomial systems at non-elementary singular points, it is extremely difficult to use the existing Poincar\'e-Lyapunov method to study these two problems. In this paper, we develop a higher-order Poincar\'e-Lyapunov method to consider the nilpotent center problem in switching polynomial systems, with particular attention focused on cubic switching Li\'enard systems. With proper perturbations, explicit center conditions are derived for switching Li\'enard systems at a nilpotent center, which is characterized as global. Moreover, with Bogdanov-Takens bifurcation theory, the existence of five limit cycles around the nilpotent center is proved for a class of switching Li\'enard systems, which is a new lower bound of cyclicity for such polynomial systems around a nilpotent center

    Abelian Integral Method and its Application

    Get PDF
    Oscillation is a common natural phenomenon in real world problems. The most efficient mathematical models to describe these cyclic phenomena are based on dynamical systems. Exploring the periodic solutions is an important task in theoretical and practical studies of dynamical systems. Abelian integral is an integral of a polynomial differential 1-form over the real ovals of a polynomial Hamiltonian, which is a basic tool in complex algebraic geometry. In dynamical system theory, it is generalized to be a continuous function as a tool to study the periodic solutions in planar dynamical systems. The zeros of Abelian integral and their distributions provide the number of limit cycles and their locations. In this thesis, we apply the Abelian integral method to study the limit cycles bifurcating from the periodic annuli for some hyperelliptic Hamiltonian systems. For two kinds of quartic hyperelliptic Hamiltonian systems, the periodic annulus is bounded by either a homoclinic loop connecting a nilpotent saddle, or a heteroclinic loop connecting a nilpotent cusp to a hyperbolic saddle. For a quintic hyperelliptic Hamiltonian system, the periodic annulus is bounded by a more degenerate heteroclinic loop, which connects a nilpotent saddle to a hyperbolic saddle. We bound the number of zeros of the three associated Abelian integrals constructed on the periodic structure by employing the combination technique developed in this thesis and Chebyshev criteria. The exact bound for each system is obtained, which is three. Our results give answers to the open questions whether the sharp bound is three or four. We also study a quintic hyperelliptic Hamiltonian system with two periodic annuli bounded by a double homoclinic loop to a hyperbolic saddle, one of the periodic annuli surrounds a nilpotent center. On this type periodic annulus, the exact number of limit cycles via Poincar{\\u27e} bifurcation, which is one, is obtained by analyzing the monotonicity of the related Abelian integral ratios with the help of techniques in polynomial boundary theory. Our results give positive answers to the conjecture in a previous work. We also extend the methods of Abelian integrals to study the traveling waves in two weakly dissipative partial differential equations, which are a perturbed, generalized BBM equation and a cubic-quintic nonlinear, dissipative Schr\ {o}dinger equation. The dissipative PDEs are reduced to singularly perturbed ODE systems. On the associated critical manifold, the Abelian integrals are constructed globally on the periodic structure of the related Hamiltonians. The existence of solitary, kink and periodic waves and their coexistence are established by tracking the vanishment of the Abelian integrals along the homoclinic loop, heteroclinic loop and periodic orbits. Our method is novel and easily applied to solve real problems compared to the variational analysis

    Isolated periodic wave trains in a generalized Burgers-Huxley equation

    Get PDF
    We study the isolated periodic wave trains in a class of modified generalized Burgers–Huxley equation. The planar systems with a degenerate equilibrium arising after the traveling transformation are investigated. By finding certain positive definite Lyapunov functions in the neighborhood of the degenerate singular points and the Hopf bifurcation points, the number of possible limit cycles in the corresponding planar systems is determined. The existence of isolated periodic wave trains in the equation is established, which is universal for any positive integer n in this model. Within the process, one interesting example is obtained, namely a series of limit cycles bifurcating from a semi-hyperbolic singular point with one zero eigenvalue and one non-zero eigenvalue for its Jacobi matrix
    • …
    corecore