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Abstract

In this article, center conditions and bifurcation of limit cycles at the nilpotent critical
point in a class of seventh-degree systems are investigated. With the help of
computer algebra system MATHEMATICA, the first 13 quasi-Lyapunov constants are
deduced. As a result, sufficient and necessary conditions in order to have a center
are obtained. The result that there exist 13 small amplitude limit cycles created from
the three-order nilpotent critical point is also proved. Henceforth, we give a lower
bound of cyclicity of three-order nilpotent critical point for seventh-degree nilpotent
systems.
MSC: 34C05; 34C07.
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1 Introduction
Computation of Lyapunov quantities is a hot topic with large number of articles per

year, but it is very difficult to obtain general results. The methods of computation of

Lyapunov quantities when the critical points are non-degenerate have been greatly

developed by many mathematicians. The method in [1,2] is based on the sequential

construction of Lyapunov functions. Furthermore, computing Lyapunov quantities

using the reduction of system to normal form could be seen in [3-5]. Another

approach to numerical computation of Lyapunov quantities which uses the passage to

the polar coordinates and the procedure of sequential construction of solution approxi-

mations is related with the obtaining of approximations of system solution, see [2],

they also could be seen in [6,7]. But computations of Lyapunov quantities become dif-

ficult when the critical points are degenerate because the method of the Poincaré for-

mal series cannot be used in order to compute Lyapunov constants in a neighborhood

of the critical point.

The nilpotent center problem was investigated by Moussu [8] and Stróżyna and

Żołądek [9]. In [10], Takens proved that Lyapunov system can be formally transformed

into a generalized Liénard system. Furthermore, in [11], Álvarez and Gasull proved

that the generalized Lienard system could be simplified even more by a reparametriza-

tion of the time. At the same time, Giacomini et al. [12,13] proved that the analytic

nilpotent systems with a center can be expressed as limit of non-degenerate systems

with a center.
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As far as we know, there are essentially three differential ways of obtaining Lyapunov

constant for nilpotent critical points in theory: by using normal form theory [14], by

computing the Poincaré return map [15] or by using Lyapunov functions [16]. Álvarez

investigated the momodromy and stability for nilpotent critical points with the method

of computing the Poincaré return map, see for instance [17]; Chavarriga et al. investi-

gated the local analytic integrability for nilpotent centers by using Lyapunov functions,

see for instance [18]; Moussu investigated the center-focus problem of nilpotent criti-

cal points with the method of normal form theory, see for instance [8].

Nevertheless, these methods are so complicated that it is hard to use for an analytic

system with a monodromic point, even in the case of a concrete polynomial systems.

So there are very few results known for concrete differential systems with monodromic

nilpotent critical points. Gasull and Torregrosa [19] have generalized the scheme of

computation of Lyapunov constants for systems of the form

ẋ = y +
∑
k≥n+1

Fk(x, y),

ẏ = −x2n−1 +
∑
k≥2n

Gk(x, y),
(1:1)

where Fk and Gk are (1, n)-quasi-homogeneous functions of degree k. Chavarriga et

al. investigated the integrability of centers perturbed by (p, q)-quasi-homogeneous

polynomials in [20]. Fortunately, Yirong Liu and Jibin Li [21] found that there always

exists a formal inverse integrating factor for three-order nilpotent critical points in

2009, and they gave a new definition of the focal values under the generalized triangle

polar coordinates and the method of commuting Lyapunov constants using the inverse

integral factors for the three-order nilpotent critical point.

For a given family of polynomial differential equations, the number of Lyapunov con-

stants needed to solve the center-focus problem is also related with the so-called cycli-

city of the point, i.e., the number of limit cycles that appear from it by small

perturbations of the coefficients of the given differential equation inside the family

considered (see, [22] for cases where this relation does not exist for the case of non-

degenerate centers). Let N(n) be the maximum possible number of limit cycles bifur-

cating from nilpotent critical points for analytic vector fields of degree n. It was found

that N(3) ≥ 2, N(5) ≥ 5, N(7) ≥ 9 in [23], N(3) ≥ 3, N(5) ≥ 5 in [17], and for Kukles sys-

tem with six parameters N(3) ≥ 3 in [11]. Recently, Yirong Liu and Jibin Li proved that

N(3) ≥ 8 in [24]. In this article, by employing the inverse integral factor method intro-

duced in [21], we consider a planar septic ordinary differential equation having a

three-order nilpotent critical point with the form

dx
dt

= μy + μx3 − μx2y + a12xy2 + a03y3 +
(
1 − 71275μ

378

)
x4y + a32x3y2

+ a23x2y3 + a14xy4 + a05y5 − μy(x2 + y2)3,

dy
dt

= −2μx3 + b21x
2y + μxy2 + b03y

3 − 2
(
1 − 71275μ

378

)
x3y2 + b23x

2y3

+ b14xy4 + b05y5 + μx(x2 + y2)3.

(1:2)
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We will prove N(7) ≥ 13. To the best of authors’ knowledge, their result on the lower

bounds of cyclicity of three-order nilpotent critical points for septic systems is new. It

is helpful to Hilbert’s 16th problem.

The rest of the article is organized as follows. In Section 2, some preliminary knowl-

edge given in [21] which is useful throughout the article are introduced. In Section 3,

using the linear recursive formulae in [21] to do direct computation, the first 13 quasi-

Lyapunov constants and the sufficient and necessary conditions of center are obtained.

This article is ended with Section 4 in which the 13-order weak focus conditions and

the result that there exist 13 limit cycles in the neighborhood of the three-order nilpo-

tent critical point is proved.

2 Preliminary knowledge
The idea of this section comes from [21,24], where the center-focus problem of three-

order nilpotent critical points of the planar dynamical systems is studied. For more

details, please refer to [21,24]. We will recall the related notions and results. The origin

of system

dx
dt

= y +
∞∑

i+j=2

aijx
iyj = X(x, y),

dy
dt

=
∞∑

i+j=2

bijxiyj = Y(x, y).

(2:1)

is a three-order monodromic critical point if and only if the system could be written

as follows:

dx
dt

= y + μx2 +
∞∑

i+2j=3

aijx
iyj = X(x, y),

dy
dt

= −2x3 + 2μxy +
∞∑

i+2j=4

bijxiyj = Y(x, y).

(2:2)

Under the transformation of generalized polar coordinates

x = r cos θ , y = r2 sin θ , (2:3)

system (2.2) can be changed into

dr
dθ

=
− cos θ[sin θ(1 − 2cos2θ) + μ(cos2θ + 2sin2θ)]

2(cos4θ + sin2θ)
r + o(r). (2:4)

In a small neighborhood, we can define the successor function of system (2.2) as

follows:

�(h) = r̃(−2π , h) − h =
∞∑
k=2

νk(−2π)hk. (2:5)

We have the following result.
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Lemma 2.1. For any positive integer m, ν2m+1(-2π) has the form

ν2m+1(−2π) =
m∑
k=1

ς
(m)
k ν2k(−2π), (2:6)

where ς
(m)
k

is a polynomial of νj (π), νj (2π), νj (-2π), (j = 2,3,..., 2m) with rational

coefficients.

It is different from the center-focus problem for the elementary critical points, we

know from Lemma 2.1 that when k > 1 for the first non-zero νk(-2π), k is an even

integer.

Definition 2.1. 1. For any positive integer m, ν2m(-2π) is called the m-order focal

value of system (2.2) in the origin.

2. If ν2(-2π) ≠ 0, the origin of system (2.2) is called 1-order weak focus. If there is an

integer m > 1, such that ν2(-2π) = ν4(-2π) = ... = ν2m-2(-2π) = 0, ν2m(-2π) ≠ 0, then, the

origin of system (2.2) is called m-order weak focus.

3. If for all positive integer m, we have ν2m(-2π) = 0, then, the origin of system (2.2) is

called a center.

Consider the system

dx
dt

= δx + y +
∞∑

k+j=2

akj(γ )xkyj,

dy
dt

= 2δy +
∞∑

k+j=2

bkj(γ )xkyj,

(2:7)

where g = {g1, g2,..., gm-1 is (m-1)-dimensional parameter vector. Let

γ0 = {γ (0)
1 , γ (0)

2 , . . . , γ (0)
m−1} be a point at the parameter space. Suppose that for ||g -

g0|| ≪ 1, the functions of the right hand of system (2.7) are power series of x, y with a

non-zero convergence radius and have continuous partial derivatives with respect to g.
In addition,

a20(γ ) ≡ μ, b20(γ ) ≡ 0, b11(γ ) ≡ 2μ, b30(γ ) ≡ −2. (2:8)

For an integer k, letting ν2k(-2π, g) be the k-order focal value of the origin of system

(2.7)δ = 0.

Theorem 2.1. If for g = g0, the origin of system (2.7)δ = 0 is a m-order weak focus, and

the Jacobin

∂(ν2, ν4, . . . , ν2m−2)
∂(γ1, γ2, . . . , γm−1)

∣∣
γ=γ0 �= 0, (2:9)

then, there exist two positive numbers δ* and g*, such that for 0 < |δ| <δ*, 0 < ||g-g0||
<g*, in a neighborhood of the origin, system (2.7) has at most m limit cycles which

enclose the origin (an elementary node) O(0,0). In addition, under the above conditions,

there exist γ̃ , δ̃ , such that when γ = γ̃ , δ = δ̃ , there exist exact m limit cycles of (2.7)

in a small neighborhood of the origin.

The following key results which define the quasi-Lyapunov constants and provide a

way of computing them were also given by Liu and Li [24].
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Theorem 2.2. If the origin of system (2.2) is a s-class or ∞-class, one can construct

successively the terms of the formal power series M(x, y) = x4 + y2 + o(r4), such that

∂

∂x

(
X

Ms+1

)
+

∂

∂y

(
Y

Ms+1

)
=

1
Ms+2

∞∑
m=1

(2m − 4s − 1)λm[x2m+4 + o(r2m+4)], (2:10)

Theorem 2.3. For system (2.2), if there exists a natural number s and a formal series

M(x,y) = x4 + y2 + o(r4), such that (2.10) holds, then

{ν2m(−2π)} ∼ [σm(s,μ)λm}, (2:11)

where

σm(s,μ) =
1
2

2π∫
0

(1 + sin2θ)cos2m+4θ

(cos4θ + sin2θ)
s+2 ν2m−4s−1

1 (θ)dθ . (2:12)

Definition 2.2. If there exists a natural number s and a formal series M(x, y) = x4 +

y2 + o(r4), such that (2.10) holds, then, lm is called the m-th quasi-Lyapunov constants

of the origin of system (2.2).

Theorem 2.4. For any positive integer s and a given number sequence

{c0β },β ≥ 3, (2:13)

one can construct successively the terms with the coefficients cab satisfying a ≠ 0 of the

formal series

M(x, y) = y2 +
∞∑

α+β=3

cαβx
αyβ =

∞∑
k=2

Mk(x, y), (2:14)

such that
(

∂X
∂x

+
∂Y
∂y

)
M − (s + 1)

(
∂M
∂x

X +
∂M
∂y

Y
)
=

∞∑
m=3

ωm(s,μ)xm. (2:15)

where for all k, Mk(x, y) is a k-homogeneous polynomial of x, y and sμ = 0.

It is easy to see that (2.15) is linear with respect to the function M, so that we can

easily find the following recursive formulae for the calculation of cab and ωm(s, μ).

Theorem 2.5. For a ≥ 1, a + b ≥ 3 in (2.14) and (2.15), cab can be uniquely deter-

mined by the recursive formula

cαβ =
1

(s + 1)α
(Aα−1,β+1 + Bα−1,β+1). (2:16)

For m ≥ 1, ωm(s, μ) can be uniquely determined by the recursive formula

ωm(s,μ) = Am,0 + Bm,0, (2:17)

where

Aαβ =
α+β−1∑
k+j=2

[k − (s + 1)(α − k + 1)]akjcα−k+1,β−j ,

Bαβ =
α+β−1∑
k+j=2

[j − (s + 1)(β − j + 1)]bkjcα−k,β−j+1.

(2:18)
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Notice that in (2.18), we set

c00 = c10 = c01 = 0,

c20 = c11 = 0, c02 = 1,

cαβ = 0, if α < 0 or β < 0.

(2:19)

We see from Theorem 2.2 that if the origin of system (2.2) is s-class or ∞-class, then,

by choosing {cab}, such that

ω2k+1(s,μ) = 0, k = 1, 2, . . . , (2:20)

we can obtain a solution group of {cab} of (2.20), thus, we have

λm =
ω2m+4(s,μ)
2m − 4s − 1

. (2:21)

Clearly, the recursive formulae by Theorem 2.5 is linear with respect to all cab.

Therefore, it is convenient to perform the computations by using computer algebraic

system like MATHEMATICA.

3 Quasi-Lyapunov constants and center conditions
Theorem 2.4 implies that we can find a positive integer s and a formal series M(x,y) =

x4 + y2 + o(r4) for system (1.2) such that (2.15) holds. Meanwhile, with the help of

MATH-EMATICA, by applying the recursive formulae presented in Theorem 2.5 to

carry out calculations, we have

ω3 = ω4 = ω5 = 0,

ω6 = − 1
3μ

(b21 + 3μ)(−1 + 4s),

ω7 = 3(s + 1)c03,

ω8 = − 2
5μ

(a12 + 3b03)(−3 + 4s).

(3:1)

(2.21) and (3.1) implies that the first two quasi-Lyapunov constants of system (1.2):

λ1 =
ω6

1 − 4s
= − 1

3μ
(b21 + 3μ),

λ2 =
ω8

3 − 4s
=

2
5μ

(a12 + 3b03).
(3:2)

we see from ω7 = 0 that

c03 = 0. (3:3)

Furthermore, the following conclusion holds.

Proposition 3.1. For system (1.2), one can determine successively the terms of the for-

mal series M(x, y) = x4 + y2 + o(r4), such that

(
∂X
∂x

+
∂Y
∂y

)
M − 2

(
∂M
∂x

X +
∂M
∂y

Y
)
=

13∑
m=1

λm[(2m − 5)x2m+4 + o(r30)], (3:4)

where lm is the mth quasi-Lyapunov constant at the origin of system (1.2), m = 1,

2,..., 13.
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Theorem 3.1. For system (1.2), the first 13 quasi-Lyapunov constants at the origin are

given by

λ1 = − 1
3μ

(b21 + 3μ),

λ2 =
2
5μ

(a12 + 3b03),

λ3 =
2
7μ

(a32 + b23),

λ4 =
4

15μ
(a14 − a23 + 5b05 − 2b14),

λ5 = − 40
77μ2

(a23 + 2b14)(−b03 + μ),

λ6 = − 2
7371μ2

(a23 + 2b14)(−756 + 252a32 + 142739μ),

λ7 = − 8
6237μ2

(a23 + 2b14)(189 − 378b05 + 189b14 − 35516μ),

λ8 = − 8
125307μ2

(a23 + 2b14)(−945 + 2646a03 + 231391μ),

λ9 = − 1
358435μ2

(a23 + 2b14)(−34020 + 4116a23 + 1372b14 + 5024095μ),

λ10 =
1

386822709μ3
(a23 + 2b14) − 714420 − 594712314μ − 14002632a05μ + 90016920a23μ

+ 102674821303μ2),

λ11 = − 17
6544091169μ3

(a23 + 2b14)(−359281818 + 42007896a23 + 36356476968μ + 2196158788177μ2),

λ12 = − 1
35823651080490μ4

(a23 + 2b14)(−26843045544 + 15035266598814μ − 2015039855231046μ2

− 154659205390636303μ3 + 30287803437510297551μ4),

λ13 = − 1
1549838616695238870μ4

(a23 + 2b14)(−153852012319592664 + 34933988751683499324μ

+ 10292695776995494843134μ2 − 3251791005302797375353453μ3

+ 218543335369252401019315591μ4).

(3:5)

In the above expressions of lk, we have already, let l1 = l2 = · · · = lk-1 = 0, k = 2,...,

13.

It follows from Theorem 3.1 that

Proposition 3.2. The first 13 quasi-Lyapunov constants at the origin of system (1.2)

are zero if and only if the following condition is satisfied:

b21 = −3μ, a12 = −3b03, b23 = −a32, a14 = −5b05, a23 = −2b14.

When the condition of Proposition 3.2 holds, system (1.2) can be brought to

dx
dt

= μy + μx3 − μx2y − 3b03xy2 + a03y3 +
(
1 − 71275μ

378

)
x4y + a32x3y2

− 2b14x2y3 − 5b05xy4 + a05y5 − μy(x2 + y2)3,

dy
dt

= −2μx3 − 3μx2y + μxy2 + b03y
3 − 2

(
1 − 71275μ

378

)
x3y2 − a32x

2y3

+ b14xy4 + b05y5 + μx(x2 + y2)3.

(3:6)

system (3.6) has an analytic first integral

H(x, y) =
μ

2
y2 +

μ

2
x4 +

a03
4

y4 +
a05
5

y5 − b05xy5 − b03xy3 − μ

2
x2y2 + μx3y

+
1
2

(
1 − 71275

378
μ

)
x4y2 − b14

2
x2y4 +

a32
3

x3y3 − μ

8
(x2 + y2)4

(3:7)

Proposition 3.2 implies that

Proposition 3.3. The origin of systems (3.6) is a center.

From Propositions 3.2 and 3.3, we further have
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Theorem 3.2. The origin of system (1.2) is a center if and only if the first 13 quasi-

Lyapunov constants are zero, that is, the condition in Proposition 3.2 is satisfied.

4 Multiple bifurcation of limit cycles
It is very interesting to study the number of limit cycles which could be bifurcated

from critical point O(0,0), because it is closely related with 16th problem of 23 pro-

blems of Hilbert. In this section, we will prove that the perturbed system of (1.2) can

generate 13 limit cycles enclosing an elementary node at the origin when the three-

order nilpotent critical point O(0,0) is a 13-order weak focus.

According to the relations

λ1 = λ2 = λ3 = λ4 = λ5 = λ6 = λ7 = λ8 = λ9 = λ10 = λ11 = λ12 = 0,λ13 �= 0,

we have that

Theorem 4.1. The three-order nilpotent critical point O(0,0) of system (1.2) is a 13-

order weak focus if and only if

b21 = −3μ, a12 = −3b03, b23 = −a32,
a14 = a23 − 5b05 + 2b14, b03 = μ,

a32 =
756 − 142739μ

252
,

b05 =
189 + 189b14 − 35516μ

378
,

a03 =
945 − 231391μ

2646
,

b14 =
34020 − 4116a23 − 5024095μ

1372
,

a05 =
−714420 − 594712314μ + 90016920a23μ + 102674821303μ]2

14002632μ

a23 =
359281818 − 36356476968μ − 2196158788177μ2

42007896
,

μ ≈ ±0.00917916.

(4:1)

Proof. Let

λ1 = λ2 = λ3 = λ4 = λ5 = λ6 = λ7 = λ8 = λ9 = λ10 = λ11 = 0,

we obtain relations of

b21, a12, b23, a14, b03 a32, b05, a03, b14, a05, a23,

Solving the equation l12 = 0 about μ, we could get four solutions

A1 ≈ 0.00358818 − 0.000840459i,A2 ≈ 0.00358818 + 0.000840459i,

A3 ≈ −0.00917916,A4 ≈ 0.00917916.

μ Î R, so μ ≈ ±- 0.00917916, and

Resultant[λ12,λ13,μ] = 708862143887297940928622843069693973671321637260998996555

67040247817324403065696876342634774894135792916822061

93708806880588535845254301230560000.

(4:2)

So l13 ≠ 0, the origin of system (1.2) is a 13-order weak focus.
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The perturbed system of (1.2) could be written as follows:

dx
dt

= δx + μy + μx3 − μx2y + a12xy2 + a03y3 +
(
1 − 71275μ

378

)
x4y + a32x3y2

+ a23x2y3 + a14xy4 + a05y5 − μy(x2 + y2)3,

dy
dt

= δy − 2μx3 + b21x
2y + μxy2 + b03y

3 − 2
(
1 − 71275μ

378

)
x3y2 + b23x

2y3

+ b14xy4 + b05y5 + μx(x2 + y2)3..

(4:3)

When conditions of (4.1) hold, by the relationships l1 = l2 = l3 = l4 = l5 = l6 = l7
= l8 = l9 = l 10 = l 11 = l12 = 0, the values of b21, a12, b23, a14, b03 a32, b05, a03, b14,

a05, a23, μ could be determined. Notice that μ = ± -0.00917916 are the simple zeros of

l12 = 0. Hence, when conditions in (4.1) hold, we have

when μ ≈ -0.00917916

∂(λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8,λ9,λ10,λ11,λ12)
∂(b21, a12, b23, a14, b03, a32, b05, a03, b14, a05, a23,μ)

≈ 1.83793 × 1051,

when μ ≈ 0.00917916

∂(λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8,λ9,λ10,λ11,λ12)
∂(b21, a12, b23, a14, b03, a32, b05, a03, b14, a05, a23,μ)

≈ 4.05781 × 1037.

In fact,

J =
∂(λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8,λ9,λ10,λ11,λ12)

∂(b21, a12, b23, a14, b03, a32, b05, a03, b14, a05, a23)

=
3125(57367926 − 25174619316μ + 2196158788177μ2)8

3553644238836727429387691170820702439358739754227457606557653317975629911417669374μ24

× (15338883168 − 6443685685206μ + 575725672923156μ2 + 22094172198662329μ3, )

(4:4)

and

Resultant[J,λ12,μ] �= 0.

So when μ ≈ ±0.00917916, J ≠ 0.

From the statement mentioned above, Theorem 2.1 follows that

Theorem 4.2. If the three-order nilpotent critical point O(0,0) of system (1.2) is a 13-

order weak focus, for 0 < δ ≪ 1, making a small perturbation to the coefficients of sys-

tem (1.2), then, for system (4.3), in a small neighborhood of the origin, there exist

exactly 13 small amplitude limit cycles enclosing the origin O(0,0), which is an elemen-

tary node.

Appendix A
Detailed recursive MATHEMATICA code to compute the quasi-Lyapunov constants at

the origin of system (1.2):

c[0, 0] = 0, c[1, 0] = 0, c[0, 1] = 0, c[2, 0] = 0, c[1, 1] = 0, c[0, 2] = 1;

when k < 0, or j < 0, c[k, j] = 0;
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else

c[k, j] =
1

378k(1 + s)μ
(−756μc[−8 + k, 2 + j] − 378jμc[−8 + k, 2 + j] − 756sμc[−8 + k, 2 + j]

− 378jsμc[−8 + k, 2 + j] − 2268μc[−6 + k, j] − 1134jμc[−6 + k, j] + 378kμc[−6 + k, j]

− 2268sμc[−6 + k, j] − 1134jsμc[−6 + k, j] + 378ksμc[−6 + k, j] − 2268μc[−4 + k,−2 + j]

− 1134jμc[−4 + k,−2 + j] + 1134kμc[−4 + k,−2 + j] − 2268sμc[−4 + k,−2 + j]

− 1134jsμc[−4 + k,−2 + j] + 1134ksμc[−4 + k,−2 + j] + 1512c[−4 + k, j]

− 378kc[−4 + k, j] + 1512sc[−4 + k, j] + 756jsc[−4 + k, j] − 378ksc[−4 + k, j]

− 142550jμc[−4 + k, j] + 71275kμc[−4 + k, j] − 285100sμc[−4 + k, j]

− 142550jsμc[−4 + k, j] + 71275ksμc[−4 + k, j] + 1512μc[−4 + k, 2 + j]

+ 756jμc[−4 + k, 2 + j] + 1512sμc[−4 + k, 2 + j] + 756jsμc[−4 + k, 2 + j]

+ 2268a32c[−3 + k,−1 + j] + 1512b23c[−3 + k,−1 + j] − 378b23jc[−3 + k,−1 + j]

− 378a32kc[−3 + k,−1 + j] + 1134a32sc[−3 + k,−1 + j] + 378b23sc[−3 + k,−1 + j]

− 378b23jsc[−3 + k,−1 + j] − 378a32ksc[−3 + k,−1 + j] − 378b21jc[−3 + k, 1 + j]

− 378b21sc[−3 + k, 1 + j] − 378b21jsc[−3 + k, 1 + j] + 2268μc[−3 + k, 1 + j]

− 378kμc[−3 + k, 1 + j] + 1134sμc[−3 + k, 1 + j] − 378ksμc[−3 + k, 1 + j]

− 756μc[−2 + k,−4 + j] − 378jμc[−2 + k,−4 + j] + 1134kμc[−2 + k,−4 + j]

− 756sμc[−2 + k,−4 + j] − 378jsμc[−2 + k,−4 + j] + 1134ksμc[−2 + k,−4 + j]

+ 1512a23c[−2 + k,−2 + j] + 2268b14c[−2 + k,−2 + j] − 378b14jc[−2 + k,−2 + j]

− 378a23kc[−2 + k,−2 + j] + 756a23sc[−2 + k,−2 + j] + 756b14sc[−2 + k,−2 + j]

− 378b14jsc[−2 + k,−2 + j] − 378a23ksc[−2 + k,−2 + j] − 756μc[−2 + k, j]

− 378jμc[−2 + k, j] + 378kμc[−2 + k, j] − 756sμc[−2 + k, j] − 378jsμc[−2 + k, j]

+ 378ksμc[−2 + k, j] + 756a14c[−1 + k,−3 + j] + 3024b05c[−1 + k,−3 + j]

− 378b05jc[−1 + k,−3 + j] − 378a14kc[−1 + k,−3 + j] + 378a14sc[−1 + k,−3 + j]

+ 1134b05sc[−1 + k,−3 + j] − 378b05jsc[−1 + k,−3 + j] − 378a14ksc[−1 + k,−3 + j]

+ 756a12c[−1 + k,−1 + k,−1 + j] + 1512b03c[−1 + k,−1 + j] − 378b03jc[−1 + k,−1 + j]

− 378a12kc[−1 + k,−1 + j] + 378a12sc[−1 + k,−1 + j] + 378b03sc[−1 + k,−1 + j]

− 378b03jsc[−1 + k,−1 + j] − 378a12ksc[−1 + k,−1 + j] + 378kμc[k,−6 + j]

+ 378ksμc[k,−6 + j] − 378a05kc[k,−4 + j] − 378a05ksc[k,−4 + j]

− 378a03kc[k,−2 + j] − 378a03ksc[k,−2 + j] + 756jc[−4 + k, j] − 285100μc[−4 + k, j])

ωm = − 1
378μ

(378μc[−7 +m, 1] + 378sμc[−7 +m, 1] + 756μc[−5 +m,−1]

− 378mμc[−5 +m,−1] + 756sμc[−5 +m,−1] − 378msμc[−5 +m,−1]

− 1134mμc[−3 +m,−3] − 1134msμc[−3 +m,−3] − 378c[−3 +m,−1]

+ 378mc[−3 +m,−1] − 71275mμc[−3 +m,−1] − 756sμc[−3 +m, 1]

− 378sc[−3 +m,−1] + 378msc[−3 +m,−1] + 71275μc[−3 +m,−1]

+ 71275sμc[−3 +m,−1] − 71275msμc[−3 +m,−1] − 756μc[−3 +m, 1]

− 1890a32c[−2 +m,−2] − 1890b23c[−2 +m,−2] + 378a32mc[−2 +m,−2]

− 756a32sc[−2 +m,−2] − 756b23sc[−2 +m,−2] + 378a32msc[−2 +m,−2]

− 378b21c[−2 +m, 0] − 1890μc[−2 +m, 0] + 378mμc[−2 +m, 0]

+ 378msμc[−2 +m, 0] − 756μc[−1 +m,−5] − 1134mμc[−1 +m,−5]

− 1134msμc[−1 +m,−5] − 1134a23c[−1 +m,−3] − 2646b14c[−1 +m,−3]

+ 378a23mc[−1 +m,−3] − 378a23sc[−1 +m,−3] − 1134b14sc[−1 +m,−3]

+ 378a23msc[−1 +m,−3] − 378mμc[−1 +m,−1] − 378msμc[−1 +m,−1]

− 3402b05c[m,−4] + 378a14mc[m,−4] − 1512b05sc[m,−4] + 378a14msc[m,−4]

− 378a12c[m,−2] − 1890b03c[m,−2] + 378a12mc[m,−2] − 756b03sc[m,−2]

+ 378a12msc[m,−2] − 378μc[1 +m,−7] − 378mμc[1 +m,−7] − 378sμc[1 +m,−7]

− 378msμc[1 +m,−7] + 378a05c[1 +m,−5] + 378a05mc[1 +m,−5]

+ 378a05msc[1 +m,−5] + 378a03c[1 +m,−3] + 378a03mc[1 +m,−3]

+ 378a03msc[1 +m,−3] + 378μc[1 +m,−1] + 378mμc[1 +m,−1]

− 756sμc[−2 +m, 0] − 756sμc[−1 +m,−5] − 378a14c[m,−4]

+ 378sμc[1 +m,−1] + 378msμc[1 +m,−1] + 378a05sc[1 +m,−5] + 378a03sc[1 +m,−3])

λm =
ω2m+4

2m − 4s − 1
.
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