592 research outputs found

    Bifurcation Analysis of Reaction Diffusion Systems on Arbitrary Surfaces

    Full text link
    In this paper we present computational techniques to investigate the solutions of two-component, nonlinear reaction-diffusion (RD) systems on arbitrary surfaces. We build on standard techniques for linear and nonlinear analysis of RD systems, and extend them to operate on large-scale meshes for arbitrary surfaces. In particular, we use spectral techniques for a linear stability analysis to characterize and directly compose patterns emerging from homogeneities. We develop an implementation using surface finite element methods and a numerical eigenanalysis of the Laplace-Beltrami operator on surface meshes. In addition, we describe a technique to explore solutions of the nonlinear RD equations using numerical continuation. Here, we present a multiresolution approach that allows us to trace solution branches of the nonlinear equations efficiently even for large-scale meshes. Finally, we demonstrate the working of our framework for two RD systems with applications in biological pattern formation: a Brusselator model that has been used to model pattern development on growing plant tips, and a chemotactic model for the formation of skin pigmentation patterns. While these models have been used previously on simple geometries, our framework allows us to study the impact of arbitrary geometries on emerging patterns.Comment: This paper was submitted at the Journal of Mathematical Biology, Springer on 07th July 2015, in its current form (barring image references on the last page and cosmetic changes owning to rebuild for arXiv). The complete body of work presented here was included and defended as a part of my PhD thesis in Nov 2015 at the University of Ber

    Dynamics of active surfaces

    Get PDF
    Mechano-chemical processes in biological systems play an important role during the morphogenesis of cells and tissues. In particular, they are responsible for the dynamic organisation of active stress, which itself results from non-equilibrium processes and leads to flows and deformations of material. The generation of active stress often occurs in thin biological structures, such as the cellular cortex or epithelial tissues, which motivates the theoretical concept of an active surface. In this thesis, we study the dynamics of curved and deforming active surfaces. More specifically, we are interested in the dynamics of mechano-chemical processes on these surfaces, as well as in their interaction with the surface shape and external forces. To study the interplay of mechano-chemical processes with shape changes of the material, we consider the fully self-organised shape dynamics using the theory of active fluids on deforming surfaces. We then develop a numerical approach to solve the corresponding force and torque balance equations. We further examine how the stability of surface shapes is affected by mechano-chemical processes. We show that the tight coupling between chemical processes and surface mechanics gives rise to the spontaneous generation of specific surface shapes, to shape oscillations and to directed surface flows that resemble peristaltic motion. In the following part, we explore the mechano-chemical self-organisation of active fluids on fixed surfaces, focussing on mechanical interactions with surrounding material. We introduce a description in which active surface flows set a surrounding passive fluid into motion. We then study two scenarios. First, inspired by the cellular cortex and its interactions with the cytoplasm, we consider a fluid that is enclosed by the surface. We find that mechanical interactions with the surrounding passive fluid enable an isotropic active surface to spontaneously generate patterns with polar asymmetry and to form a contractile ring in a fully self-organised fashion. Second, we consider the case where the passive fluid surrounds the active surface on the outside. This description leads to the model of a microswimmer, which is characterised by an onset of motion due to spontaneous symmetry breaking on the active surface. Most biological materials are viscoelastic, such that they show viscous and elastic responses if mechanical stress is applied on different time scales. In the final part of this thesis, we therefore consider a surface whose response to self-organised active stress is described by a Maxwell model. We identify a minimal time scale for the relaxation of elastic stress, beyond which spatio-temporal, mechano-chemical oscillations on the surface can spontaneously emerge. In summary, we identify and characterise in this thesis various processes that result from the self-organisation of active surfaces. The underlying coupling between surface mechanics and a chemical organisation of stress in the material represents a key feature of morphogenetic processes in biology. Furthermore, we develop several numerical approaches that will enable to study alternative constitutive relations of active surfaces in the future. Overall, we contribute theoretical insights and numerical tools to further the understanding of the emerging spatial organisation and shape generation of active surfaces.Mechanochemische Prozesse spielen eine wichtige Rolle für die Morphogenese von biologischen Zellen und Geweben. Sie sind insbesondere verantwortlich für die dynamische Organisation von aktiver mechanischer Spannung, welche Nicht-Gleichgewichtsprozessen entstammt und zu Flüssen und Verformungen von Material führt. Aktive mechanische Spannung wird häufig in dünnen biologischen Strukturen erzeugt, wie zum Beispiel dem Zellkortex oder dem Epithelgewebe, was die Einführung von aktiven Flächen als theoretisches Konzept motiviert. In der vorliegenden Arbeit untersuchen wir die Dynamik von gekrümmten und sich verformenden aktiven Flächen. Dabei interessieren wir uns insbesondere für die Dynamik mechanochemischer Prozesse auf diesen Flächen, sowie für deren Wechselwirkung mit der Flächenform und externen Kräften. Zur Untersuchung der Wechselwirkung zwischen mechanochemischen Prozessen und Flächenverformungen nutzen wir die hydrodynamische Theorie aktiver Fluide auf sich verformenden Flächen und betrachten eine vollständig selbstorganisierte Flächendynamik. Wir entwickeln eine Methode zur Bestimmung numerischer Lösungen des Kräfte- und Drehmomentgleichgewichts auf Flächen und untersuchen wie die Stabilität von Flächenformen durch mechanochemische Prozesse beeinflusst wird. Wir zeigen, dass die enge Kopplung zwischen chemischen Prozessen und der Mechanik von Flächen zur spontanen Erzeugung spezifischer Formen, zu Formoszillationen und zu gerichteten Flüssen führt, welche eine peristaltische Bewegung nachbilden. Im Folgenden untersuchen wir die mechanochemische Selbstorganisation aktiver Fluide auf festen Flächen und betrachten mechanische Wechselwirkungen mit umgebendem Material. Dazu beschreiben wir ein umgebendes passives Fluid, welches durch aktive Flüsse auf der Fläche in Bewegung versetzt wird. Im Rahmen dieser Beschreibung untersuchen wir zwei Szenarien. Inspiriert durch die Wechselwirkung des Zellkortex mit dem Zytoplasma, betrachten wir zuerst ein Fluid, welches durch die Fläche eingeschlossen wird. Wir zeigen, dass die mechanische Wechselwirkung einer isotropen, aktiven Fläche mit dem umgebenden Fluid es ermöglicht, Muster mit einer polaren Asymmetrie, sowie einen kontraktilen Ring spontan und selbstorganisiert zu bilden. Danach betrachten wir ein passives Fluid, welches die Fläche außen umgibt. Diese Beschreibung führt zu einem Modell für einen Mikroschwimmer, welcher durch eine spontane Symmetriebrechung auf der aktiven Fläche beginnt sich durch das passive Fluid zu bewegen. Die meisten biologischen Materialien verhalten sich viskoelastisch, sodass deren mechanische Antwort je nach Zeitskala einer applizierten mechanischen Spannung viskos und elastisch ausfallen kann. Im abschließenden Teil dieser Arbeit betrachten wir daher eine Fläche, deren mechanische Antwort auf aktive Spannung durch ein Maxwell-Modell beschrieben wird. Wir bestimmen eine minimale Zeitskala für die Relaxation von elastischer Spannung, welche das spontane Einsetzen räumlich-zeitlicher Oszillationen aktiver mechanischer Spannung kennzeichnet. Zusammengefasst identifizieren und charakterisieren wir in dieser Arbeit eine Reihe von Prozessen, welche der Selbstorganisation aktiver Flächen entspringen. Die zugrundeliegende Kopplung zwischen der Mechanik von Flächen und einer chemischen Organisation aktiver mechanischer Spannung stellen ein Schlüsselprinzip morphogenetischer Vorgänge in der Biologie dar. Zusätzlich entwickeln wir eine Reihe numerischer Methoden, welche es in Zukunft erlauben weitere Beschreibungen aktiver Flächen zu untersuchen. Damit trägt diese Arbeit neue theoretische Einsichten und numerische Algorithmen zur Verbesserung des Verständnisses der emergenten räumlichen Organisation und Formerzeugung aktiver Flächen bei

    Dynamics of active surfaces

    No full text

    Towards a theory for pattern formation in reaction-diffusion systems

    Get PDF

    Principles and theory of protein-based pattern formation

    Get PDF
    Biological systems perform functions by the orchestrated interplay of many small components without a "conductor." Such self-organization pervades life on many scales, from the subcellular level to populations of many organisms and whole ecosystems. On the intracellular level, protein-based pattern formation coordinates and instructs functions like cell division, differentiation and motility. A key feature of protein-based pattern formation is that the total numbers of the involved proteins remain constant on the timescale of pattern formation. The overarching theme of this thesis is the profound impact of this mass-conservation property on pattern formation and how one can harness mass conservation to understand the underlying physical principles. The central insight is that changes in local densities shift local reactive equilibria, and thus induce concentration gradients which, in turn, drive diffusive transport of mass. For two-component systems, this dynamic interplay can be captured by simple geometric objects in the (low-dimensional) phase space of chemical concentrations. On this phase-space level, physical insight can be gained from geometric criteria and graphical constructions. Moreover, we introduce the notion of regional (in)stabilities, which allows one to characterize the dynamics in the highly nonlinear regime reveals an inherent connection between Turing instability and stimulus-induced pattern formation. The insights gained for conceptual two-component systems can be generalized to systems with more components and several conserved masses. In the minimal setting of two diffusively coupled "reactors," the full dynamics can be embedded in the phase-space of redistributed masses where the phase space flow is organized by surfaces of local reactive equilibria. Building on the phase-space analysis for two component systems, we develop a new approach to the important open problem of wavelength selection in the highly nonlinear regime. We show that two-component reaction–diffusion systems always exhibit uninterrupted coarsening (the continual growth of the characteristic length scale) of patterns if they are strictly mass conserving. Selection of a finite wavelength emerges due to weakly broken mass-conservation, or coupling to additional components, which counteract and stop the competition instability that drives coarsening. For complex dynamical phenomena like wave patterns and the transition to spatiotemporal chaos, an analysis in terms of local equilibria and their stability properties provides a powerful tool to interpret data from numerical simulations and experiments, and to reveal the underlying physical mechanisms. In collaborations with different experimental labs, we studied the Min system of Escherichia coli. A central insight from these investigations is that bulk-surface coupling imparts a strong dependence of pattern formation on the geometry of the spatial confinement, which explains the qualitatively different dynamics observed inside cells compared to in vitro reconstitutions. By theoretically studying the polarization machinery in budding yeast and testing predictions in collaboration with experimentalists, we found that this functional module implements several redundant polarization mechanisms that depend on different subsets of proteins. Taken together, our work reveals unifying principles underlying biological self-organization and elucidates how microscopic interaction rules and physical constraints collectively lead to specific biological functions.Biologische Systeme führen Funktionen durch das orchestrierte Zusammenspiel vieler kleiner Komponenten ohne einen "Dirigenten" aus. Solche Selbstorganisation durchdringt das Leben auf vielen Skalen, von der subzellulären Ebene bis zu Populationen vieler Organismen und ganzen Ökosystemen. Auf der intrazellulären Ebene koordiniert und instruieren proteinbasierte Muster Funktionen wie Zellteilung, Differenzierung und Motilität. Ein wesentliches Merkmal der proteinbasierten Musterbildung ist, dass die Gesamtzahl der beteiligten Proteine auf der Zeitskala der Musterbildung konstant bleibt. Das übergreifende Thema dieser Arbeit ist es, den tiefgreifenden Einfluss dieser Massenerhaltung auf die Musterbildung zu untersuchen und Methoden zu entwickeln, die Massenerhaltung nutzen, um die zugrunde liegenden physikalischen Prinzipien von proteinbasierter Musterbildung zu verstehen. Die zentrale Erkenntnis ist, dass Änderungen der lokalen Dichten lokale reaktive Gleichgewichte verschieben und somit Konzentrationsgradienten induzieren, die wiederum den diffusiven Transport von Masse antreiben. Für Zweikomponentensysteme kann dieses dynamische Wechselspiel durch einfache geometrische Objekte im (niedrigdimensionalen) Phasenraum der chemischen Konzentrationen erfasst werden. Auf dieser Phasenraumebene können physikalische Erkenntnisse durch geometrische Kriterien und grafische Konstruktionen gewonnen werden. Darüber hinaus führen wir den Begriff der regionalen (In-)stabilität ein, der es erlaubt, die Dynamik im hochgradig nichtlinearen Regime zu charakterisieren und einen inhärenten Zusammenhang zwischen Turing-Instabilität und stimulusinduzierter Musterbildung aufzuzeigen. Die für konzeptionelle Zweikomponentensysteme gewonnenen Erkenntnisse können auf Systeme mit mehr Komponenten und mehreren erhaltenen Massen verallgemeinert werden. In der minimalen Fassung von zwei diffusiv gekoppelten "Reaktoren" kann die gesamte Dynamik in den Phasenraum umverteilter Massen eingebettet werden, wobei der Phasenraumfluss durch Flächen lokaler reaktiver Gleichgewichte organisiert wird. Aufbauend auf der Phasenraumanalyse für Zweikomponentensysteme entwickeln wir einen neuen Ansatz für die wichtige offene Fragestellung der Wellenängenselektion im hochgradig nichtlinearen Regime. Wir zeigen, dass "coarsening" (das stetige wachsen der charakteristischen Längenskala) von Mustern in Zweikomponentensystemen nie stoppt, wenn sie exakt massenerhaltend sind. Die Selektion einer endlichen Wellenlänge entsteht durch schwach gebrochene Massenerhaltung oder durch Kopplung an zusätzliche Komponenten. Diese Prozesse wirken der Masseumverteilung, die coarsening treibt, entgegen und stoppen so das coarsening. Bei komplexen dynamischen Phänomenen wie Wellenmustern und dem Übergang zu raumzeitlichen Chaos bietet eine Analyse in Bezug auf lokale Gleichgewichte und deren Stabilitätseigenschaften ein leistungsstarkes Werkzeug, um Daten aus numerischen Simulationen und Experimenten zu interpretieren und die zugrunde liegenden physikalischen Mechanismen aufzudecken. In Zusammenarbeit mit verschiedenen experimentellen Labors haben wir das Min-System von Escherichia coli untersucht. Eine zentrale Erkenntnis aus diesen Untersuchungen ist, dass die Kopplung zwischen Volumen und Oberfläche zu einer starken Abhängigkeit der Musterbildung von der räumlichen Geometrie führt. Das erklärt die qualitativ unterschiedliche Dynamik, die in Zellen im Vergleich zu in vitro Rekonstitutionen beobachtet wird. Durch die theoretische Untersuchung der Polarisationsmaschinerie in Hefezellen, kombiniert mit experimentellen Tests theoretischer Vorhersagen, haben wir herausgefunden, dass dieses Funktionsmodul mehrere redundante Polarisationsmechanismen implementiert, die von verschiedenen Untergruppen von Proteinen abhängen. Zusammengenommen beleuchtet unsere Arbeit die vereinheitlichenden Prinzipien, die der intrazellulären Selbstorganisation zugrunde liegen, und zeigt, wie mikroskopische Interaktionsregeln und physikalische Bedingungen gemeinsam zu spezifischen biologischen Funktionen führen

    Patterns and Collective Behavior in Granular Media: Theoretical Concepts

    Full text link
    Granular materials are ubiquitous in our daily lives. While they have been a subject of intensive engineering research for centuries, in the last decade granular matter attracted significant attention of physicists. Yet despite a major efforts by many groups, the theoretical description of granular systems remains largely a plethora of different, often contradicting concepts and approaches. Authors give an overview of various theoretical models emerged in the physics of granular matter, with the focus on the onset of collective behavior and pattern formation. Their aim is two-fold: to identify general principles common for granular systems and other complex non-equilibrium systems, and to elucidate important distinctions between collective behavior in granular and continuum pattern-forming systems.Comment: Submitted to Reviews of Modern Physics. Full text with figures (2Mb pdf) avaliable at http://mti.msd.anl.gov/AransonTsimringReview/aranson_tsimring.pdf Community responce is appreciated. Comments/suggestions send to [email protected]
    • …
    corecore