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Abstract
Mechano-chemical processes in biological systems play an important role during the mor-

phogenesis of cells and tissues. In particular, they are responsible for the dynamic organisa-
tion of active stress, which itself results from non-equilibrium processes and leads to flows and
deformations of material. The generation of active stress often occurs in thin biological struc-
tures, such as the cellular cortex or epithelial tissues, which motivates the theoretical concept
of an active surface. In this thesis, we study the dynamics of curved and deforming active
surfaces. More specifically, we are interested in the dynamics of mechano-chemical processes
on these surfaces, as well as in their interaction with the surface shape and external forces.

To study the interplay of mechano-chemical processes with shape changes of the material,
we consider the fully self-organised shape dynamics using the theory of active fluids on
deforming surfaces. We then develop a numerical approach to solve the corresponding force
and torque balance equations. We further examine how the stability of surface shapes is
affected by mechano-chemical processes. We show that the tight coupling between chemical
processes and surface mechanics gives rise to the spontaneous generation of specific surface
shapes, to shape oscillations and to directed surface flows that resemble peristaltic motion.

In the following part, we explore the mechano-chemical self-organisation of active fluids on
fixed surfaces, focussing on mechanical interactions with surrounding material. We introduce
a description in which active surface flows set a surrounding passive fluid into motion. We
then study two scenarios. First, inspired by the cellular cortex and its interactions with
the cytoplasm, we consider a fluid that is enclosed by the surface. We find that mechanical
interactions with the surrounding passive fluid enable an isotropic active surface to spon-
taneously generate patterns with polar asymmetry and to form a contractile ring in a fully
self-organised fashion. Second, we consider the case where the passive fluid surrounds the
active surface on the outside. This description leads to the model of a microswimmer, which
is characterised by an onset of motion due to spontaneous symmetry breaking on the active
surface.

Most biological materials are viscoelastic, such that they show viscous and elastic responses
if mechanical stress is applied on different time scales. In the final part of this thesis, we
therefore consider a surface whose response to self-organised active stress is described by a
Maxwell model. We identify a minimal time scale for the relaxation of elastic stress, be-
yond which spatio-temporal, mechano-chemical oscillations on the surface can spontaneously
emerge.

In summary, we identify and characterise in this thesis various processes that result from
the self-organisation of active surfaces. The underlying coupling between surface mechanics
and a chemical organisation of stress in the material represents a key feature of morpho-
genetic processes in biology. Furthermore, we develop several numerical approaches that will
enable to study alternative constitutive relations of active surfaces in the future. Overall,
we contribute theoretical insights and numerical tools to further the understanding of the
emerging spatial organisation and shape generation of active surfaces.





Kurzzusammenfassung
Mechanochemische Prozesse spielen eine wichtige Rolle für die Morphogenese von bio-

logischen Zellen und Geweben. Sie sind insbesondere verantwortlich für die dynamische
Organisation von aktiver mechanischer Spannung, welche Nicht-Gleichgewichtsprozessen ent-
stammt und zu Flüssen und Verformungen von Material führt. Aktive mechanische Spannung
wird häufig in dünnen biologischen Strukturen erzeugt, wie zum Beispiel dem Zellkortex
oder dem Epithelgewebe, was die Einführung von aktiven Flächen als theoretisches Konzept
motiviert. In der vorliegenden Arbeit untersuchen wir die Dynamik von gekrümmten und sich
verformenden aktiven Flächen. Dabei interessieren wir uns insbesondere für die Dynamik
mechanochemischer Prozesse auf diesen Flächen, sowie für deren Wechselwirkung mit der
Flächenform und externen Kräften.

Zur Untersuchung der Wechselwirkung zwischen mechanochemischen Prozessen und
Flächenverformungen nutzen wir die hydrodynamische Theorie aktiver Fluide auf sich ver-
formenden Flächen und betrachten eine vollständig selbstorganisierte Flächendynamik. Wir
entwickeln eine Methode zur Bestimmung numerischer Lösungen des Kräfte- und Drehmo-
mentgleichgewichts auf Flächen und untersuchen wie die Stabilität von Flächenformen durch
mechanochemische Prozesse beeinflusst wird. Wir zeigen, dass die enge Kopplung zwischen
chemischen Prozessen und der Mechanik von Flächen zur spontanen Erzeugung spezifischer
Formen, zu Formoszillationen und zu gerichteten Flüssen führt, welche eine peristaltische
Bewegung nachbilden.

Im Folgenden untersuchen wir die mechanochemische Selbstorganisation aktiver Fluide
auf festen Flächen und betrachten mechanische Wechselwirkungen mit umgebendem Ma-
terial. Dazu beschreiben wir ein umgebendes passives Fluid, welches durch aktive Flüsse
auf der Fläche in Bewegung versetzt wird. Im Rahmen dieser Beschreibung untersuchen wir
zwei Szenarien. Inspiriert durch die Wechselwirkung des Zellkortex mit dem Zytoplasma, be-
trachten wir zuerst ein Fluid, welches durch die Fläche eingeschlossen wird. Wir zeigen, dass
die mechanische Wechselwirkung einer isotropen, aktiven Fläche mit dem umgebenden Fluid
es ermöglicht, Muster mit einer polaren Asymmetrie, sowie einen kontraktilen Ring spon-
tan und selbstorganisiert zu bilden. Danach betrachten wir ein passives Fluid, welches die
Fläche außen umgibt. Diese Beschreibung führt zu einem Modell für einen Mikroschwimmer,
welcher durch eine spontane Symmetriebrechung auf der aktiven Fläche beginnt sich durch
das passive Fluid zu bewegen.

Die meisten biologischen Materialien verhalten sich viskoelastisch, sodass deren mecha-
nische Antwort je nach Zeitskala einer applizierten mechanischen Spannung viskos und
elastisch ausfallen kann. Im abschließenden Teil dieser Arbeit betrachten wir daher eine
Fläche, deren mechanische Antwort auf aktive Spannung durch ein Maxwell-Modell beschrie-
ben wird. Wir bestimmen eine minimale Zeitskala für die Relaxation von elastischer Span-
nung, welche das spontane Einsetzen räumlich-zeitlicher Oszillationen aktiver mechanischer
Spannung kennzeichnet.

Zusammengefasst identifizieren und charakterisieren wir in dieser Arbeit eine Reihe von



Prozessen, welche der Selbstorganisation aktiver Flächen entspringen. Die zugrundeliegende
Kopplung zwischen der Mechanik von Flächen und einer chemischen Organisation aktiver
mechanischer Spannung stellen ein Schlüsselprinzip morphogenetischer Vorgänge in der Bio-
logie dar. Zusätzlich entwickeln wir eine Reihe numerischer Methoden, welche es in Zukunft
erlauben weitere Beschreibungen aktiver Flächen zu untersuchen. Damit trägt diese Arbeit
neue theoretische Einsichten und numerische Algorithmen zur Verbesserung des Verständ-
nisses der emergenten räumlichen Organisation und Formerzeugung aktiver Flächen bei.
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Chapter 1
Introduction
The development of multicellular organisms from a single cell is a remarkable process. It
involves a large number of steps gradually specifying the spatial organisation of the organism;
a process called morphogenesis.

Morphogenesis encompasses two important aspects of spatial organisation: the generation
and organisation of different shapes, as well as the general patterning of otherwise homo-
geneous structures. These concepts have been brought forward as key elements of morpho-
genetic processes in the seminal works of Thompson [1] and Turing [2]. The generation of
shapes generally requires mechanical forces to move and deform material, while spatial pat-
terns in biological cells and tissues are often chemical in nature. By organising mechanical
forces directly through chemical processes, biological systems demonstrate the fascinating
ability to couple the generation of forces with the formation of patterns in a material.

In this introductory chapter, we first present two concrete examples of such biological
systems whose properties motivate large parts of the theoretical work presented in this the-
sis (Section 1.1). We then introduce general theoretical concepts that are required to describe
the non-equilibrium properties of biological materials (Section 1.2). Finally, we explain how
the mechano-chemical organisation of biological systems can be integrated into a theoretical
description (Section 1.3). We conclude with a brief overview of the problems that are studied
in this thesis (Section 1.4).

1.1 Active forces in biological systems

Biological systems are unique in their ability to generate forces that act at molecular scales
and lead to macroscopic motion, flows and material deformations. During these processes,
energy is constantly transduced, such that biological systems are maintained away from
thermodynamic equilibrium [3–5]. Therefore, they are active systems and the associated
forces are referred to as active forces [6]. This is in contrast to ‘dead’ matter, which does not
transduce energy and only responds to external forces with its passive material properties.

In the following, we present two examples of highly abundant biological systems that
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are particularly interesting to study the dynamics of active mechanical processes: the actin
cortex of animal cells (Section 1.1.1) and epithelial tissues (Section 1.1.2). Both are involved
in a large number of morphogenetic events, and the key principles of their spatio-temporal
organisation inspired most of the theoretical work presented in this thesis.

1.1.1 The actin cortex of animal cells

Actin is a major component of the animal cells’ cytoskeleton, which is additionally constituted
by microtubules and intermediate filaments [7]. The actin cortex is a thin actin-rich structure,
which is physically attached to the lipid membrane that forms the outer boundary of cells.
The thickness of the actin cortex is on the order of 100 nm [8], which compares against a cell
diameter of animal cells roughly on the order of 10µm [9]. The actin cortex consists of semi-
flexible polymeric filaments that are structurally polar and dynamic. Indeed, actin-binding
proteins use energy from the hydrolysis of adenosine triphosphate (ATP) into adenosine
diphosphate (ADP) to polymerise actin filaments at one end, while the release of a phosphate
leads to depolymerisation at the other end. A polymerisation force can be generated by this
process; thus driving, for example, membrane protrusions in migrating cells [10, 11].

Due to actin turnover and to the transient binding dynamics of cross-linking proteins,
the cortex has viscoelastic material properties [12, 13]. The corresponding relaxation time
scales depend on the constituent’s turnover rates. The time scale of actin turnover is on
the order of tens of seconds [14,15], and cross-linking proteins typically bind and unbind on
time scales below a second [16]. Quantitative in-vivo measurements of the cortex determined
relaxation time scales of approximately five seconds [13]. However, the general rheology of
the cortex is complex, and some experiments suggest a power law distribution of relaxation
times [17, 18]. The cortical rheology and material properties are additionally affected by
active processes [19–21], which we introduce and discuss in the remainder of Section 1.1.1.

Active stress generation in the cortex

Besides mechanical integrity, the actin network provides tracks for myosin motor proteins.
The latter can cross-link and move along actin filaments [9, 22], thus forming a dynamic
actin-myosin meshwork called the actomyosin cortex (Fig. 1.1). Molecular motors use the
hydrolisation of ATP as an energy source to exert forces between filaments and thereby trans-
duce chemical energy into mechanical work [23, 24] (Fig. 1.1 b). This microscopic dynamics
leads macroscopically to the generation of active stress.

Active stress generation has been the focus of a wide range of experimental in-vivo and
in-vitro studies, which found that the active stress in the actomyosin systems is typically
contractile [8, 22, 25–29]. In general, its amplitude depends on the architecture of the actin
network [8,25,28,30] and on the local concentration of myosin motors [29,31–33]. Active stress
vanishes in the absence of myosin or when the actomyosin system is depleted of ATP [25].

At the cellular scale, active stress can lead to motion and shear of the actin cortex, a

2
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Figure 1.1: Overview of the actomyosin cortex. a) Fluorescence image of actin taken
from the actomyosin cortex of a C. elegans single-cell embryo during the onset of cytokinesis
(image: adapted from [33]). C. elegans is a worm that reaches about 1 mm in length at
maturity. Its ease of manipulation in the lab and the fact that it is transparent make it a
popular model organism in developmental biology. b) Schematic of the actomyosin cortex.
The actomyosin cortex is attached to a lipid membrane that forms the outer boundary
of animal cells. Myosin filaments dynamically cross-link actin filaments and exert forces
between them. For this, myosin motors use the hydrolisation of adenosine triphosphate
(ATP) into adenosine diphosphate (ADP) and transduce chemical energy into mechanical
work. Macroscopically, this leads to the generation of active stress. c) Fluorescently labelled
bundles of actin filaments in a reconstituted actomyosin system (image: adapted from [26]).
Reconstituted systems allow studying organisation principles of actomyosin systems in a
more controlled setting. d) Schematic cross sections through cells with different distributions
of actomyosin density. The latter provides an indicator for the local amplitude of active stress
in the cortex. An asymmetric distribution of actomyosin effectively polarises the cell and
leads to cortical flows towards one pole (bottom left). A contractile actomyosin ring is
formed during cytokinesis (bottom right). This causes cortical flows into the ring and cell
shape changes that ultimately lead to the division of a single cell into two daughter cells.

3
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process known as cortical flow [31,32,34–36] (Fig. 1.1 d). Importantly, active stress can also
lead to cell shape changes [12,33,34,37], even in the absence of external forces.

Organisation of the cortex during cytokinesis of animal cells

A well-studied phenomenon where active cortical flows and cell shape changes play an impor-
tant role is cytokinesis: the separation of a mother cell into two daughter cells. Cytokinesis is
an essential process for the development and maintenance of an organism. For example, cells
in the human body undergo an estimated 1016 cell divisions during an average life time [38].

Cytokinesis proceeds in several steps, during which the actomyosin cortex contributes
mechanical forces that are required for cell shape changes and cell division [12,39–41]. First,
animal cells round up due to an increase of active stress in the actomyosin cortex [42–44],
which facilitates the distribution of genetic material – the Deoxyribonucleic acid (DNA) –
within the cell [45]. This is followed by an accumulation of actin and myosin in a narrow band
surrounding the cell, which is called the contractile ring [34,46,47] (Fig. 1.1 d, bottom right).
The formation of a contractile ring is facilitated by a recruitment of actin and myosin towards
the ring zone [48–50], as well as in some cell types by a targeted reduction of actomyosin
density from the poles of the cell [51, 52]; The latter process is called polar relaxation. Due
to increased contractile stress in the contractile ring, a cleavage furrow forms and the cortex
ingresses [39,41], leading finally to the separation of the two daughter cells [53].

Cytokinesis is tightly regulated by biochemical signalling processes that guide cells through
the different steps just described [39, 54, 55]. We refer to signalling processes or signals here
generically as processes that are determined by genetic programs upstream of the dynam-
ics that we explicitly describe. Conceptually, one can consider them as an ‘external field’
that is added to the system by some underlying biochemical regulation. Importantly, these
signalling processes can also act inhomogeneously across the cortex and thereby break the
global isotropic symmetry of the cell. During cytokinesis, inhomogeneous signals originate
from the spindle apparatus, a cytoskeletal structure made of microtubules that facilitates the
even distribution of the genetic material to the two daughter cells [9]. The spindle geometry
defines the cell division axis: signals from the central part of the spindle support the forma-
tion of the contractile ring [39, 48, 56] and signals from the polar regions of the spindle lead
to the polar relaxation described above [52].

An important spindle-independent patterning process of the cortex is cell polarisation. In
this case, high concentrations of different proteins in two disjoint domains of the cortex can
act as molecular ‘labels’, and polarise cells before cytokinesis [57, 58]. The two daughter
cells that emerge from the following division are of distinct cell types, and the division is
thus called asymmetric cell division. The protein family that mainly regulates cell polarisa-
tion, the PAR family, is conserved across many different animal species and cell types [59].
However, the underlying symmetry breaking event occurs in different ways. For example, in
embryonic cells of the nematode Caenorhabditis elegans, a distinct cortical region is molec-

4



1.1 Active forces in biological systems

ularly marked by the sperm entry point into the unfertilised egg, which later defines a polar
asymmetry [35,60,61]. Another scenario is provided by cells that are embedded in a tissue,
where the cellular polarisation can be determined by signalling cues that are organised on
the tissue level [62–64].

Mechanical interactions of the cortex with the cytoplasm

During and outside of the context of cell division, the dynamics of the actomyosin cortex is
additionally influenced by its mechanical interactions with surrounding material. Towards the
inside of the cell, the cortex is in contact with the cytoplasm, a crowded fluid that consists
of 80 % water [65]. By manipulating the cytoplasm mechanically, it has been shown that
cytoplasmic flows can directly affect the dynamics of cortical material and the distribution
of proteins within it [66]. Similar cytoplasmic flows can appear spontaneously due to active
processes within the cytoplasm [67–69]. The reverse scenario, in which active cortical flows
set the cytoplasmic fluid into motion, has also been observed experimentally [66, 70, 71].
This suggests that active stress, which is generated in the actoymosin cortex, can affect the
dynamics of the cytoplasmic fluid and vice versa.

1.1.2 Epithelial tissues

In multicellular organisms, cells are the building blocks of biological tissues. The epithe-
lium is an example of a tissue type that is involved in a large range of morphogenetic pro-
cesses [72,73]. Epithelial tissues are multicellular sheets in which cells are tightly connected
by adherens junction proteins [74] (Fig. 1.2 b). The material properties of an epithelium
emerge as a net response that results from contributions of single cell mechanical properties
and from the mechanical connectivity of the tissue [72]. In general, the epithelium can be
considered as a complex viscoelastic material [75–77]. The time scale of stress relaxation in
tissues can be related to the cell division rate [78], but collective memory effects in a devel-
oping epithelial tissue have also been identified [79,80]. Cell growth, rearrangements of cells
due to neighbour exchanges, and active processes can additionally change the distribution of
mechanical stress in the tissue [80,81].

Active stress in epithelial tissue

The mechanical connectivity between cells within an epithelium enables the transmission of
locally generated active stress across the tissue [85]. As a result, the mechanical activity
of a few cells can lead in this assembly to morphogenetic transformations on multicellular
scales [72, 73, 86]. These include collective cellular motion or tissue flows [79, 87–90], as well
as the formation of tissue folds and invaginations with various geometries that appear during
the development of an organism [72,86,91–95] (Fig. 1.2 a). In most of these processes, a local
increase in the actomyosin density correlates with the appearance of tissue deformations.
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Figure 1.2: Overview of an epithelial tissue. a) Light-sheet fluorescence microscopy im-
age of the Drosophila melanogaster fly embryo during early development (image: adapted
from [82]). The fruit fly D. melanogaster represents one of the most popular model organism
to study questions in developmental biology. The fluorescent label is attached to deoxyri-
bonucleic acid (DNA) in the embryo, such that each distinct bright region represents a cell
within the tissue. At this stage, the tissue has started forming several invaginations. For
example, the central horizontal streak (ventral furrow) will later turn into a part of the adult
fly’s digestive tract. b) Schematic of connected cells in an epithelial tissue (image: adapted
from [73]). Adherens junctions provide a mechanical connectivity between cells in the tissue.
Active stress, which is locally generated in the actomyosin cortex of cells (Section 1.1.1),
can therefore be transmitted through the tissue. c) Schematics of mechanisms that allow
for a spatial organisation of an epithelial tissue. These are required to guide and coordinate
morphogenetic processes during development. Diffusible signalling molecules, which interact
with cells in a concentration-dependent manner (morphogens), can spread inhomogeneously
across the tissue and thereby provide an implicit spatial ‘map’ [83,84] (top). Inhomogeneous
physical properties of epithelial cells can lead to the formation of immiscible groups of cells,
which is called compartmentalisation [72] (bottom).
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1.2 Hydrodynamic theories of active matter

Biochemical perturbations of the global actomyosin machinery lead to the disruption or
failure of these processes [92,93], which altogether suggests that the active stress required for
morphogenetic processes in epithelial tissues is largely generated in the actomyosin cortex of
the epithelial cells.

Several mechanisms contribute to the spatio-temporal organisation of active stress associ-
ated with morphogenetic processes in epithelial tissues. These include feedback mechanisms
that couple the cellular secretion of signalling molecules to the local stress in the tissue, a
process called mechanotransduction [96, 97]. Furthermore, tissues can be patterned already
during early development, thus later instructing multicellular morphogenetic transforma-
tions to appear at the desired tissue location [72, 98]. The origin of these early patterns
can be of biochemical nature, as it is the case for mechanisms that involve morphogens,
diffusible molecular species that interact with cells in a concentration-dependent manner.
These can spread inhomogeneously across the tissue and thereby provide an implicit spatial
‘map’ [2,58,73,83,98] (Fig. 1.2 c, top). Inhomogeneous physical properties of epithelial cells
can also contribute to an effective patterning of tissues by forming patches of immiscible
groups of cells, a process called compartmentalisation [72] (Fig. 1.2 c, bottom).

1.2 Hydrodynamic theories of active matter

In the previous section, we have introduced the complex material properties of the actomyosin
cortex and epithelial tissues. These systems represent examples of soft condensed matter that
is maintained away from thermodynamic equilibrium by chemical processes [5]. A powerful
framework to systematically develop a theoretical description of such systems is provided by
a hydrodynamic approach that is based on irreversible thermodynamics [5,99,100]. Theories
of active matter that have been developed using this framework, were later successfully
applied to quantitatively describe a wide range of dynamic processes in the actomyosin
cortex [29,31–33,36,41,101] and in epithelial tissues [79,80,88–90].

In general, hydrodynamics theories describe slowly varying, long-lived processes that
emerge from a system with a large number of degrees of freedom. The corresponding
hydrodynamic modes are determined by conservation laws and continuous broken symme-
tries [99,100,102]. From the entropy production in the system, conjugate pairs of generalised
thermodynamic fluxes and forces can be identified [5]. Close to thermodynamic equilibrium,
linear constitutive relations can be written by expanding generalised fluxes in terms of gener-
alised forces [103]. Because the hydrodynamic approach is solely built on conservation laws
and symmetries, the resulting constitutive relations are generic and do not depend on the
microscopic details of the system [5].

In the following, we present the basic conservation laws (Section 1.2.1) and briefly intro-
duce the theoretical concepts of irreversible thermodynamics (Section 1.2.2). We then review
constitutive relations of active isotropic materials that have been obtained previously (Sec-
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tion 1.2.3). Note that for the purpose of this introduction, we present these aspects for
three-dimensional systems in Euclidean space. Finally, we discuss the description of ac-
tive materials that prescribe effectively two-dimensional, moving and deforming geometries:
active surfaces (Section 1.2.4).

1.2.1 Conservation laws

The dynamics of the microscopic degrees of freedom of molecular components has to obey a
set of conservation laws that are generically valid at, but also away from thermodynamic equi-
librium [5]. In the continuum limit, these conservation laws can be expressed as continuity
equations that are introduced in the following.

Conservation of mass implies the continuity equation

∂tρ̄+ ∂α (ρ̄vα) = 0, (1.1)

where ρ̄ is the mass density in units of mass per volume and vα is the local center-of-mass
velocity of volume elements. Greek indices denote Cartesian coordinates {x, y, z} and the
Einstein summation convention is used.

Conservation of momentum can be written as

∂tgα − ∂βσtot
αβ = 0, (1.2)

where gα = ρ̄vα denotes the momentum density and the total stress tensor −σtot
αβ corresponds

to the total momentum flux. The stress tensor in the comoving reference frame of volume
elements is given by σαβ = σtot

αβ + ρ̄vαvβ, for which the momentum balance Eq. (1.2) takes
the form

ρ̄
d

dt
vα = ∂βσαβ. (1.3)

Here, Eq. (1.1) was used and d
dt = ∂t + vγ∂γ denotes the convected time derivative.

Conservation of energy reads [5]

∂tē+ ∂αJ
e
α = 0, (1.4)

where ē is the energy density and Jeα denotes the energy flux.
Similarly, a conservation law of angular momentum can be expressed in terms of a conti-

nuity equation for the total angular momentum density [5]. For isotropic systems that are
studied in this thesis, angular momentum conservation implies that the stress tensor σtot

αβ

is symmetric. Hence, also the stress tensor σαβ in the comoving reference frame has to be
symmetric.
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1.2 Hydrodynamic theories of active matter

1.2.2 Irreversible thermodynamics

Local thermodynamic equilibrium

A system with a large number of degrees of freedom, which is globally at thermodynamic
equilibrium, can be described in terms of thermodynamic potentials that depend only on a
small number of state variables [104]. In the framework of irreversible thermodynamics, one
considers a local thermodynamic equilibrium: local volume elements are at thermodynamic
equilibrium, while the global system can be maintained away from it [5, 102]. This requires
the equilibration within volume elements to be fast compared to the dynamics of the hydro-
dynamic modes. If this condition is met, thermodynamic potentials and state variables are
well-defined in each of the volume elements. The sum of extensive thermodynamic quantities
defined in each volume element therefore yields meaningful physical quantities. In particular,
one can determine the free energy F of a finite volume of material from

F =
∫
f̄dV, (1.5)

where f̄ is the free energy density. The entropy S can be determined similarly from an
integral over the corresponding entropy volume density s̄.

Entropy production

At thermodynamic equilibrium the entropy S is maximal. If a system that is globally out of
thermodynamic equilibrium is left to equilibrate, entropy will be produced until the state of
maximal entropy is reached. In the following, we explain how an explicit expression for this
entropy production, and therefore information about irreversible processes in the system, can
be obtained from the free energy given in Eq. (1.5).

Consider the general balance equations for the free energy density and entropy density
given by

∂tf̄ + ∂αJ
f
α = θ̄f (1.6)

∂ts̄+ ∂αJ
s
α = θ̄, (1.7)

where θ̄f and θ̄ denote sources of free energy and the local rate of entropy production,
respectively [5,103]. For a given free energy density f̄ that characterises the local equilibrium
properties of the system, an explicit expression for θ̄f can be found by computing d

dtF using
Eq. (1.5) and identifying bulk and surface terms according to

d

dt
F =

∫
θ̄fdV −

∫
JfαdAα. (1.8)

The rate of local entropy production θ̄ can then be determined from θ̄f as follows. First,
we note that the thermodynamic relation ē = f̄ + T s̄ is valid in each volume element and
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Chapter 1: Introduction

the energy flux in Eq. (1.4) is accordingly related to fluxes of free energy and entropy by
Jeα = Jfα + TJsα. Here, T is the temperature and we consider for simplicity an isothermal
system. From the conservation of energy Eq. (1.4) and the balance Eqs. (1.6) and (1.7) it
then follows that the rate of local entropy production is related to sources of free energy
by [103]

T θ̄ = −θ̄f . (1.9)

Determining θ̄f as outlined above, is therefore sufficient to find an explicit expression for the
rate of local entropy production θ̄.

Onsager relations

The rate of local entropy production θ̄, or alternatively the rate of dissipation of free en-
ergy T θ̄, generally takes the form [5,102,103,105]

T θ̄ =
∑
k

JkXk. (1.10)

Here, Jk and Xk represent conjugate pairs of generalised thermodynamic fluxes and forces, re-
spectively, which must vanish at thermodynamic equilibrium [102]. Close to thermodynamic
equilibrium we can write linear constitutive relations

Jk =
∑
l

LklXl, (1.11)

where the coupling constants Lkl represent phenomenological coefficients [103]. As explained
in the following, one can deduce from physical considerations that not all coefficients Lkl can
be set independently and certain constraints have to be obeyed.

Based on the signature of the generalised fluxes and forces under time-reversal, one dis-
tinguishes between reactive and dissipative couplings [5,102]. If the time-reversal signatures
of Jk and Xl are equal (different), the coefficient Lkl represents a reactive (dissipative)1 cou-
pling and is denoted by Lrkl (Ldkl). Onsager reciprocal relations follow from the assumption
of microscopic irreversibility and can be stated as Lrkl = −Lrlk and Ldkl = Ldlk [102, 105, 106].
Hence, it follows from Eqs. (1.10) and (1.11) that only dissipative couplings Ldkl contribute
to the rate of entropy production.

The second law of thermodynamics imposes additional algebraic constraints on the coef-
ficients Ldkl [102]. In order to ensure T θ̄ ≥ 0, the dissipative coefficients must fulfil Ldkk ≥ 0
and Ldkl ≤ (LdkkLdll)1/2 (no summation). These conditions guarantee the positive definiteness
of the quadratic form that is defined by Eqs. (1.10), (1.11), and the Onsager relations.

Additionally, the expansion given in Eq. (1.11) has to respect the spatial symmetries of

1This notion can be illustrated by considering the equation of a damped oscillator: ẍ+ γẋ+ ω2x = 0. Albeit
not a thermodynamic example, the dissipative nature of the term γẋ is in accordance with the fact that its
signature under time-reversal is different from the signature of the other terms in this equation.
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1.2 Hydrodynamic theories of active matter

the system, which is known as Curie’s symmetry principle [107]. Formally, this implies that
the transformation properties of scalars, vectors and tensors have to respected [5].

1.2.3 Active fluids and viscoelastic gels

The approach outlined in Section 1.2.2 can be used to derive constitutive relations for active
fluids and gels [108–111]. In the case of an isotropic active fluid, conjugate pairs of generalised
fluxes and forces Jk ↔ Xk have been identified as [5]

σdαβ ↔ vαβ (1.12)

r ↔ ∆µ. (1.13)

In Eq. (1.12), σdαβ denotes the deviatoric stress tensor σdαβ = σαβ − Pδαβ, where P is an
isotropic equilibrium stress, and vαβ = (∂αvβ + ∂αvβ) /2 denotes the symmetric part of the
strain rate tensor ∂αvβ. In Eq. (1.13), r denotes the rate at which a chemical fuel species is
converted into a product species whose chemical potential difference is ∆µ = µf − µp [112].

Using the conjugate pairs of fluxes and forces Eqs. (1.12) and (1.13) and following Eq. (1.11),
a linear constitutive relation for the deviatoric stress tensor of an isotropic active fluid can
be written as [4, 5]

σd,fαβ = 2η̄s
(
vαβ −

1
3vγγδαβ

)
+ η̄bvγγδαβ + ξ̄∆µδαβ. (1.14)

The phenomenological Onsager coefficients η̄s, η̄b correspond to shear and bulk viscosities
of the fluid, respectively, the coefficient ξ̄ describes the generation of isotropic stress in the
material due to chemical reactions. In the absence of the latter, Eq. (1.14) leads together
with the momentum balance Eq. (1.3) to the Navier-Stokes equations of a compressible
fluid [111,113].

Using the hydrodynamic approach, it is also possible to describe active materials with
viscoelastic properties, as we briefly sketch in the following. Constitutive relation for vis-
coelastic gels can be derived by considering a free energy density f̄ that depends addition-
ally on the elastic strain uαβ in the material [5, 110]. Besides the conjugate pairs given
Eqs. (1.12) and (1.13), the local entropy production θ̄ then contains an additional pair of
conjugate fluxes and forces Jk ↔ Xk that is given by

D

Dt
uαβ ↔ −σel

αβ, (1.15)

where σel
αβ is the stress of the elastic material components. The convected corotational time

derivative
D

Dt
uαβ = ∂tuαβ + vγ∂γuαβ + ωαγuγβ + ωβγuαγ (1.16)

evaluates temporal changes of elastic strain in the comoving, corotating reference frame
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of volume elements [5]. Here, ωαβ = (∂αvβ − ∂βvα)/2 denotes the antisymmetric part of
the strain rate tensor. Taking into account the conjugate pairs given in Eqs. (1.12) and
Eq. (1.15), a constitutive relation for Duαβ/Dt can be written. Assuming linear behaviour
of the elastic material components, σel

αβ ∼ uαβ, the constitutive relation for Duαβ/Dt leads
to an constitutive relation for σel

αβ in the form [5,110]

(
1 + τM

D

Dt

)
σel
αβ = 2η̄′s

(
vαβ −

1
3vγγδαβ

)
+ η̄′bvγγδαβ. (1.17)

Here, η̄′s and η̄′b denote shear and bulk viscosities of the gel. Equation (1.17) corresponds to
a classical Maxwell model for the stress σel

αβ with a Maxwell relaxation time τM [111, 114].
This relation describes a predominantly elastic behaviour on time scales shorter than τM

and viscous behaviour on longer time scales. With this, the deviatoric stress tensor for an
isotropic active viscoelastic gel can be written as [4, 111]

σd,gαβ = σel
αβ + ξ̄∆µδαβ. (1.18)

Note that we have for simplicity ignored couplings with ∆µ in Eq. (1.17) and with vαβ

in Eq. (1.18).

1.2.4 Active surfaces

In Section 1.1, we have introduced the fascinating properties of the actomyosin cortex and
epithelial tissues and discussed their important roles in morphogenetic processes. These
structures represent active materials that are organised into effectively two-dimensional ge-
ometries: active surfaces (Fig 1.3). In this section, we present a basic overview of the geo-
metric and mechanical description of active surfaces. We begin by discussing the description
of deformations in thin layers of material [115] and introduce the geometric representation of
the associated midplane-surfaces. Then, we explain how constitutive relations for active sur-
faces can be obtained from the constitutive relations presented in the previous section [13,36].
Finally, we briefly discuss a more general approach to derive constitutive relations for active
surfaces [112].

Deformations and shear of the three-dimensional material are described by the strain rate
tensor ∂αvβ. In order to determine a representation of this tensor on a two-dimensional
surface, we require additional assumptions about the material degrees of freedom normal
to the midplane. We adapt in this thesis the classical thin shell assumption that can be
analogously formulated for a thin fluid film: points on a straight line along the normal of the
initial surface, remain on a straight line along the normal of the deformed surface [115]. In the
case of a fluid film, further assumptions are required about flows parallel to the midplane that
are not associated with midplane deformations (Appendix C). We also show in Appendix C
how the three-dimensional strain rate tensor ∂αvβ can be rigorously mapped onto a strain
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1.2 Hydrodynamic theories of active matter

Figure 1.3: Representation of biological structures as two-dimensional surfaces. a) The
height h of the cellular cortex and epithelial tissue is typically much smaller than their lateral
extensions L. Left: Fluorescence image of actin in the median cross section of a C.elegans
single-cell embryo (image: courtesy of Anne-Cecile Reymann). The increased brightness
in the outline of the cell indicates the high actin concentration in the cortex. Right: Flu-
orescence image of a transverse cross section of the Drosophila melanogaster fly embryo
(image: adapted from [116]). The blue color marks the DNA content in cells, which form
the epithelial tissue. The red color shows signals that instruct subsequent morphogenetic
processes. b) In these geometries, a description of the two-dimensional midplane (dashed
outline) is sufficient to capture the essential geometry of the three-dimensional structure. A
two-dimensional surface can be described by a parametrisation X(s1, s2), which defines a
local basis {e1, e2,n} on the surface.

rate tensor of a two-dimensional surface that represents the midplane of a thin fluid film.
A geometric representation of a general two-dimensional surfaces is given by a surface

parametrisation X(s1, s2), where
{
s1, s2} are generalised coordinates on the surface. This

parametrisation defines a local basis with tangent vectors ei = ∂iX (∂i = ∂/∂si) and surface
normal n = e1×e2/|e1×e2| with Cartesian components (ei)α and nα, respectively (Fig. 1.3b).

An effective description of the forces within a two-dimensional surface can be determined
from a given stress tensor σαβ of the three-dimensional sheet as follows. We begin by describ-
ing a force F = F iei that acts within the surface. For this, we introduce a tension tensor tij
that is defined by the relation

Fj = dsνitij . (1.19)

Here, ν = νiei is a unit vector that is orthogonal to a line element of length ds on which the
force F acts.1 The force F on the other hand can directly be determined from the stress σαβ in
the material (Fig. 1.4) [115] . For this, we use the projected stress tensor σij = σαβ (ei)α (ej)β

1This is analogous to a stress tensor σαβ in three dimensions that is defined by Fα = dAσαβn̄β , where the
force Fα acts on a surface element with surface normal n̄ (corresponding to the line element with in-plane
normal ν).
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Figure 1.4: Schematic of a cut through the material. The mechanical properties of the
three-dimensional material are described by the stress tensor σαβ . Cross-sectional surfaces
(along the z-axis marked in blue) are characterised by a unit normal ν̄, which is denoted ν
on the midplane at z = 0. By integrating the stress that acts on this cross-sectional surface
over the height h (Eq. (1.20)), effective mechanical properties associated with the midplane
surface can be determined.

and compute the force F from an integral over the finite height h given by

Fj = ds

∫ h/2

−h/2
dzν̄iσij . (1.20)

Here, the midplane is located at z = 0 such that νi = ν̄i
∣∣
z=0 and ν̄ = ν̄iei is the unit normal

on the cross-sectional surface that is also defined away from the midplane.1 Expanding the
integrand in Eq. (1.20) in z and using the definition of the tension tensor Eq. (1.19), we can
identify to lowest order in the height

tij ≈ hσ(0)
ij , (1.21)

where σ(0)
ij corresponds to the constant zeroth order contribution of the expansion of σij in z.

The projected stress tensor σij , together with Eq. (1.21), provide a connection between
the constitutive relations of active isotropic materials introduced in Section 1.2.3 and an
effective description of such materials on a two-dimensional surface. For example, we can
directly infer that the isotropic active stress σaαβ = ξ̄∆µδαβ leads to

taij ≈ hξ̄∆µ(0)δαβ (ei)α (ej)β (1.22)

= ξagij , (1.23)

which corresponds to an effective isotropic active tension taij in the surface description. Here,
we have introduced the metric tensor gij = ei · ej and collected prefactors that are constant
along the midplane surface normal into ξa = hξ̄∆µ(0). Variations of active stress along the
midplane surface normal lead in this limit to active bending moments that are not considered
further in this thesis [115].

An alternative approach to determine constitutive relations of active matter specifically

1Torques and related bending moments within a surface can be described in a similar fashion [115].
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1.3 Chemical regulation of active stress

Figure 1.5: Mechano-chemical feedback. a) Schematic overview of the mechano-chemical
feedback loop in biological systems. Mechanical stress is regulated by chemical cues and
leads to flows and deformations of material. In turn, this affects the distribution of the
chemical cues in the material. b) Theoretical conceptualisation of the mechano-chemical
feedback loop. Gradients of a stress-regulating molecular species lead to contractile advec-
tive flows that increase the local concentration of stress regulator. Diffusion homogenises
the concentration. Depending on the relative strength of advective and diffusive fluxes a
mechano-chemical instability can appear. This leads to inhomogeneous steady state distri-
butions of the stress regulating species and thus, of contractile stress [117].

for surfaces is to apply the general concepts of irreversible thermodynamics (Section 1.2.2)
directly to moving and deforming surfaces [112]. This leads to a fully covariant theory of
the mechanics of active surfaces. The covariant framework gives rise to a rich family of
additional active terms, including explicit couplings of the surface curvature with internal
chemical processes [112]. The fully covariant theory contains as a special case constitutive
relations for an isotropic active fluid film, which can alternatively be obtained as outlined
above and which represents the scenario we focus on in this thesis. The specific constitutive
relations used will be introduced in detail together with the concrete problems that are
studied in the main part of the thesis.

1.3 Chemical regulation of active stress

We have seen in Section 1.1 that the generation of active stress in the actomyosin cortex and
epithelial tissues is tightly coupled to chemical processes. This provides the elements for a
mechano-chemical feedback mechanism, in which chemically regulated active stress induces
motion of material, which in turn can affect the distribution of the chemical regulators
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(Fig. 1.5 a).1 Such a mechanism has been previously conceptualised in [117]. There, the
authors studied the dynamics of an active fluid as introduced in Eq. (1.14) in one dimension
and considered a contractile active stress ξ̄∆µ(c) ≥ 0 that depends additionally on the local
concentration c of a stress-regulating molecular species. For a given distribution of active
stress ξ̄∆µ(c), the force balance2 ∂βσαβ = 0 leads to a finite flow velocity vα of the material.
These flows lead in turn to a change in the concentration c of stress regulator, which can be
described by an advection-diffusion equation

∂tc = −∂α (cvα) +D∂2
αc, (1.24)

where D is the diffusion constant. This generic description gives rise to a mechano-chemical
instability that depends on the competition between active contractile flows that locally lead
to an accumulation of stress regulator and its homogenisation due to diffusion [117] (Fig. 1.5 b).

Several descriptions of self-organised active materials that followed a similar approach have
been studied in fixed domains and in the absence of curvature. These include theoretical
studies [119–121], but also the description of experimental results related to the cellular
cortex [122], epithelial tissues [123–125] and in-vitro actomyosin systems [126]. More recently,
also stationary stress distributions that emerge from self-organised active stress on a sphere
have been used to determine deformations in a linear approximation [37,127].

The chemical regulation and resulting self-organisation of active stress is one of the key
concepts we explore in this thesis to study the dynamics of active surfaces.

1.4 Overview of this thesis

In this thesis, we study the dynamics of curved and deforming active surfaces. More specif-
ically, we are interested in the dynamics of mechano-chemical processes on these surfaces,
as well as in their interaction with the surface shape and external forces. We formalise this
using the hydrodynamic theory of active surfaces and study minimal models that resemble
key principles of the mechano-chemical self-organisation observed in biological systems.

The remaining parts of this thesis are organised as follows. In Chapter 2, we introduce a hy-
drodynamic description of self-organised active surfaces and develop a numerical framework
to study the full nonlinear shape dynamics. We identify mechano-chemical shape instabilities
and describe the spontaneous generation of non-trivial surface shapes, shape oscillations and
directed surface flows that resemble peristaltic waves. In Chapter 3, we study the effects of ex-

1In the context of biological systems one may critically argue that morphogenetic processes are predominantly
guided by ‘hard-coded’ biochemical signalling networks that operate constantly in the background, while
mechano-chemical processes are only secondary downstream effects. However, there is strong evidence that
the mechanical properties of biological materials and their dynamic chemical organisation are themselves an
integral component of the morphogenesis machinery [118].

2Throughout the thesis we neglect inertial effects, which is typically a valid simplification for the dynamics of
cells and tissues due to the small length scales and strong viscous damping associated with these systems [41,
89]. The force balance given here then follows from Eq. (1.3).
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ternal viscous forces on the self-organisation of an active fluid film on the surface of a sphere.
We show that external shear stress from a passive fluid enables the spontaneous formation
of a stable, contractile ring. We also characterise a microswimmer that is described by this
model, and which can spontaneously propagate through the surrounding fluid. In Chapter 4,
we study an active viscoelastic material on a sphere. We identify a critical stress relaxation
time that indicates the emergence of spontaneous contractility oscillations and, we study the
nonlinear dynamics of these oscillations. We conclude in Chapter 5 by summarising the main
results of this thesis and pointing out possible directions for future work.
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Chapter 2
Self-organised shape dynamics of
active fluid surfaces
In this chapter, we study the dynamics of shapes that arises from the self-organisation of
mechano-chemical processes on an active fluid surface.

In Section 2.1, we introduce the description of a self-organised active fluid surface. On this
surface, active stress is dynamically regulated by the concentration field of a diffusible and
advected regulator. We first present the force and torque balance equations on surfaces and
then present constitutive relations for the active fluid surface, as well as a dynamic equation
for the stress regulator. In Section 2.2, we develop a framework to capture the dynamics
of deforming axisymmetric surfaces, which also forms the basis of the numerical approach
we use to obtain solutions of the non-linear shape dynamics. In Sections 2.3 and 2.4, we
then study the shape dynamics of self-organised active surfaces with spherical and tubular
topology, respectively. In each case, we perform a linear stability analysis and examine the
full non-linear surface dynamics using our numerical approach. In Section 2.5, we summarise
and discuss the main results of this chapter.

2.1 Geometry and mechanics of self-organised active fluid surfaces

In this section, we introduce the description of a self-organised active fluid surface. We rep-
resent the corresponding time-dependent surface Γ ⊂ R3 by a parametrisation X(s1, s2, t),
where the parameters (s1, s2) and t denote generalised surface coordinates and time, re-
spectively. Using the surface basis vectors introduced in Section 1.2.4, vector fields on the
surface can be decomposed into tangential and normal parts a = a‖+a⊥, where a‖ = aiei and
a⊥ = ann. Derivatives of the basis vectors are given by the Gauss-Weingarten relations [128]

∂iej = −Cijn + Γkijek (2.1)

∂in = Cjiej , (2.2)
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Figure 2.1: Description of the forces and torques on curved surfaces. The geometry of
a curved surface Γ embedded in R3 can be described by a parametrisation X(s1, s2). The
tension tensor tij and moment tensor mij are used to describe forces F and torques T in
the surface that act on a line element ds.

where Cij is the curvature tensor and Γkij denotes Christoffel symbols. The mean curvature H
and Gaussian curvature K are defined by H = Ckk/2 and K = det(Cji).

2.1.1 Force and torque balance equations on curved surfaces

To describe deformations of the surface Γ as a result of internal mechanical stresses and
external forces, surface configurations have to obey force and torque balance equations that
we introduce in the following.

General forces in the surface acting on a line element of length ds can be written as
F = dsνiti (Fig. 2.1, [129]). This defines the in-plane tension tensor tij , as well as normal
forces tin in the surface by ti = tijej + tinn. Normal forces arise from torques T = dsνimi and
associated bending moments mi = mijej + mi

nn within the surface. Additionally, external
forces f ext = f ext,iei + f ext

n n can act onto the surface. With these definitions, the force and
torque balance equations read [112,115,129]:

∇itij + C j
i t

i
n = −f ext,j (2.3)

∇itin − Cijtij = −f ext
n (2.4)

∇imij + C j
i m

i
n = ε ji t

i
n (2.5)

∇imi
n − Cijmij = −εijtij , (2.6)

where ∇i denotes the covariant derivative, εij denotes the covariant Levi-Civita tensor (Ap-
pendix A.1) and we have neglected inertial terms. Equations (2.3) and (2.4) describe the
force-balance in the directions tangential and normal to the surface, respectively. Equa-
tion (2.5) determines how bending moments in the surface produce normal forces tin, and
Eq. (2.6) determines their coupling to the antisymmetric part of the tension tensor tij . Con-
stitutive relations of the material provide expressions for the tension and moment tensors
tij ,mij ,m

i
n [112]. These constitutive relations may contain passive elastic contributions, but
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Chapter 2: Self-organised shape dynamics of active fluid surfaces

also active material properties that take into account the active stress generation observed
in biological materials.

2.1.2 Constitutive relation of an active fluid surface

In order to define the active thin film description studied in this chapter, we first introduce
the equilibrium properties of the surface. We consider here a surface with constant surface
tension γ and bending rigidity κ, described by the Helfrich free energy [130]

FH =
∫
dA

[
γ + κ

(
Ckk

)2
]
. (2.7)

The tension and moment tensors of a surface described by Eq. (2.7) read [129]

tHij = γgij + κCkk

(
Ckkgij − 2Cij

)
(2.8)

mH
ij = 2κCkkεij . (2.9)

Spontaneous curvature and Gaussian bending rigidity lead to additional terms in Eqs. (2.8)
and (2.9), which we do not consider here for simplicity [112]. Note that the moments in
Eq. (2.9) generate normal forces in the surface given by Eq. (2.5) and the normal force
balance Eq. (2.4) yields the well-known shape equation of membranes [129].

To characterise flows and deformations of the thin film, we use the symmetric part of the
in-plane strain rate tensor ej · ∂iv, which reads [112]:

vij = 1
2 (∇ivj +∇jvi) + Cijvn. (2.10)

Here, vi denotes components of the in-plane flow field v‖ = viei, v⊥ = vnn describes defor-
mations of the surface, and v = v‖ + v⊥ represents the center-of-mass flow velocity of surface
elements. The deformation field vn contributes to strains that are generated when deforming
curved surface regions, such that curvature becomes a natural element of the constitutive
equations of a deforming surface.1 The deviatoric tension of an isotropic active thin film is
given by [32,112]

tdij = 2ηs
(
vij −

1
2v

k
kgij

)
+ ηbv

k
kgij + ξagij . (2.11)

Here, ηs and ηb are the shear and bulk viscosities. The contractility ξa ≥ 0 describes an
isotropic active tension. The viscous terms in Eq. (2.11) can be obtained from a thin film
limit, if additional assumptions about the flows in the three-dimensional fluid film are made
(Appendix C). Furthermore, note that an effective in-plane compressibility can even arise

1Equation (2.10) shows that the anisotropy of if the strain (rate) induced by a deformation is directly related
to the anisotropy of the surface curvature. To see this qualitatively, consider the homogeneous inflation of
a sphere and a cylinder along their surface normals. In the case of the sphere the surface area expands
homogeneously, because the curvature is isotropic. In the case of the cylinder, strain is only induced along
the azimuthal circumference, in accordance with the anisotropy of its surface curvature.

20



2.1 Geometry and mechanics of self-organised active fluid surfaces

in a fluid film that is incompressible in three dimensions and is in this case linked to an
exchange of surface material with the environment or surface height changes [13,41,112].

The complete constitutive relations are finally given by:

tij = tHij + tdij (2.12)

mij = mH
ij , (2.13)

with the tension and moment tensors given by Eqs (2.8), (2.9), and (2.11). Furthermore, we
assume that the volume enclosed by the surface is conserved, which defines a pressure p that
enters the normal force balance Eq. (2.4) as fext,n = p.

Finally, note that the normal torque balance Eq. (2.6) implies for the moment tensor
mH
ij given in Eq. (2.9) that tij has no antisymmetric part. Additionally, the in-plane

torque balance Eq. (2.5) can be used to eliminate normal forces tin in the force balance
Eqs. (2.3) and (2.4). With this, we guarantee that the torque balance equations are always
satisfied, and we are only left with force balance equations given by

∇itdij = 0 (2.14)

εjk∇k∇imH
ij + CijtHij + Cijtdij = p, (2.15)

where mH
ij , tHij and tdij are given in Eqs (2.8), (2.9), and (2.11), respectively.

2.1.3 Chemical regulation of active tension

We consider an active tension amplitude of the form ξa = ξf(c), where ξ is the contractility
and c is a concentration field that regulates the strength of the local active tension. Following
previous works [31,117,120,131], this regulation is modelled using a saturating Hill function

f(c) = cm

cm0 + cm
. (2.16)

The concentration field c is changing over time due to advective transport, reactions, and
diffusion and therefore plays a crucial role for the self-organisation of the surface dynamics.
These processes are captured by the dynamic equation for the concentration field [112,132]

∂tc = −∇i
(
cvi
)
− 2Hvnc+D∆Γc− koffc+ kon. (2.17)

The first term on the right-hand side describes advection due to in-plane flows. The sec-
ond term describes dilution and accumulation due to local surface expansion (Hvn > 0)
or compression (Hvn < 0), respectively, that occurs during deformations of surface regions
with non-vanishing mean curvature H. Isotropic in-plane diffusion with diffusion constant
D is incorporated using the Laplace-Beltrami operator ∆Γ = gij∇i∇j . The last two terms
describe production and degradation, defining a characteristic concentration c0 = kon/koff.
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Chapter 2: Self-organised shape dynamics of active fluid surfaces

For convenience, we choose in the following k = koff and c0 as model parameters and write
kon − koffc = k(c0 − c).

The dynamics of the concentration field given in Eq. (2.17) depends on flows vi and defor-
mations vn on and of the surface. For a given geometry, these flow fields can be determined
by solving the force balance Eqs. (2.14) and (2.15) of the active fluid surface. To close this
model, we have to solve additionally for the dynamics of the surface geometry that depends
on the deformation field vn. In the next section, we therefore present a general framework to
evolve the shape of surfaces for a given deformation field vn, where we consider the dynamics
of axisymmetric surfaces.

2.2 Dynamic representation of deforming axisymmetric surfaces

The dynamic equation of the deforming surface Γ is given by

dX
dt

= vnn, (2.18)

where vn denotes the deformation velocity and d
dt the total time derivative. In the following,

we consider deformations of axisymmetric surfaces and develop a framework to numerically
solve Eq. (2.18) and general vector-valued differential equations on this surface.

2.2.1 Arc length surface parameterisation

An arbitrary axisymmetric surface can be represented explicitly using an arc length parametri-
sation

X(ϕ, s, t) = ρ(s, t) ēρ(ϕ) + z(s, t)ēz, (2.19)

where {ēρ, ēϕ, ēz} is the normalised standard basis ēα · ēβ = δαβ with α, β ∈ {ρ, ϕ, z} in
cylindrical coordinates, ϕ = s1 ∈ [0, 2π] is the azimuthal angle, and s = s2 ∈ [0, L(t)] is the
arc length parameter of the meridional outline (Fig. 2.2). In the following, we use ϕ and s

explicitly as covariant indices. From Eq. (2.1) it follows that Csϕ = Cϕs = 0 and

Css(s, t) = ∂sψ, (2.20)

Cϕϕ(s, t) = sinψ
ρ

(2.21)

where ψ(s) is the tangent angle defined by (∂sρ, ∂sz) = (cosψ, sinψ). This implies that the
full shape information about Γ is encoded in the meridional curvature Css, together with a
point X(t)|s=0. Indeed, for given Css, we can compute the tangent angle from Eq. (2.20) as:

ψ(s, t) = ψ(t)|s=0 +
∫ s

0
Css(s′, t)ds′ (2.22)
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2.2 Dynamic representation of deforming axisymmetric surfaces

Figure 2.2: Representation of a deforming axisymmetric surface. The dynamic coordinate
transformation h defines an arc length parameter s(u, t) : S0 → S, where u is a coordinate
from a fixed Eulerian parametrisation of the meridional outline. The vectors {ēρ, ēϕ, ēz}
denote the normalised standard basis in cylindrical coordinates. The vector field es = ∂sX
denotes the meridional tangent vector. The field ψ(s) denotes the tangent angle defined
by cosψ = es · ēρ. The time-dependent coordinate transformation h and the meridional
curvature Css change with the deforming surface according to Eqs. (2.28) and (2.29). If
required, the surface can be independently reconstructed using Eqs. (2.22)–(2.24).

.

and reconstruct Γ via

ρ(s, t) = ρ(t)|s=0 +
∫ s

0
cos

[
ψ(s′, t)

]
ds′ (2.23)

z(s, t) = z(t)|s=0 +
∫ s

0
sin
[
ψ(s′, t)

]
ds′ (2.24)

from the meridional curvature. Consequently, the shape of the surface Γ during deformations,
and therefore the solution to Eq. (2.18), is encoded in the time evolution of the meridional
curvature Css and in the values of ψ, ρ and z at s = 0.

2.2.2 Time-dependent coordinate transformation

An arc length parametrisation s ∈ S(t) = [0, L(t)] simplifies the parametric form of covariant
equations and the shape reconstruction via Eqs. (2.22)–(2.24). However, the time dependence
of the domain S(t) makes it difficult to evaluate the total time derivative in the equation
of the shape dynamics, Eq. (2.18). This renders the arc length parametrisation impractical
for the numerical treatment of differential equations on a deforming surface. We therefore
introduce additionally an Eulerian parametrisation of Γ given by

Xe(ϕ, u, t) = ρ(u, t) ēρ(ϕ) + z(u, t)ēz, (2.25)

where u is a parameter on an interval S0 = [0, L0] that remains fixed during surface defor-
mations (Fig. 2.2). For convenience, we chose L0 = L|t=0. The azimuthal angle ϕ is defined
as in Eq. (2.19). Note that X and Xe represent the same surface Γ, but for the Eulerian
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Chapter 2: Self-organised shape dynamics of active fluid surfaces

parametrisation, the shape dynamics Eq. (2.18) can be written as

∂Xe

∂t
= vnn. (2.26)

The surface coordinates s and u are then related by a time-dependent coordinate transfor-
mation h(u, t) that is defined by

s(u, t) =
∫ u

0
h(u′, t)du′. (2.27)

To obtain a dynamic equation for h(u, t), we first note that gss = h−2guu = 1, which
represents a standard coordinate transformation of tensor components and leads to guu = h2.
Furthermore, it follows from Eq. (2.26) and the definition of the metric tensor that for an
Eulerian parametrisation ∂tgij = 2Cijvn (see Appendix A.2.1), which implies

∂th(u, t) = hCssvn. (2.28)

Here, we have used Cuu = h2Css. Recall that we had chosen S0 = S|t=0 for the fixed inter-
val, which implies that h is uniquely determined as the solution of Eq. (2.28) with initial
condition h|t=0 = 1.

2.2.3 Dynamic equations for geometric surface properties

Finally, we present a set of dynamic equations that we use to evolve the surface geometry
and to formulate the covariant force balance equations of the active fluid film on an ax-
isymmetric surface. Detailed derivations of the following dynamic equations can be found in
Appendix D.1.

Time-dependence of the curvature tensor

In order to reconstruct the deforming surface via Eqs. (2.22)–(2.24), we require the time-
dependence of the meridional curvature Css, which is given by:

∂tC
s
s(u, t) = −(Css)2vn −

1
h
∂u

(1
h
∂uvn

)
. (2.29)

The first term captures curvature changes due to stretching of the meridional outline, the
second term describes the outline’s bending due to an inhomogeneous deformation velocity vn.
Similarly, the dynamic equation for Cϕϕ reads:

∂tC
ϕ
ϕ(u, t) = −(Cϕϕ)2vn −

1
h2 Γϕϕu∂uvn, (2.30)

where the Christoffel symbol Γϕϕu is defined by Eq. (2.1). Equations (2.29) and (2.30) describe
the dynamics of the principal curvature fields, Css and Cϕϕ, which capture the full extrinsic
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2.3 Mechano-chemical self-organisation of spherical surfaces

geometry of the deforming axisymmetric surface for a given deformation field vn.

Time-dependence of the Christoffel symbols

In order to explicitly express the covariant force balance equations on a parametrised surface,
we additionally require the Christoffel symbols as a function of time. From the definition of
the Christoffel symbols it follows that:

∂tΓϕϕu(u, t) = ∂u
(
Cϕϕvn

)
(2.31)

∂tΓuϕϕ(u, t) = gϕϕ
h2

(
vn∂uC

ϕ
ϕ − Cϕϕ∂uvn

)
. (2.32)

The remaining Christoffel symbols either vanish (Γϕϕϕ,Γϕuu,Γuuϕ = 0) or they are not explicitly
required, which is the case for Γuuu.

For a given deformation field vn, Eqs. (2.28)–(2.32) provide a framework solve the dynamic
equation for the surface shape Eq. (2.26). By virtue of the dynamic coordinate transforma-
tion, these equations represent partial differential equations on a fixed spatial interval [0, L0]
that can be solved using standard numerical approaches. If required, the surface can be in-
dependently reconstructed using Eqs. (2.22)–(2.24). Details on the numerical discretisation
are presented in Appendix D.6.

2.3 Mechano-chemical self-organisation of spherical surfaces

In the following, we study self-organised deformations of active surfaces. The present sec-
tion is dedicated to the analysis of spherical surfaces. The dynamics of tubular surfaces is
discussed in Section 2.4. In both cases, we solve the force balance Eqs. (2.14) and (2.15) to
obtain the deformation field vn and in-plane flows v‖. The explicit form of these equations on
a parametrised axisymmetric surface can be found in Appendix D.2.1. The dynamics of the
concentration field is determined by solving Eq. (2.17), whose explicit form on an axisym-
metric surface is given in Appendix D.2.2. Note that these equations are Galilei invariant
and all velocities are determined up to a constant velocity vector.1 The surface shape and
intrinsic geometric properties evolve according to Eqs. (2.27)–(2.32). This system represents
the full mechano-chemical feedback of flow-generation and reorganisation of active stresses
and integrates geometry into the self-organisation process.

In the following, we first perform a linear stability analysis of the homogeneous state of
a sphere to determine parameter regimes, where the surface is unstable (Section 2.3.1). In

1Unique solutions can be found by choosing an appropriate reference frame. Because every reference frame is
equally physical, we chose reference frames in which the numerical approach is most robust. This is explained
in detail in Appendix D.3.3.
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Chapter 2: Self-organised shape dynamics of active fluid surfaces

order to characterise mechano-chemical instabilities, we introduce a contractility parameter

α = ξ

γ
c0∂cf(c0). (2.33)

In the second step, we use the framework introduced in the previous section to study the full
non-linear surface dynamics (Section 2.3.2).

2.3.1 Linear stability analysis

We consider axisymmetric surfaces of spherical topology and analyse the linear stability of
the homogeneous steady state with c = c0 and v = 0 on a sphere with radius R = R0.
The sphere is parametrised by polar and azimuthal angles θ and ϕ. We expand small,
axisymmetric perturbations δc(θ), δR(θ) and δv‖(θ) of this state as

δc =
∞∑
l=0

δclYl (2.34)

δR =
∞∑
l=0

δRlYl (2.35)

δv‖ =
∞∑
l=1

(
δv

(1)
l Ψl + δv

(2)
l Φl

)
. (2.36)

Here, Yl(θ), Ψl(θ) and Φl(θ) denote axisymmetric modes of scalar spherical harmonics and
vector spherical harmonics1 that are labelled with mode numbers l ∈ N0. Note also that
δvn = ∂tδR to linear order. In the next step, we expand the force balance Eqs. (2.14) and
(2.14), as well as the dynamic Eq. (2.17) for the concentration field to linear order in the
perturbations given in Eqs. (2.34)–(2.36) (see Appendix D.4 for details). From the force
balance equations we find δv

(2)
l = 0 and

ηs
R2

0
(1− l)(l + 2)δv(1)

l +
[
ηb
R2

0

(
2δṘl − l(l + 1)δv(1)

l

)
+ ξ

R0
∂cf(c0)δcl

]
= 0 (2.37)

2ηb
R2

0

(
2δṘl − l(l + 1)δv(1)

l

)
+ 2ξ
R0
∂cf(c0)δcl

+
[ 2κ
R4

0
l(l + 1) + γ + ξf(c0)

R2
0

]
(l − 1)(l + 2)δRl = 0, (2.38)

were we denoted δṘl = d
dtδRl. The linearisation of the dynamic equation of the concentration

field given in (2.17) reads for each mode

δċl + c0
R0

(
2δṘl − l(l + 1)δv(1)

l

)
+
(
D

R2
0
l(l + 1) + k

)
δcl = 0, (2.39)

1General scalar spherical harmonics Ylm(θ, ϕ) and vector spherical harmonics
{
Ψ(lm),Φ(lm)} are defined in

Appendices B.1.1 and B.1.2, respectively. For each l, 2l non-axisymmetric modes exist that are labelled with
mode numbers |m| ≤ l, where m ∈ Z. Axisymmetric harmonics correspond to modes with m = 0.
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2.3 Mechano-chemical self-organisation of spherical surfaces

where δċl = d
dtδcl. Note that the same linearised equations can be found, if non-axisymmetric

perturbations are included in Eqs. (2.34)–(2.36) (Appendix D.4.2). Hence, the linear stability
properties presented here also hold for non-axisymmetric perturbations.

The mode l = 1

Perturbations with l = 1 correspond to pure translations of the surface if δṘ1 = δv
(1)
1 .

Any perturbation that leads to δṘ1 6= δv
(1)
1 contributes to an inhomogeneous compression or

expansion of the surface to linear order. According to the force balance Eqs. (2.37) and (2.38),
these surface compressions are related to perturbations of the concentration field δc1, which
can be used in the dynamic equation of the concentration field Eq. (2.39). From this, we find
a linear dynamic equation for the concentration mode δc1 given by

d

dt
δc1 =

(
−2D
R2

0
− k + ξc0∂cf(c0)

ηb

)
δc1. (2.40)

Considering an ansatz δc1 = δc
(0)
1 exp(µs1t), the term in brackets on the right-hand side of

Eq. (2.40) can be identified as the growth rate µs1 of the perturbation. The condition µs1 = 0
defines a critical contractility parameter α∗s. For increasing contractility parameter α, defined
in Eq. (2.33), the mode l = 1 becomes unstable at α = α∗s with

α∗s = ηb
γ

(2D
R2

0
+ k

)
. (2.41)

Note that the perturbation δR1 does not change the mean curvature to first order, such that
α∗s is independent of the bending rigidity κ.

Higher modes l ≥ 2

For modes with l ≥ 2, we find from the linearised force balance Eqs. (2.37) and (2.38)

δv
(1)
l = 1

2ηs

[ 2κ
R2

0
l(l + 1) + γ + ξf(c0)

]
δRl. (2.42)

This relation shows that on a viscous fluid surface in-plane flows and shape changes are
intimately linked. As explained above, the linearised force balance equations are valid for
non-axisymmetric perturbations as well, such that Eq. (2.42) also holds more generally for
non-axisymmetric shape changes and surface flows (Appendix D.4.2). It is interesting to note
that Eq. (2.42) is independent of inhomogeneities in the active tension, which was already
found in a similar description of an active fluid surface [37]. More generally, the coupling
between flows and shape changes is to linear order exclusively related to anisotropic flows,
which can be seen from the fact that only the shear viscosity ηs appears in Eq. (2.42), but
not the bulk viscosity ηb.

Equation (2.42) can be used to eliminate δv(1)
l in Eqs. (2.38) and (2.39). This leads for
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Chapter 2: Self-organised shape dynamics of active fluid surfaces

each mode to a two-dimensional Jacobian Jls for the dynamics of the mode coefficients δRl
and δcl (Appendix D.4.2). From an analysis of the eigenvalues of Jls, we find that the mode
l = 1 discussed above always has the largest growth rate and becomes unstable first when
increasing the contractility parameter α.

2.3.2 Spontaneous shape formation

Surface relaxation for α < α∗s

For α < α∗s the homogeneous concentration on the sphere represents a stable solution. This
is revealed by the relaxation of a deformed sphere towards this stable steady state. Such a
relaxation is depicted in Fig. 2.3 b, where we use a spheroidal surface with a homogeneous
concentration as initial condition. During the relaxation process, we observe the transient
formation of concentration maxima at the poles. These maxima appear as a consequence
of the large mean curvature at those locations, which leads to a locally increased surface
compression during deformations (see Eq. (2.17)).

Spontaneous formation of shapes and patterns with polar asymmetry for α > α∗s

The growing mode l = 1 characterises a polar asymmetry. Using a randomly perturbed
concentration field as initial condition in our numerical approach, we find that for α > α∗s

the instability leads to the spontaneous formation of a single patch of stress regulator and an
asymmetric surface shape that deviates from a sphere (Fig. 2.3 c). At the final steady state
the advective in-flux of stress regulator into the contractile region is balanced by a diffusive
out-flux away from it. The resulting inhomogeneous tension across the surface leads to an
oblate shape with broken mirror symmetry with respect to the z-axis and thus spatially
varying curvature (Fig. 2.3 d).

2.4 Mechano-chemical self-organisation of tubular surfaces

In this section, we study the mechano-chemical self-organisation of tubular surfaces. We
proceed in similar steps as in the previous section. We first perform a linear stability anal-
ysis of the homogeneous state (Section 2.4.1) and use the contractility parameter α defined
in Eq. (2.33) to characterise mechano-chemical instabilities. In the next step, we use the
framework described in Section 2.2 to obtain solutions of the full non-linear surface dynam-
ics for tubular surfaces without and with bending rigidity (Sections 2.4.2 and 2.4.3). Finally,
we introduce a toy model to quantitatively describe tubular surface shapes that appear as
steady states in the nonlinear description (Section 2.4.4).
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2.4 Mechano-chemical self-organisation of tubular surfaces
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Figure 2.3: Shape dynamics of spherical surfaces with concentration-dependent active ten-
sion. a) Schematic stability diagram of the system. b) Relaxation dynamics of a mechano-
chemically stable surface with α < α∗s , starting with a spheroidal shape with eccentricity 0.75.
To contractility parameter α is defined in Eq. (2.33) and the critical contractility α∗c is given
in Eq. (2.41). Inhomogeneities in the initial mean curvature (t = 0) lead to transient in-
homogeneities in the concentration field (t/τ = 0.07) due to a deformation-induced local
expansion and compression of the surface (see Eq. 3.4). The stable steady state of a sphere
is reached at long times (t → ∞, not so scale). c) Mechano-chemically unstable surface
with α > α∗s . After a small concentration perturbation on a sphere (t = 0, not to scale),
a deformed steady-state shape emerges with a localised patch of stress regulator. The fi-
nal steady state corresponds to an oblate shape with broken mirror symmetry with respect
to the z-axis. Red arrows denote the in-plane flow field. d) Profiles of the concentration
c̃ = c/c0, in-plane flow ṽs = es ·vτ/R0 (τ = ηb/γ) and principle curvatures C̃ss = R0C

s
s,

C̃ϕϕ = R0C
ϕ
ϕ of the steady-state surface shown in c). In the steady state, the diffusive

out-flux away from the contractile patch is balanced by an advective in-flux. The result-
ing tension across the surface is inhomogeneous, which leads to a deformed steady state
shape. Surface flows in b) and c) and plotted values of ṽs in d) are shown in the reference
frame where the pole velocities satisfy v(s = 0) = −v(s = L) (see Appendix D.3.3). The
parameters used in these simulations are given in the Appendix D.6.3.
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Chapter 2: Self-organised shape dynamics of active fluid surfaces

2.4.1 Linear stability analysis

We now study the self-organisation of an active surface with a tubular geometry. We analyse
the linear stability of the homogeneous steady state with c = c0 and v = 0 on a cylinder with
radius ρ0 and length L0, and we consider periodic boundary conditions. We expand small
axisymmetric perturbations of this state as

δc =
∞∑

n=−∞
δcn exp(iknz) (2.43)

δρ =
∞∑

n=−∞
δρn exp(iknz) (2.44)

δv‖ = ēz
∞∑

n=−∞
δvzn exp(iknz) (2.45)

with wave numbers
kn = 2πn

L0
. (2.46)

For the deformation field, we have δvn = ∂tδρ to linear order. From the corresponding
expansion of the force balance Eqs. (2.14) and (2.15) we find

− (ηb + ηs) k2
nδv

z
n + (ηb − ηs)

ikn
ρ0
δρ̇n + iknξ∂cf(c0)δcn = 0

(2.47)

i(ηb − ηs)
kn
ρ0
δvzn + (ηb + ηs)

1
ρ2

0
δρ̇n + ξ

ρ0
∂cf(c0)δcn +

[
γ + ξf(c0)

ρ2
0

(k2
nρ

2
0 − 1)

]
δρn = 0.

(2.48)

Here, we denote δρ̇n = d
dtδρn and we have for simplicity of the following discussion chosen

κ = 0. The derivation of the fully general linearisation is detailed in Appendix D.4.3. The
linearised form of the dynamic equation of the concentration field Eq. (2.17) is given by

δċn + c0

(
iknδv

z
n + δρ̇n

ρ0

)
+
(
D

ρ2
0
k2
nρ

2
0 + k

)
δcn = 0, (2.49)

where δċn = d
dtδcn. To determine the Jacobian of this system, we eliminate δvzn and rewrite

Eqs. (2.48) and (2.49) into a linear dynamical system for the variables δρn/ρ0 and δcn/c0,
given by

d

dt

δρn
ρ0

= ηs + ηb
4ηbηs

[γ + ξf(c0)]
(
1− k2

nρ
2
0

) δρn
ρ0
− ξc0∂cf(c0)

2ηb
δcn
c0

(2.50)

d

dt

δcn
c0

= − 1
2ηb

[γ + ξf(c0)]
(
1− k2

nρ
2
0

) δρn
ρ0

+
(
ξc0∂cf(c0)

ηb
−Dk2

n − k
)
δcn
c0
. (2.51)
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2.4 Mechano-chemical self-organisation of tubular surfaces

The coefficients of this linear system define the Jacobian Jnc for each mode n, whose eigen-
values indicate the stability of the homogeneous cylindrical surface for a given perturbation.
In the remainder of this section, we briefly discuss analytic insights that can be gained
from this Jacobian and finally present the global stability diagram. Note that the Jacobian
is invariant under n ↔ −n, such that we restrict this analysis without loss of generality
to n ≥ 0. We again use the contractility parameter α defined in Eq. (2.33) to characterise
mechano-chemical instabilities of the surface.

Plateau-Rayleigh instability

In the absence of regulation of active tension, ∂cf = 0 or equivalently for α = 0, the dynamics
of shape perturbations described by Eq. (2.50) becomes independent of the concentration
modes δcn and we have

d

dt
δρn = ηs + ηb

4ηbηs
[γ + ξf(c0)]

(
1− k2

nρ
2
0

)
δρn. (2.52)

Using an ansatz δρn = δρ
(0)
n exp(µcnt), the prefactor of δρn on the right-hand side of Eq. (2.52)

can be identified as the growth rate

µcn = ηs + ηb
4ηbηs

[γ + ξf(c0)]
(
1− k2

nρ
2
0

)
(2.53)

of shape perturbations. Consider now a ‘short’ stable cylindrical surface for which k2
nρ

2
0 > 1,

such that we have µcn < 0. When continuously increasing the length L0 of this cylinder,
the smallest available wave number k1 = 2π/L0 becomes eventually small enough such that
µc1 = 0. At this point, the aspect ratio L0/ρ0 of the cylinder takes the value 2π. For
aspect ratios with L0/ρ0 > 2π, we have µc1 > 0 and the cylindrical surface is unstable. This
represents the classical Plateau-Rayleigh scenario, in which the instability of the surface is
fully determined by the surface geometry and is independent of the material properties of
the surface [133,134].

Onset of contractile instability

We now consider ∂cf(c0) > 0, or equivalently α > 0, and analyse how the regulation of active
tension affects the stability properties of the cylindrical surface. To gain first analytic insights
into this questions, we analyse the trace of the Jacobian Jnc defined by Eqs. (2.50) and (2.51),
which reads

tr (Jnc ) = −
(
ν̂
γ + ξf(c0)

ηb
+ D

ρ2
0

)
k2
nρ

2
0 + ν̂

γ + ξf(c0)
ηb

+ ξc0∂cf(c0)
ηb

− k. (2.54)

Here, we have introduced ν̂ = (ηb + ηs)/(4ηs). To determine aspect ratios at which tubular
surfaces with α > 0 become unstable, we first have to establish a few equivalences. We start
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Chapter 2: Self-organised shape dynamics of active fluid surfaces

by introducing a critical wavenumber k∗ that is defined by tr (Jnc ) = 0 and reads

k∗ = ± 1
ρ0

√
αγ − ηbk + ν̂[γ + ξf(c0)]/2
ηbD/ρ

2
0 + ν̂[γ + ξf(c0)]/2

. (2.55)

Here, we have used the definition of the contractility parameter α given in Eq. (2.33). In the
following, we consider parameters for which k∗ is real.1 We then conclude from Eq. (2.54)
that

tr (Jnc ) > 0 ⇔ |kn| < |k∗|. (2.56)

We note at this point that tr (Jnc ) > 0 is a sufficient condition for an instability to occur [135].
Thus, if the length of a cylindrical surface is continuously increased, the smallest available
wavenumber, k1 = 2π/L0, is eventually small enough such that k1 < |k∗| and the surface
is guaranteed to be unstable. The critical wavenumber that is analogous to the Plateau-
Rayleigh criterion, |k∗|ρ0 = 1, defines via Eq. (2.55) a critical contractility parameter

α∗c = ηb
γ

(
D

ρ2
0

+ k

)
, (2.57)

for which we see from Eq. (2.55) that

α > α∗c ⇔ |k∗|ρ0 > 1. (2.58)

Hence, if α > α∗c , there can exist a wavenumber k1 with the property |k∗|ρ0 > k1ρ0 > 1
that belongs to an unstable cylindrical surface (because of Eq. (2.56)) with an aspect ratio
L0/ρ0 < 2π. In other words, for a sufficiently large contractility parameter α > α∗c , the
aspect ratio L0/ρ0 at which cylindrical surfaces become unstable is decreased compared to
the Plateau-Rayleigh value of 2π.

Even though the argument presented here seems rather coarse, the general stability dia-
gram reveals that α∗c given in Eq. (2.57) indeed specifies the minimal contractility parameter
at which the mechano-chemical self-organisation of the surface becomes relevant.

General stability diagram

A general, representative stability diagram as a function of the contractility parameter α
and the aspect ratio L0/ρ0 (normalised to 2π) is shown in Fig. 2.4. For κ = 0 the cylinder
surface is unstable in the blue-shaded region. For α < α∗c with α∗c given in Eq. (2.57),
the instability occurs when the aspect ratio L0/ρ0 increases beyond a critical value that
equals 2π and is independent of the contractility parameter α. This instability corresponds
to the geometric Plateau-Rayleigh instability and is not driven by the self-organisation of the
stress regulator. As discussed above, the case α = 0 and κ = 0 exactly represents the classical

1Further analysis of the determinant of Jnc shows that the contractility regulation is irrelevant for the surface
stability if k∗ is complex.
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Figure 2.4: Representative stability diagram of a cylindrical active fluid surfaces with
concentration-dependent active tension. Stable and unstable regions are separated by the
blue curve for κ = 0 and the red dashed line for κ̃ = 0.25, where κ̃ = κ/(γr2

0). For κ = 0
the dark blue shaded region indicates parameter regimes where eigenvalues of the Jacobian
defined by Eqs. (2.50) and (2.51) are complex. The red shaded region indicates complex
eigenvalues of the Jacobian for κ̃ = 0.25. To contractility parameter α is defined in Eq. (2.33)
and the critical contractility α∗c is given in Eq. (2.57). For α < α∗c unstable aspect ratios are
independent of α, corresponding to a Plateau-Rayleigh instability. For α > α∗c instabilities
are driven by the mechano-chemical self-organisation of the surface. The cross and the two
circles depict parameter values for which we discuss the corresponding nonlinear dynamics
in Sections 2.4.2 and 2.4.3. Parameters used for the stability: kτ = 1.95, Dτ/ρ2

0 = 0.05,
ηs/ηb = 1, f(c0) = 1/2, where τ = ηb/γ denotes the characteristic time scale.

Plateau-Rayleigh scenario [133]. For α > α∗c instabilities are driven by the mechano-chemical
self-organisation of the fluid surface. In this regime the aspect ratio L0/ρ0 at which the
cylinder surface becomes unstable is smaller than 2π and decreases for increasing contractility
parameter α. Furthermore, the linear stability analysis reveals a region where eigenvalues
are complex (dark blue-shaded area in Fig. 2.4), which indicates oscillatory behaviour at
the instability. These characteristics of the stability diagram remain qualitatively unchanged
when the bending rigidity κ is finite. The instability line for κ = 0.25γρ2

0 is shown as a red
dashed line in Fig. 2.4. The red-shaded region indicates complex eigenvalues. Note that the
value of α∗c in general depends on κ (Appendix D.4.3).

2.4.2 Sponteneous constriction and shape oscillations

We now study the surface dynamics beyond the linear regime using our numerical approach.
For κ = 0, α > α∗c and aspect ratios L0/ρ0 inside the unstable region of the stability dia-
gram (blue circle in Fig. 2.4), the cylinder surface constricts and generates a thin cylindrical
neck region with decreasing radius (Fig. 2.5 a). The numerical analysis indicates that this
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Chapter 2: Self-organised shape dynamics of active fluid surfaces

0.9 3 1.080.94

Figure 2.5: Self-organised tubular surface dynamics for κ = 0. a) Concentration c̃ = c/c0
and in-plane flow v‖ (red arrows) during the spontaneous formation of a contractile ring
for parameters indicated with a blue circle in the stability diagram Fig. 2.4. As charac-
teristic time we use τ = ηb/γ. The self-organised contractile ring can constrict surfaces
with aspect ratios L0/ρ0 below the Plateau-Rayleigh threshold of 2π. b) Concentration and
in-plane flow over one oscillation period for parameters indicated with a blue cross in the
stability diagram Fig. 2.4. Oscillations result from the interplay between geometric stability
of cylinder surfaces with L0/ρ0 < 2π and the mechano-chemical instability of the active,
contractile fluid film. Surface flows are shown in the reference frame where

∫ L
0 vsds = 0 (see

Appendix D.3.3). The parameters used in these simulations are given in Appendix D.6.3.

radius vanishes at finite time. The concentration of the stress regulator increases along the
tubular neck. For parameters that correspond to complex eigenvalues in the linear stability
diagram (blue cross in Fig. 2.4), the cylinder constricts and expands periodically (Fig. 2.5 b)
with increasing amplitude until the neck radius vanishes. For α < αc the instability also
leads to a tubular neck with vanishing radius, however not driven by contractility but by
surface tension γ due to the Plateau-Rayleigh character of the instability in this parameter
regime. In this case, the concentration of stress regulator increases in the neck predominantly
because of a local reduction of surface area.

2.4.3 Directed flows and peristaltic surface dynamics

For κ > 0, an unstable cylinder surface constricts and reaches a finite neck radius together
with a homogeneous concentration of stress regulator on the surface. For α < α∗c this remains
the stationary state at long times. For α > α∗c a high concentration of stress regulator builds
up in the neck region at long times. The concentration pattern and surface flows that
emerge spontaneously break the mirror symmetry with respect to the z-axis (Fig. 2.6 a). As
a consequence, average flows directed along the z-axis occur in a reference frame, where the
constriction does not move. Numerical results reveal that such directed flows emerge in all
parameter regimes for which the cylinder surface is linearly unstable and α > α∗c . For α < α∗c

no directed flows occur. To finally test if the stabilisation of a finite neck radius is sufficient
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Figure 2.6: Emergence of directed flows on tubular surfaces with κ > 0. a) Concentration
c̃ = c/c0 and in-plane flow v‖ (red arrows) during the spontaneous formation of directed
surface flows for parameters indicated with a red circle in the stability diagram Fig. 2.4.
After a perturbation that is mirror-symmetric in z-direction, the tubular surface ingresses
and forms a homogeneous, transiently stationary shape. At long times (for the parameters
chosen here t/τ & 36, τ = ηb/γ), the mirror symmetry is broken and a steady state emerges
that shows directed surface flows relative to a constricted shape. b) In-plane flow velocity
ṽs = es ·vτ/ρ0 and principle curvatures C̃ss = ρ0C

s
s, C̃ϕϕ = ρ0C

ϕ
ϕ of the final steady

state shown in a). Surface flows in a) and b) are shown in the reference frame where
the constriction does not move (see Appendix D.3.3). c) Exemplary surface shapes and
concentration profiles of tubular surfaces at steady state with varying bending rigidities and
aspect ratios (all other parameters are the same). The single red arrow indicates the average
flow direction (also depicted in a)). From top to bottom: κ/(γρ2

0) = {0.25, 0.25, 0.8} and
L/ρ0 = {5π, 2.2π, 5π}. A complete overview of the parameters used in these simulations is
given in Appendix D.6.3.

.

for directed flows to occur via spontaneous symmetry breaking, we chose κ = 0 and consider
instead an external force f ext = F0(ρ0/ρ − 1)ēr that also stabilises small neck radii. In this
setting, we again find the formation of directed flows relative to the constricted shape. This
shows that the spontaneous symmetry breaking for α > α∗c is an intrinsic property of the
self-organised active fluid film and its tight coupling to the surface geometry.

2.4.4 Neck radii of tubular surfaces with bending rigidity

As described in the previous section, unstable cylindrical surfaces with bending rigidity form
transiently stationary surfaces with finite neck radii at long times. The onset of directional
flows hardly changes the transiently stable surface geometry (Fig 2.6a). Here, we study the
scaling of the neck radii of these surfaces. To this end, we introduce a toy model for tubular
surface shapes and neglect for simplicity local inhomogeneities in tension due to contractility
and flows. Instead, we consider an effective homogeneous tension γ̄, such that force-balanced
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Figure 2.7: Quantitative description of tubular neck radii. a) Parameters used to approx-
imate tubular surface geometries in a toy model, which consists of two inverted spherical
caps that are connected by a cylinder with neck radius ρne. For fixed total length L0 and
volume V = πL0ρ

2
0, the neck radius ρne is the only free parameter to uniquely describe

this geometry. b) Pictorial definition of the neck radius for stationary tubular surfaces that
are extracted from numerical solutions of the full nonlinear surface description (red crosses
in c). c) Comparison of the toy-model with numerical results. The solid blue line depicts
minima of the Helfrich energy Eq. (2.7) parametrised by the geometry shown in a). The blue
dashed line corresponds to minima of the expansion of FH in the neck radius Eq. (2.60). As
a reference, we added the curve ρne =

√
κ/γ̄ to the plot (black dashed line), which is the

neck radius attained by tubular surfaces with L0/ρ0 � 1.

surfaces correspond to stationary shapes of the Helfrich energy FH given in Eq. (2.7).
To parametrise the Helfrich energy, we approximate surface shapes by two inverted spher-

ical caps that are connected by a cylindrical neck (Fig. 2.7 a). For fixed total length L0 and
enclosed volume V = πL0ρ

2
0, the radius of the connecting cylinder – the neck radius ρne – is

the only free parameter of this geometry. Note that for given L0, the fixed volume V defines
the initial cylinder radius ρ0, which is the parameter we use from now on. Equilibrium shapes
and corresponding neck radii can then be found from

∂FH
∂ρne

∣∣∣∣
ρ0,L0

= 0, (2.59)

with FH given in Eq. (2.7) evaluated for shapes that are parametrised as just described.
For the discussion here, it is useful to consider the expansion of the corresponding Helfrich
energy FH up to second order in the neck radius, which reads (Appendix D.5)

FH ≈ F0 +Aρne + B

ρne
+ Cρ2

ne . (2.60)

Here, the coefficients F0, A, B and C depend on L0, ρ0, γ̄ and κ and are given in the appendix
Eqs. (D.96)–(D.99).

In the next step, we determine stationary neck radii from the full nonlinear description of
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tubular surfaces with a fixed aspect ratio and varying bending rigidity. For simplicity, we
only consider the transient homogeneous steady states to extract numerical values of neck
radii. Accordingly, we use γ̄ = γ + ξf(c0) as approximation for the effective homogeneous
tension in the toy model when comparing it to neck radii these numerical values. The neck
radius scaling as a function of the bending rigidity (Fig. 2.7 c) can be understood by first
considering the limit of large aspect ratios: L0/ρ0 � 1. In this limit, neck radius-dependent
contributions of the spherical caps to the energy are negligible and we find from Eq. (2.60)
to leading order in L0/ρ0:

FH − F0 = 2πL0

(
γ̄ρne + κ

ρne

)
, (2.61)

Here, we have used the corresponding limits of the coefficients A,B and C given in Ap-
pendix D.5. From Eq. (2.61), we see that the equilibrium neck radius in this limit takes the
value

√
κ/γ̄ (black dashed line in Fig. 2.7 c). However, if the aspect ratio L0/ρ0 becomes

finite, a new relevant quadratic term in the expansion of FH , Eq. (2.60), appears. This term
can be traced back to the conservation of the enclosed volume: tubes, which form a small
neck, gain relevant energetic contributions from surface regions that have to bulge out else-
where. In our toy model these bulged out surface regions are represented by the spherical
caps. The important observation is that the lowest order contribution that describes this
effect in Eq. (2.60) is negative (C < 0). Hence, the quadratic term Cρ2

ne acts effectively as
an elastic spring that penalises small neck radii.1 The minima of Eq. (2.60) then yield equi-
librium neck radii with ρne >

√
κ/γ̄ (blue dashed line in Fig. 2.7 c). Neck radii that follow

from Eq. (2.59) for the general parametrisation of FH in terms of the toy model geometry
are depicted as solid blue line in Fig. 2.7 c (see Appendix D.5). Numerically obtained neck
radii are depicted by red crosses.

2.5 Discussion

In this chapter, we presented a simple but general model for the mechano-chemical self-
organisation of surface geometry. Active stresses in the surface are regulated by a dif-
fusible and advected molecular species. Gradients of active stress induce surface flows and
shape changes, which in turn influence the distribution of the stress regulator. As a conse-
quence, shape changes, shape oscillations and spontaneous surface flows can be generated via
mechano-chemical instabilities. In contrast to mechano-chemical instabilities that have been
previously studied on fixed geometries [117,120,124,136], we described here new phenomena
that give rise to shape changes and crucially depend on the shape changes that occur.

To solve the dynamic equations for the shape, flows and concentration fields, we developed

1The energy is still bound for large radii because the neck radius is geometrically constraint to ρne ≤ ρ0.
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a numerical approach based on an integral representation of axisymmetric surfaces (Sec-
tion 2.2). We introduced a time-dependent coordinate transformation, which allowed us to
obtain the shape dynamics in an implicit surface representation. Explicit coordinates of sur-
face points can be calculated independently. This implicit representation drastically simplifies
the numerical scheme to solve vector-valued partial differential equations on the deforming
surface. Such a simplification would not be available, for example, when level-set methods
are used [137]. The latter methods provide on the other hand a more flexible way to rep-
resent non-axisymmetric, deforming surfaces and their topological changes [132]. However,
the discretisation of vector-valued partial differential equations within a level-set framework
requires additional operations to extend vector fields into the embedding space [138, 139],
which is not the case for the method developed here.

Using our approach, we identified a mechano-chemical shape instability of a sphere (Sec-
tion 2.3). Beyond a critical value α∗s of the contractility parameter, this instability leads
to concentration and flow patterns with a polar asymmetry, and to an axisymmetric oblate
shape with broken mirror symmetry. In addition, we note that shape changes associated
with the unstable polar mode do not change the curvature to linear order. As a result, the
critical contractility parameter α∗s is independent of the bending rigidity.

We then studied periodic tubular surfaces (Section 2.4). We found contractility-induced
instabilities of cylindrical surfaces beyond a critical value α∗c , and a Plateau-Rayleigh insta-
bility for contractility parameters smaller than α∗c . The Plateau-Rayleigh instability occurs
when the aspect ratio of the cylinder surface reaches 2π [133]. Beyond α∗c , we find that the
cylinder becomes unstable already at aspect ratios smaller than 2π. Near the point that
separates the two regimes, we found that the contractile instability is oscillatory. This could
result from a competition between a weak contractile instability and the stability of the
cylinder with respect to the Plateau-Rayleigh criterion in this parameter region.

On tubular surfaces for which a small neck radius is stabilised at long times, we described
a pearling instability [140], which is followed by the emergent formation of directed surface
flows via spontaneous symmetry breaking. In a reference frame, where the average of the
surface velocity vanishes, this results in a propagating surface constriction that resembles
the dynamics of a peristaltic wave. A toy model, which incorporates the conservation of the
enclosed volume, can quantitatively account for neck radii that are obtained from numerical
solutions of the full nonlinear problem. Interestingly, propagating pearling instabilities have
been previously studied experimentally and theoretically in passive tubular vesicles [140–142].
For these systems, it was shown that a local laser-induced modification of surface tension
can trigger peristaltic surface motion, qualitatively similar to those described here on a self-
organised active surface.

We focused here on the shape dynamics of axisymmetric surfaces and materials that are
isotropic in the surface plane. The generalisation of our approach to non-axisymmetric sur-
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faces was beyond the scope of this thesis. However, it represents an important task to be
tackled in the future, especially because many biological systems generate shapes that are
not axisymmetric. For example, many dynamic processes in cells and tissues break the
axisymmetry, including cell migration or gastrulation events [32, 79, 95, 143,144]. Addition-
ally, active surfaces in natural biological systems or generated in-vitro are often anisotropic.
Examples are given by the planar polarity in epithelial tissues [72] or the polar and ne-
matic anisotropies in cytoskeletal systems [108]. Studying the shape dynamics of active
nematic vesicles containing topological defects [145, 146] also requires a representation of
non-axisymmetric deforming surface, which provides important challenges for future work.
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Chapter 3
Symmetry breaking on an active
fluid surfaces in viscous
environments
In this chapter, we study the mechano-chemical self-organisation of an isotropic active
fluid film on a sphere. In contrast to the previous chapter, we consider the general, non-
axisymmetric dynamics on a fixed surface. Additionally, we take external shear stresses from
a surrounding passive fluid into account.

The chapter is organised as follows. In Section 3.1, we introduce the constitutive relations
of a self-organised active fluid on a fixed surface. Furthermore, we derive the explicit form of
shear stresses from a passive fluid in which the active surface is embedded. Additionally, a
closed solution for the full nonlinear system is presented. We then consider two scenarios of
mechano-chemical self-organisation that this model can represent. First, in Section 3.2, we
study the mechano-chemical patterning processes on the active surface, and we investigate
how they are affected by shear stresses from an interior1 passive fluid. We find that the
symmetry of the homogeneous state can be spontaneously broken, and mechano-chemical
patterns with polar and nematic asymmetries emerge. This description can represent, for
example, the dynamics of the cellular cortex that is in contact with the cytoplasmic fluid.
Second, in Section 3.3, we focus on interactions with an exterior passive fluid. This represents
a squirmer model, in which spontaneously emerging active surface flows can lead to a force-
free, translational motion of the surface. We characterise the bifurcation associated with the
spontaneous onset of motion by performing a weakly nonlinear analysis for this system. We
conclude with a summary and discussion of the main results in Section 3.4.

1We refer to the domain that is enclosed by the surface as interior and to the domain outside as exterior. Note
that this is distinct from internal and external, which we use to distinguish, for example, internal forces and
moments within the surface (described by the tension and moment tensors) and external forces acting on it.



3.1 Self-organised active fluid surface in a viscous environment

Figure 3.1: Sketch of the model that is discussed in this chapter. Quantities related to the
active surface are shown in red, quantities related to the passive surrounding fluid are shown
in blue. We consider flows v‖ on a closed and fixed active fluid surface with shear and bulk
viscosities ηs and ηb, respectively. This surface is surrounded by a passive incompressible
fluid, where the viscosity of the fluid enclosed by the surface is denoted by η−, the viscosity
of the fluid outside the surface by η+. The flow fields in each domain are accordingly denoted
by u− and u+. Active surface flows can set the passive fluid into motion, which leads to
shear stresses that can feed back on the surface flows.

3.1 Self-organised active fluid surface in a viscous environment

In this section, we introduce the description of an active self-organised fluid surface that is
embedded in a passive fluid. We derive a closed solution of the nonlinear problem for the
case in which the active surface is a sphere. The results presented in this section provide the
basis for a detailed characterisation of the mechano-chemical self-organisation and symmetry
breaking that occurs in this model and which will be discussed further in Sections 3.2 and 3.3.

3.1.1 Constitutive relations and governing equations for the active surface

We consider an isotropic viscous thin film on a fixed surface Γ̄ with constitutive relation

tij = 2ηs
(
vij −

1
2v

k
k gij

)
+ ηbv

k
k gij + taij , (3.1)

where
vij = 1

2 (∇ivj +∇jvi) (3.2)

is the symmetric strain rate tensor on a fixed surface.1 Here, vi denotes components of the
tangential flow field v‖ = viei, and ηs and ηb denote shear and bulk viscosities of the surface,
respectively. As for the deforming surfaces discussed in Chapter 2, we consider an isotropic

1In the interest of a simple notation, we consider here the strain rate tensor defined in Eq. (2.10) restricted
to a fixed surface and therefore do not introduce a new symbol. We exclusively study fixed surfaces in this
chapter, such that this should not lead to any confusion.
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active tension
taij = ξf(c)gij , (3.3)

where the contractility ξ is modulated by the concentration field c of a stress-regulating
chemical species. The function f(c) is specified together with the concrete problems studied
in Sections 3.2 and 3.3. The dynamics of the concentration field c is determined by the
advection-diffusion-reaction equation

∂tc = −∇i
(
cvi
)

+D∆Γ̄c+R(c). (3.4)

Here, ∆Γ̄ denotes the Laplace-Beltrami operator, D is the diffusion constant and R(c) repre-
sents reactions that describe the turnover of stress regulator. Neglecting inertial forces, the
force balance equation reads

∇jtji = −f ext
i . (3.5)

With tij given in Eq. (3.1), the force balance Eq. (3.5) determines surface flows vi for a
given distribution of active tension and external forces f ext

i . In the present chapter, we are
interested in the case where the latter result from interactions of active surface flows with a
surrounding passive fluid. The explicit form of these external forces is derived in the next
section.

3.1.2 Mechanical interactions of surfaces with a surrounding fluid

In the following, we derive the hydrodynamic stress that is exerted by a viscous fluid onto
a curved surface. We first formulate this problem for a general surface with a prescribed
surface flow velocity v‖ = viei. This surface flow sets the surrounding fluid into motion,
which results in shear stresses that are acting back onto the surface. We then present an
explicit solution for the case where the surface is given by a sphere. This is also the geometry
that is considered throughout the remainder of the present chapter.

We consider a surface embedded in an incompressible Stokes fluid that is described by the
constitutive relation

σ = η
(
∇u + (∇u)T

)
− pI. (3.6)

Here, u denotes the flow field of the Stokes fluid, η is its viscosity and p is the pressure that
is determined by the incompressibility condition ∇ ·u = 0. The superscript T in Eq. (3.6)
denotes the transpose of the dyadic tensor ∇u. Equation (3.6) describes the fluid on the
domain enclosed by (interior) and outside the surface (exterior). In the following, we denote
fields and parameters on the interior (exterior) domain with an additional index ’−’ (’+’).
Neglecting inertial terms, the force balance reads ∇ ·σ± = 0 and leads to the Stokes equation

η±∆u± = ∇p±. (3.7)
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3.1 Self-organised active fluid surface in a viscous environment

As boundary conditions for the Stokes flow, we consider impermeability and no-slip conditions
on the surface:

u± ·n
∣∣
Γ = 0 (3.8)

u± · ei
∣∣
Γ = vi. (3.9)

With this, the force that is exerted by the passive fluid onto the surface can be written as

fη = n ·
(
σ+ − σ−

)∣∣∣
Γ
, (3.10)

where n is the outward pointing surface normal and σ± denote the stress tensor Eq. (3.6)
evaluated for the corresponding flow fields u± and viscosities η± in the interior and exterior
domains.

To determine fη, we have to solve the Stokes Eq. (3.7) on the interior and exterior do-
mains with boundary conditions Eqs. (3.8) and (3.9) and use this solution in Eq. (3.6). For
a flow field that is prescribed on the surface of a sphere, this problem can be solved ana-
lytically (Appendix B.2). To provide the details that are most relevant for this chapter, we
present this solution here briefly for a non-deforming surface of a sphere with radius R. We
consider tangential flows v‖(θ, ϕ) on this sphere and expand their covariant components1

vi(θ, ϕ) = ei ·v‖ as
vi =

∑
l,m

(
v

(1)
lmΨ(lm)

i + v
(2)
lmΦ(lm)

i

)
. (3.11)

Here,
∑
l,m =

∑∞
l=0
∑l
m=−l, and Ψ(lm)

i (θ, ϕ) = ∂iYlm and Φ(lm)
i (θ, ϕ) = εjiΨ

(lm)
j are covariant

components of vector spherical harmonics that are constructed from scalar spherical harmon-
ics Ylm(θ, ϕ) (Appendix B.1.2). In this general expansion, we take into account all harmonic
modes, including the non-axisymmetric ones with m 6= 0. We then have for each l a set of
2l+ 1 modes labelled by m ∈ {−l,−l + 1, ..., l − 1, l}. To determine a solution for the Stokes
Eq. (3.7), we consider an ansatz for the pressure p(r, θ, ϕ) =

∑
l,m plm(r)Ylm and an ansatz

for the fluid flow u(r, θ, ϕ) given by

u =
∑
l,m

(
urlm(r)Y(lm) + u

(1)
lm(r)Ψ(lm) + u

(2)
lm(r)Φ(lm)

)
, (3.12)

where Y(lm)(θ, ϕ) = Ylmn, Ψ(lm) = eiΨ(lm)
i and Φ(lm) = eiΦ(lm)

i . Using this ansatz in the
Stokes Eq. (3.7), one finds a system of ordinary differential equations for the coefficient func-
tions plm(r), urlm(r), u(1)

lm(r) and u(2)
lm(r). This system can be solved by a power law ansatz in r

and the integration constants are found using the boundary conditions Eqs. (3.8) and (3.9),

1Note that we consider here the specific parametrisation of a unit sphere S given by X(θ, ϕ) = ēr (Ap-
pendix A.3.2), but keep the covariant component notation to describe vector fields on the surface for simplic-
ity. For the basis vectors this implies e1 = ēθ, e2 = sin θēϕ, n = ēr, where {ēr, ēθ, ēϕ} is the orthonormal
standard basis of spherical coordinates.
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Chapter 3: Symmetry breaking on active surfaces in a viscous environment

with vi given in Eq. (3.11) (Appendix B.2.2). From this, we can determine the force Eq. (3.10)
that arises from viscous shear stresses acting on the surface. For a fixed surface, only the
tangential components fηi = ei · fη of this force are relevant and we find that they can be
expressed as

fηi =
∑
l,m

(
f
η,(1)
lm Ψ(lm)

i + f
η,(2)
lm Φ(lm)

i

)
, (3.13)

with

Rf
η,(1)
lm = −(η− + η+)(1 + 2l)v(1)

lm + η+v
(1)
lm δl,1 (3.14)

Rf
η,(2)
lm = − [η−(−1 + l) + η+(2 + l)] v(2)

lm . (3.15)

Details of this derivation can be found in Appendix B.2. The important result here is that
we can write the general non-axisymmetric expansion of external shear forces Eq. (3.13) in a
covariant expansion of vector harmonics that compresses the solution of the Stokes boundary
value problem into a set of simple coefficients given by Eqs. (3.14) and (3.15).

3.1.3 Closed solution of the nonlinear problem

In the following, we derive a closed solution for the dynamics of the self-organised fluid surface
that interacts with a surrounding passive fluid as introduced in Sections 3.1.1 and 3.1.2.

The constitutive relations of the active fluid surface Eq. (3.1), as well as the external
viscous forces derived in the previous section are linear in the surface flows vi. Therefore, an
analytic solution for vi of the force balance Eq. (3.5) can be found for a given distribution of
active tension taij = ξf(c)gij , which we derive in the first part of this section. In the second
part, we use this result to derive a closed solution for the nonlinear dynamic problem that is
based on a harmonic projection of the nonlinear advection term in Eq. (3.4).

General solution of the force balance equation

The force balance Eq. (3.5) in terms of the constitutive relations Eq. (3.1) can be written as

ηs
R2

(
∇j∇jvi + vi

)
+ ηb
R2∇i∇jv

j + ξ

R
∂if(c) = −f ext

i , (3.16)

where R is the radius of the sphere. Recall that vector components and covariant derivatives
are defined here with respect to the parametrisation of the unit sphere. Hence, there are no
length scales ‘hidden’ in the covariant derivative and in the basis vectors, such that we can
simply factor out powers of R as done in Eq. (3.16). The form of the shear part in Eq. (3.16)
follows from the Ricci identity Eq. (A.28), which takes into account the non-commutativity
of the covariant derivative of vector fields on curved surfaces. Physically, this implies that a
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3.1 Self-organised active fluid surface in a viscous environment

fluid, which flows on a curved surface, can shear due to purely geometric effects.1

Next, we expand the regulating function f(c(θ, ϕ)) in terms of spherical harmonics Ylm:

f(c) =
∑
l,m

flmYlm. (3.17)

Using Eq. (3.17), together with the expansion of the surface flow vi given in Eq. (3.11), in
the force balance Eq. (3.16), we find

∑
l,m

{
ηs
R2 (1− l)(l + 2)

(
v

(1)
lmΨ(lm)

i + v
(2)
lmΦ(lm)

i

)
− ηb
R2 l(l + 1)v(1)

lmΨ(lm)
i + ξ

R
flmΨ(lm)

i

}
= −f ext

i . (3.18)

Here, we have used the definition of the vector harmonic modes Ψ(lm)
i = ∂iYlm, as well

as a set of identities given in the appendix (Eqs. (B.13)–(B.16)) to evaluate the covariant
derivatives in Eq. (3.16). For the external forces, we consider interactions with a surrounding
passive fluid f ext

i = fηi , with fηi given explicitly in terms of the velocity modes v(1)
lm and v

(2)
lm

in Eq. (3.13). From the orthogonality of the vector spherical harmonics it then follows that
v

(2)
lm = 0 and

v
(1)
lm = Rξflm

R(η− + η+)(1 + 2l)−Rη+δl,1 + (ηb + ηs) l(l + 1)− 2ηs
. (3.19)

Recall that R denotes the radius of the sphere, ξ the active contractility, ηb and ηs the bulk
and the shear viscosity of the surface and η± the viscosity of the interior (−) and exterior
(+) passive fluid. With the coefficients given in Eq. (3.19), the expansion of surface flows
Eq. (3.11) into vector harmonics represents a general solution of the force balance Eq. (3.5)
for an arbitrary distribution of active tension taij = ξf(c)gij .

Dynamic equation for the concentration field

To express a solution of the general problem, where active flows redistribute the stress reg-
ulator dynamically, we expand the concentration field c(θ, ϕ) in terms of scalar spherical
harmonics:

c =
∑
l,m

clmYlm. (3.20)

1Another perspective can be taken by to considering a translation of the sphere. One finds that the shear term
∇j∇jvi + vi in Eq. (3.16) vanishes for the tangential contributions of this translation. This shows that, only
if the surface curvature is properly taken into account, the shear term is written such that translations do not
contribute to shear on the surface.
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Chapter 3: Symmetry breaking on active surfaces in a viscous environment

Plugging this expansion into the dynamic equation of the concentration field Eq. (3.4) and
considering a turnover dynamics in the form

R(c) = −k(c− c0), (3.21)

we find

∑
l,m

d

dt
clmYlm = kc0 −

∑
l,m

(
D

R2 l(l + 1) + k

)
clmYlm

+
∑
l,m

∑
l′,m′

clm
(
v

(1)
l′m′Ψ

(lm) ·Ψ(l′m′) − v(1)
l′m′ l

′(l′ + 1)YlmYl′m′
)
. (3.22)

Here, we have again used the definitions of the vector harmonics, as well as v(2)
lm = 0. The

nonlinear expression in the second line of Eq. (3.22) arises from the advection term in the
dynamic equation of the concentration field. A projection of Eq. (3.22) on scalar spherical
harmonics yields

d

dt
clm = 2

√
πkc0δl,0 −

(
D

R2 l(l + 1) + k

)
clm +Alm. (3.23)

The prefactor of the first term stems from the normalisation of the scalar spherical harmonics.
The mode coefficients Alm correspond the projection of the advection term and read

Alm = 1
2R

∑
l1,m1

∑
l2,m2

cl1m1v
(1)
l2m2

[l(l + 1) + l2(l2 + 1)− l1(l1 + 1)]
∫
dΩYl1m1Yl2m2Ylm. (3.24)

Here, we denote dΩ = sin θdθdϕ. The derivation of Eq. (3.24) is given in Appendix B.3.1. The
integrals over a product of three spherical harmonics are known as Gaunt-coefficients [147].
Apart from a potentially nonlinear regulation of active tension, f(c), the advection term is
the only nonlinear contribution in this model and, as such, couples the different harmonic
modes.

For a given distribution of active tension taij = ξf(c)gij with f(c) given in Eq. (3.17),
Eqs. (3.19) and (3.23) provide a closed solution for the surface flows and the dynamics of the
concentration modes clm.

Linearised dynamics

Finally, we linearise the general closed solution around the homogeneous stationary state.
The stationary homogeneous state is given by c = c0, vi = 0 and u± = 0. The linearisation of
the tension-regulating function f(c) for small deviations of the concentration field δc = c−c0

yields f(c0 + δc) − f(c0) ≈ ∂cf(c0)δc. For δc(θ, ϕ) given in the form δc =
∑
l,m δclmYlm

the resulting surface flow δvi(θ, ϕ) in the form δvi =
∑
l,m δv

(1)
lmΨ(lm)

i directly follows from
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3.2 Mechano-chemical symmetry breaking in the cellular cortex

Eq. (3.19), with velocity modes given by

δv
(1)
lm = Rξc0∂cf(c0)

R(η− + η+)(1 + 2l)−Rη+δl,1 + (ηb + ηs) l(l + 1)− 2ηs
δclm. (3.25)

From Eq. (3.23), we find a dynamic equation for δclm that is given to linear order by

d

dt
δclm = −

(
D

R2 l(l + 1) + k

)
δclm − c0l(l + 1)δv(1)

lm . (3.26)

Using the velocity modes δv(1)
lm given in Eq. (3.25), the dynamic Eq. (3.26) is closed in the

concentration modes δclm.

In the remainder of this chapter, we will refer several times to the general closed solution
and the linearised solution just derived. In particular, these solutions will be used to approx-
imate inhomogeneous steady-state solutions and to analyse the mechano-chemical stability
properties of the active surface.

3.2 Mechano-chemical symmetry breaking in the cellular cortex

In this section, we show that mechanical interactions of the active fluid film with a pas-
sive surrounding fluid enable the spontaneous formation of patterns with different spatial
symmetries. We consider for this analysis the active surface dynamics defined by Eqs. (3.1)–
(3.5), where we focus on external forces from the interior passive fluid only and set η+ = 0.1

This represents a minimal model for the mechano-chemical self-organisation of the cellular
actomyosin cortex whose dynamics can be affected by shear stresses from the cytoplasm.

In the following, we first perform a linear stability analysis of the homogeneous state,
and we determine parameter regimes in which harmonic modes with different symmetries
are unstable. We then analyse the general nonlinear dynamics using a numerical approach.
In particular, we describe the spontaneous formation of a contractile ring from a mechano-
chemical instability. Finally, we discuss the interaction of the observed patterning processes
with an external anisotropic field that represents inhomogeneous signalling cues in a cell.

3.2.1 Linear stability analysis

Here, we determine the dispersion relation for perturbations of the homogeneous stationary
state and analyse its linear stability properties. To this end, we note that the linearised

1The patterning processes discussed here are qualitatively unchanged when an exterior fluid is additionally
included. Because of this redundancy it suffices for the analysis of mechano-chemical surface patterning to
consider interactions with the interior passive fluid alone.
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Chapter 3: Symmetry breaking on active surfaces in a viscous environment

dynamic Eq. (3.26) has the form d
dtδclm = λlδclm with

λl = −l(l + 1) D
R2 − k + l(l + 1)ξc0∂cf(c0)

(1 + 2l)Rη− + l(l + 1)(ηb + ηs)− 2ηs
, (3.27)

which can be solved by an ansatz δclm = δc
(0)
lm exp (λlmt). We can therefore identify λlm = λl

with λl given in Eq. (3.27) as the growth-rate of the l-th harmonic mode after a concentration
perturbation of the homogeneous state.

To discuss the dispersion relation Eq. (3.27) further, we first note that two important
time scales can be defined from the parameters of this model. The contractility time scale
τc = ηb/ξ describes the advection-driven accumulation of stress regulator, and the time scale
τD = R2/D describes the diffusion of the stress regulator. The ratio

Pe = τD
τc

= ξR2

Dηb
(3.28)

can be identified as the Péclet number [117, 120] that characterises the relative strength of
advective and diffusive flows. For large Péclet numbers, the contractility-driven advection
dominates over diffusive fluxes. With these definitions, we can rewrite the dispersion relation
Eq. (3.27) as

τDλl = −l(l + 1)
(

1 + τDk

l(l + 1) −
Pe c0∂cf(c0)

(1 + 2l)νR/Lh + l(l + 1)(1 + ν)− 2ν

)
, (3.29)

where
ν = ηs/ηb (3.30)

is the surface viscosity ratio and we have introduced the hydrodynamic length scale

Lh = ηs
η−
. (3.31)

As we will show, this hydrodynamic length scale plays a crucial role for the organisation
mechano-chemical surface patterns.

Critical Péclet number for interactions with an interior fluid

In the following, we discuss the linear stability based on the dispersion relation Eq. (3.29). To
this end, we use that the homogeneous state on the surface is unstable against perturbations
with mode l if λl > 0, and stable if λl < 0.

In the regime Lh � R, where interactions with the interior fluid are negligible, λl is
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Figure 3.2: Dispersion relation and stability diagram for perturbations of the homogeneous
state. a) Dispersion relation given in Eq. (3.29) for larger (top) and smaller (bottom)
hydrodynamic length Lh/R, corresponding to small and large viscosities η− of the interior
passive fluid. Dots show the values of the growth rate and the connecting lines serve as
guide to the eye. In each plot, we show growth rates for increasing Péclet number Pe defined
in Eq. (3.28). For a large hydrodynamic length, the mode l = 1 becomes unstable first
when Pe is increased (top). For a small hydrodynamic length, the mode l = 2 can become
unstable first when Pe is increased (bottom). b) Representative stability diagram, where
the homogeneous state is unstable in the bright blue region. The bright blue line indicates
Pe = Pe∗− (Eq. (3.32)) and corresponds to a transition at which the polar mode l = 1
becomes unstable first. The dark blue line indicates a transition at which the nematic mode
l = 2 becomes unstable first for an increasing Péclet number. The black circle depicts values
for which we study the nonlinear dynamics in Section 3.2.2. The black dashed line separates
parameter regions in which perturbations with the mode l = 1 or l = 2 have the larger
growth rate: lmax = 1 : λ1 > λ2 and lmax = 2 : λ2 > λ1. Parameters: kτD = 10, ν = 1 and
c0∂cf(c0) = 1.

monotonically decreasing for l ≥ 1. The polar mode1 l = 1 always becomes unstable first
when the Péclet number is increased up to Pe = Pe∗− with

Pe∗− = 1
c0∂cf(c0) (2 + τDk)

(
1 + 3νR

2Lh

)
. (3.32)

If the viscosity of the interior fluid is negligible such that Lh → ∞, Eq. (3.32) is formally
equivalent to the instability threshold previously derived for the deforming spherical surface
(Eq. (2.41)). Higher modes can also become unstable if Pe is increased further, but have
always a smaller growth rate λl than the mode l = 1 (Fig. 3.2 a, top).

Further inspection of the dispersion relation Eq. (3.29) reveals that in the regime Lh ≈ R,

1Scalar and vector spherical harmonics with l = 1 correspond to fields with a polar asymmetry on the sphere.
We refer to the corresponding mode coefficients simply as polar mode. Note that we already encountered an
instability with this symmetry on the deforming spherical surface discussed in Section 2.3.2. Furthermore, we
refer to coefficients with l = 2 simply as nematic mode, in correspondence with the symmetry of the respective
spherical harmonics.
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Chapter 3: Symmetry breaking on active surfaces in a viscous environment

where shear stresses in the interior passive fluid are comparable with those in the surface, the
dispersion relation can become non-monotonic. To see this, we use the dispersion relation
λl given in Eq. (3.29) and evaluate the inequality λ2 > λ1. We find that this inequality can
only be fulfilled if Lh < R, which provides a necessary condition for the nematic mode l = 2
to become unstable with the largest growth rate. If the turnover k is additionally finite, the
nematic mode can become the only unstable mode in the system (Fig. 3.2 a, bottom).

Figure 3.2b shows a representative stability diagram that captures the two different regimes
of smaller and larger hydrodynamic length. The homogeneous state is unstable in the blue-
shaded region. The bright blue line indicates the transition towards an unstable polar
mode l = 1. The nematic mode l = 2 can become unstable first for increasing Péclet
numbers at a smaller hydrodynamic length Lh (dark blue line).

3.2.2 Spontaneous formation of a contractile ring

In the following, we numerically solve Eqs. (3.4) and (3.5) on the surface of a sphere to
identify inhomogeneous steady states that emerge from the linear instabilities just discussed.
The details of the numerical approach are presented in Appendix E.3.2.

First, we consider the case of a larger hydrodynamic length Lh/R = 5, which corresponds
to a small viscosity of the interior fluid. Using a randomly perturbed concentration field
as initial condition, a single patch of stress regulator spontaneously forms. A steady state
emerges, which corresponds to a mechano-chemical surface pattern with global polar asym-
metry (Fig. 3.3 a, top row). A cross section that contains the polar axis defined by this
pattern reveals a backflow in the center (Fig. 3.3 b, top). This flow appears as a consequence
of the incompressibility of the passive fluid and the topology of the active surface flows, which
we have schematically depicted in Fig. 3.3 c (top).

In the next step, we analyse the nonlinear dynamics for a smaller hydrodynamic length
Lh/R = 0.2, such that shear stresses from the interior passive fluid are comparable with
those on the active surface. For reference, we have depicted the parameter values used for
this analysis as a black circle in the stability diagram Fig. 3.2. In this case, a perturbation
of the concentration field either leads to the formation of two patches of stress regulator
at opposing poles of the surface, or to the formation of a contractile ring, both of which
correspond to a surface pattern with a global nematic symmetry. In the bottom row of
Fig. 3.3, we show the steady state in which the contractile ring has formed. The interior
passive fluid flow is in this case given by two oppositely rotating, toroidal vortex tubes that
are stacked orthogonal to the nematic axis defined by the surface pattern (Fig. 3.3 c, bottom).

Finally, we note that all steady states that have been observed in the numerical solutions
are axially symmetric, even though the dispersion relation is degenerate in the azimuthal
mode number m.
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3.2 Mechano-chemical symmetry breaking in the cellular cortex

Figure 3.3: Spontaneously formed polar (top row) and nematic (bottom row) steady states.
a) Surface view of tangential flows (red arrows) and concentration patterns. An instability
of the mode l = 1 leads to a surface pattern with polar asymmetry (top). In regimes where
the mode l = 2 is the only unstable mode, a contractile ring with nematic asymmetry can
form (bottom). b) Central cross-sectional views that are parallel to the polar and nematic
axis defined by the surface patterns. Blue arrows depict the local flow field of the interior
passive fluid. Black lines depict stream lines. Note the central backflow in the l = 1 steady
state (top), which occurs as a consequence of the incompressibility of the interior fluid.
c) Schematic representation of the global flow topology. Grey tori depict vortex rings. In
the l = 1 steady state, a single vortex ring is present in the flow field of the passive fluid.
In the l = 2 steady state, two such vortex rings are stacked along the axis defined by the
surface pattern, and rotate in opposite directions. Parameters: kτD = 10, ν = 1 (in both
cases), as well as Pe = 20, Lh/R = 5 (top) and Pe = 100, Lh/R = 0.2 (bottom). Active
tension is regulated by f(c) = 2c2/(c2

0 + c2), such that c0∂cf(c0) = 1.

3.2.3 Interactions of patterns with an inhomogeneous external cue

In this last part of Section 3.2, we study interaction of the self-organised formation of polar
and nematic patterns with an inhomogeneous external cue. This analysis is inspired by the
spatially nematic signalling cues that the spindle apparatus in a cell provides for the cortex
during cell division.

To introduce an external nematic cue, we consider a reaction term in the dynamic equation
of the concentration field Eq. (3.4) given by

R(c) = −koff c+ kon(X), (3.33)
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Chapter 3: Symmetry breaking on active surfaces in a viscous environment

Figure 3.4: Introducing an external nematic cue in the form of an inhomogeneous on-
rate kon of stress regulator. The explicit expression used for kon is given in Eq. (3.34).
We depict the orientation of the nematic axis by a black left-right arrow. The spatial
organisation of such a cue can be provided, for example, by the spindle apparatus in a cell
that represents a nematic structure (left). The dimensionless coefficient β determines the
strength and sign of the nematic cue (right). Qualitatively, there is a recruitment of stress
regulator predominantly near the equator at θ = π/2 if β > 0, and a recruitment of stress
regulator predominantly near the poles at θ ∈ {0, π} if β < 0.

where

kon(X) = k0
on

[
1 + β

(
1− 3 cos2 θ

)]
. (3.34)

The surface profile prescribed by kon(X) is shown in Fig. 3.4. The term 1 − 3 cos2 θ in
Eq. (3.34) is proportional to the scalar spherical harmonic Y2,0 and describes an axisym-
metric nematic pattern on the sphere. Hence, kon(X) represents an on-rate with a spatially
nematic pattern if k0

on 6= 0 and β 6= 0. The coefficient β determines the strength and sign
of the nematic cue and is chosen from the interval [−1, 1/2], which ensures that kon(X) ≥ 0
everywhere on the surface.1 In the context of cytokinesis one has β > 0, such that there is
a recruitment of stress regulator predominantly to the equator region around θ = π/2. The
case β < 0 represents the inverse scenario, where the stress regulator is preferably recruited
to the pole region around θ ∈ {0, π}. For β = 0, we recover with k0

on/koff = c0 and koff = k

the homogeneous turnover R(c) = −k(c− c0) discussed before. This minimal model can also
be interpreted as choosing a preferred concentration c0(X) = kon(X)/koff that varies across
the surface.

1The asymmetric interval is a consequence of choosing a purely nematic spatial pattern for the modulation of
the on-rate. Using instead, for example, a modulation in the form β cos(2θ) would allow choosing β from a
symmetric interval, but also yields contributions to the mode l = 0 and therefore would affect the average
concentration c0 in a non-transparent way. This is avoided by choosing the purely nematic on-rate given
in Eq. (3.34).
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Figure 3.5: Orientation of surface patterns by an external nematic cue. a) Schematic
representation of surface patterns and their orientation for varying Péclet number Pe (defined
in Eq. (3.28)) and strength of the nematic cue β (cf. Eq. (3.34)). The black left-right arrow
depicts the orientation of the external nematic cue, grey arrows depict the symmetry axis
defined by the surface patterns. We chose parameters, for which the polar mode l = 1
becomes unstable first at Pe = Pe∗− if β = 0. This instability of the homogeneous state
was derived in Section 3.2.1 and can be found in this graph along the bright blue line. For
Pe < Pe∗− and β 6= 0, the steady state surface patterns are essentially imprinted by the
nematic cue: At steady state, surface regions where the rate kon is large (small) contain
a high (low) concentration of stress regulator. For Pe > Pe∗− and β 6= 0, spontaneously
forming patterns on the surface interact with the nematic cue. Depending on the strength
of the nematic cue β, this leads to polar and nematic surface patterns that orient their axis
with the one of the nematic cue. b) Representative steady-state patterns obtained from
numerical solutions of the full problem. Parameters: Lh/R = 5, τDk0

on = 10 and ηs/ηb = 1.

Orientation of polar surface patterns by an external nematic cue

In the following, we discuss the effect of the external nematic cue on the mechano-chemical
surface patterning. We first consider the regime of a larger hydrodynamic length Lh = ηs/η−,
corresponding to a small viscosity of the interior fluid. We have derived in Section 3.2.1 that in
this case, the polar mode l = 1 becomes unstable first when increasing the Péclet number Pe
up to the critical value Pe∗− given in Eq. (3.32). This stability property corresponds to the case
β = 0 for the model discussed here and serves as our reference to develop an understanding
of the observed patterns when the nematic cue is present.

When turning on the nematic cue, β 6= 0, we observe steady-state patterns as depicted
in Fig. 3.5 a. Additionally, we indicate in this graph the orientation and symmetry of these
patterns (grey arrows) relative to the axis defined by the nematic cue (black left-right arrows).

For β 6= 0 and Pe < Pe∗− (below the horizontal dashed line in Fig. 3.5 a), patterns are
essentially imprinted by the spatially varying on-rate kon(X). This is consistent with the
idea that the active surface is stable with respect to its contractile properties (Pe < Pe∗−),
but the external nematic cue generates an inhomogeneous concentration profile in a steady
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state. Corresponding concentration patterns are depicted in Fig. 3.5 b (Pe = 10).
For Pe > Pe∗− (above the horizontal dashed line in Fig. 3.5 a), we find emerging patterns

that appear as a ‘superposition’ of the external nematic cue and the intrinsic mechano-
chemical instability of the polar mode on the active surface. For β > 0 (increased recruitment
of stress regulator to the equator) a polar surface pattern forms, whose axis is oriented parallel
to the axis of the nematic cue (Fig. 3.5 a, top right). For β < 0 (increased recruitment of
stress regulator to the poles), we can qualitatively distinguish three regimes (Fig. 3.5 a, top
left). If |β| is small, a single contractile patch forms and defines a polar axis that is oriented
orthogonal to the axis of the nematic cue. If |β| is increased, two local concentration maxima
appear. This steady state represents a pattern that somewhat contains a polar and a nematic
asymmetry. Finally, if |β| is increased even further, the nematic cue dominates and leads to
two patches of stress regulator at opposing poles, defining an axis parallel to the axis of the
nematic cue. In Fig. 3.5 (Pe = 20), we depict exemplary steady-state concentration patterns
for the different cases just discussed.

Orientation of the contractile ring by an external nematic cue

We have just discussed the case of a larger hydrodynamic length Lh = ηs/η− in which the
polar mode l = 1 becomes unstable first for β = 0 (no external cue). We then switched
on the external cue and could interpret the resulting patterns as the ‘superposition’ of the
cue and the mechano-chemical stability properties of the surface. An analogous analysis
can be made in the regime of smaller hydrodynamic length, where the nematic mode l = 2
becomes unstable first for β = 0. We have studied the dynamics in this parameter regime
and complemented the system by the external nematic cue given in Eq. (3.33). The essential
insight of such an analysis is that the nematic axis defined by emerging contractile rings is
always oriented parallel to the axis of the external nematic cue, independently of the initial
condition. This is the key difference with the spontaneous formation of the contractile ring
for β = 0 discussed in Section 3.2.2, where the nematic axis defined by the ring pattern can
be oriented arbitrarily.

3.3 Spontaneous motion of an active surface swimmer

In the previous section, we have focused on mechanical interactions of the active surface with
an interior passive fluid. In this section, we discuss the complementary case and study the
active surface dynamics described by Eqs. (3.1)–(3.5) for external forces from an exterior
passive fluid. We show that an instability on the active surface leads in this case to the
spontaneous onset of force-free, translational motion through the exterior fluid. This repre-
sents a model for a squirmer, a small object that can propel itself in the absence of inertial
forces through a viscous environment. Squirmer models have widespread applications in the
study of artificial self-propelling particles and are used to describe key properties of biological
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3.3 Spontaneous motion of an active surface swimmer

microswimmers, such as sperm cells or swimming algae [148,149].
In the following, we first explain in detail how a mechano-chemical instability on the surface

can be linked to a force-free translational motion relative to the laboratory frame. We then
derive an analytic approximation of the steady-state propagation velocity of such an active
surface swimmer and compare it to the general solution obtained numerically. Finally, we
characterise the bifurcation that is associated with the spontaneous onset of motion.

3.3.1 Spontaneous onset of translational motion

In the following, we show that translational motion of the sphere through the exterior fluid
can arise spontaneously via a mechano-chemical instability on the active surface. To this end,
we first introduce a general relation between surface flows on the sphere and its force-free
motion through an exterior fluid. We then show that the corresponding surface flows, and
thus the onset of translational motion, can arise spontaneously from a mechano-chemical
instability.

Force-free motion through a viscous fluid

The net force exerted by the surface on the surrounding fluid, −
∫

fηdA with fη given in
Eq. (3.10), must vanish in the absence of external body forces. We show in Appendix B.2.4
that this implies a relation between surface flows on the sphere given in terms of a harmonic
expansion

vi =
∑
l,m

v
(1)
lmΨ(lm)

i , (3.35)

and a translational motion relative to the laboratory frame with velocity u0 given by

u0 = 1√
3π

(
v

(1)
1,1 ēx + v

(1)
1,−1ēy − v

(1)
1,0 ēz

)
. (3.36)

Briefly, Eq. (3.36) can be found as follows. First, the Stokes equation for the exterior fluid is
solved as described in Section 3.1.2 with no-slip boundary condition on the sphere for surface
flows given by Eq. (3.35). Additionally, we impose the boundary condition u(r →∞) = −u0.
Using this solution, the net force acting on the surface can expressed as a function of surface
flows vi and the propagation velocity u0. Imposing a vanishing net force yields Eq. (3.36).
An essential conclusion from Eq. (3.36) is that only velocity modes with l = 1 are relevant
to describe translational motion of the surface through the exterior fluid.

Critical Péclet number for interactions with an exterior fluid

We have seen in Section 3.2 that the self-organisation of the active surface can give rise to
spontaneous surface flows from a mechano-chemical instability. In general, we expect similar
instabilities to be present if mechanical interactions with an exterior fluid are considered.
From Eq. (3.36) it then follows that any contribution of surface flows associated with an
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Chapter 3: Symmetry breaking on active surfaces in a viscous environment

instability of the mode l = 1 leads to a spontaneous onset of translational motion. In the
following, we characterise the instability of the mode l = 1 for the case where the surface
is embedded in an exterior fluid.1 To this end, we solve the linearised dynamic Eq. (3.26)
for vanishing interior viscosity, η− = 0, with an exponential ansatz and identify the growth
rate of the mode l = 1. From this, we find that the mode l = 1 becomes unstable for an
increasing Péclet number Pe = ξR2/(Dηb) at Pe = Pe∗+ with

Pe∗+ = 1
c0∂cf(c0)

(
2 + kR2

D

)(
1 + Rη+

ηb

)
. (3.37)

Recall that R denotes the radius of the sphere, ξ the active contractility, ηb the bulk of the
surface and η+ the viscosity of the exterior passive fluid. The dynamics of modes with l ≥ 2
does not lead to new effects compared to the case where mechanical interactions with an
interior passive fluid are considered (Section 3.2). This is due to the fact that the general
solution for the surface flows, Eq. (3.19), is for modes with l ≥ 2 symmetric in the interior
and exterior viscosity and therefore invariant under η+ ↔ η−.

Steady-state flow during translational motion

In the next step, we solve the general nonlinear problem defined by Eqs. (3.1)–(3.5) for exter-
nal forces from an exterior passive fluid (see Section 3.1.2) using a numerical approach (Ap-
pendix E.3.2). Using a randomly perturbed concentration field as initial condition, we find
for Péclet numbers Pe = R2ξ/(ηbD) with Pe > Pe∗+ and Pe∗+ given in Eq. (3.37) the emer-
gence of a single patch of stress regulator. This pattern defines a polar asymmetry on the
surface. The mechanical coupling of the active surface with the passive exterior fluid leads to
a steady state at which the surface translates through the surrounding fluid. Cross sections
of the corresponding steady-state flow profiles in the frame comoving with the surface and
in the laboratory frame are shown in Figs. 3.6a and b, respectively. An interesting feature
of the passive steady-state flow field is the stagnation point that trails the active surface
swimmer in the laboratory frame (red circle in Fig. 3.6 b).

3.3.2 Analytic approximation of the propagation velocity

In the previous section, we have shown that force-free, translational motion can spontaneously
arise from a mechano-chemical instability on the active surface. In the following, we derive
an analytic approximation of the steady-state propagation velocity u0 that emerges from this
instability.

It is evident from Eq. (3.36) that determining an approximation for u0 is equivalent to
determining an approximation of the steady-state solution for the velocity modes v(1)

1,m. For
this, we have to go beyond the linear regime and therefore use the general closed solution

1The corresponding calculation is very similar to the derivation for the case of an interior fluid presented in
Section 3.2.1 and therefore only described briefly here.
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3.3 Spontaneous motion of an active surface swimmer

Figure 3.6: Central cross section through the steady-state flow profile of an active surface
swimmer. Black lines depict stream lines of the surrounding flow field. a) The flow field
depicted in the frame comoving with the surface. b) The flow field depicted in the laboratory
frame. This flow field contains a stagnation point with u+ = 0 (red circle). This point trails
the active surface swimmer and therefore indicates a microswimmer that can be characterised
as a puller [150]. This can also be shown analytically based on the standard criteria for the
classification of squirmers (see below and Appendix E.1.1).

of the nonlinear problem derived in Section 3.1.3 as a starting point. In the first step, we
approximate the regulation of active tension in Eq. (3.3) by a linear function f(c) = c/c0.
Representing the concentration field by a harmonic expansion c =

∑
l,m clmYlm, the velocity

modes of the surface flows as expanded in Eq. (3.35) are given by

v
(1)
lm = Vl

clm
c0
, (3.38)

(no summation) with constant coefficients

Vl = Rξ

(1 + 2l)Rη+ − δl,1Rη+ + l(l + 1)(ηb + ηs)− 2ηs
, (3.39)

which follows from Eq. (3.19) and is exact for a linear regulation of active tension.
In the next step, we take into account that we only observe axisymmetric steady states

in numerically obtained solutions of the general surface dynamics.1 We assume that this is
a general property of the isotropic, self-organised active surface, such that the z-axis of the
Cartesian coordinate system can always be aligned with the rotational symmetry axis that
is defined by the final surface pattern. From Eqs. (3.36) and (3.38) it then follows that the

1This holds true very generally in the presence or absence of mechanical interactions with a passive fluid in
any of the domains, interior or exterior.
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translational velocity of a steady-state solution can be expressed as u0 = u0ēz with

u0 = − V1√
3π

c1,0
c0
. (3.40)

In order to approximate the propagation velocity u0, it therefore suffices to consider axisym-
metric solutions and determine an approximation of the concentration mode c1,0 at steady
state. Accordingly, we consider an ansatz for the concentration field in the form

c = c0 + c1,0Y1,0 + c2,0Y2,0. (3.41)

Here, c0 represents a given average concentration and c1,0 and c2,0 are unknown coefficients
whose steady-state values are approximated in the following. To this end, we use the ansatz
Eq. (3.41) in the general solution of the nonlinear problem Eq. (3.23), which yields

d

dt
c1,0 = −2 D

R2 c1,0 − kc1,0 + 2V1c1,0
R

+ 1√
5π

c1,0c2,0
Rc0

(3V2 − V1) (3.42)

d

dt
c2,0 = −6 D

R2 c2,0 − kc2,0 + 3√
5π

c2
1,0V1

c0R
+ V2c2,0

Rc0

(
6c0 + 3

7

√
5
π
c2,0

)
(3.43)

with Vl for l = 1 and l = 2 given in Eq. (3.39). Here, we have also used Eq. (3.38) to
eliminate the velocity modes in the general dynamic equation for the concentration modes
(Eq. (3.23)). Note that Eqs. (3.42) and (3.43) are not a power-series expansion, but follow
from truncating the general solution Eq. (3.23) in the space of spherical harmonics at l = 2.
Including higher modes would in fact lead to further quadratic terms in the concentration
modes.

Steady-state solutions for the concentration modes c1,0 and c2,0 can be found by setting
dc1,0/dt = dc2,0/dt = 0 in Eqs. (3.42) and (3.43). The resulting quadratic system of equations
for c1,0 and c2,0 has four solutions that can essentially be read off: a homogeneous solution
chom1,0 = chom2,0 = 0, a solution cnem1,0 = 0, cnem2,0 6= 0 that corresponds to a nematic state, as well
as two solutions with cpol1,0 6= 0, cpol2,0 6= 0 that correspond to steady states for which, according
to Eq. (3.40), the surface propagates through the exterior fluid. We present the explicit form
of these solutions in Appendix E.1.1. In Fig. 3.7 a, we show the surface flow and concentration
field determined from the steady-state solutions cpol1,0 and cpol2,0 using Eqs. (3.38) and (3.41), as
well as numerically obtained steady-state solutions of the full problem.

Finally, the propagation velocity u0 of the surface follows from Eq. (3.40) and is given by

u0 = ±
[

20
3
V1 − D

R

V1 − 3V2

(
DV1
R
− V1V2

{
1 + 5

7
V1 − D

R

V1 − 3V2

})]1/2

(3.44)

with Vl for l = 1 and l = 2 given in Eq. (3.39). Here, we have for simplicity neglected the
turnover of the stress regulator (k = 0). In Fig. 3.7 b, we show the approximated propagation
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Figure 3.7: Comparison of numerical results and analytic approximations for steady-
state solutions of an active surface embedded in an exterior passive fluid. a) Surface flows
ṽθ = ēθ ·v‖/vD, where vD = R/τD = D/R is the characteristic velocity, and concentration
field of the stress regulator c̃ = c/c0 at steady state. Dashed lines depict analytic approxima-
tions determined using Eqs. (3.38), (3.42) and (3.43). Solid lines depict solutions that have
been obtained numerically from the general problem defined by Eqs. (3.1)–(3.5). For details
of the numerical approach see Appendix E.3.2. Parameters: Rη+/ηb = 0.05, Pe = 2.2.
b) Propagation velocity ũ0 = u0/vD as function of the Péclet number Pe = ξR2/(ηbD).
Solid lines depict the approximation given in Eq. (3.44), crosses depict numerical solutions.
Colours indicate different values of the dimensionless parameter Rη+/ηb, corresponding to
different critical Péclet numbers Pe∗+ (Eq. (3.45)). For Pe < Pe∗+ the steady state is homo-
geneous and u0 = 0. Common parameters used for all results shown are k = 0, ηb/ηs = 1
and we have used f(c) = c/c0 for the regulation of active tension Eq. (3.3).

velocity u0 given in Eq. (3.44) as a function of the Péclet number Pe = ξR2/(ηbD), for differ-
ent values of the critical Péclet number Pe∗+ given in Eq. (3.37). The analytic approximation
agrees particularly well with the full numerical solution closer to the onset of the instability.
Furthermore, we find from Eq. (3.44) that u0 = 0 for Pe = Pe∗+.

Identifying the active surface swimmer as a puller

Microswimmers can be classified by the far-field of the surrounding fluid flow that is gener-
ated during their motion [151]. Because the motion is typically force-free, the first relevant
contribution to the far-field corresponds to flows generated from a force-dipole. One then
distinguishes two classes of swimmers based on the orientation of the forces within the dipole.
In the case of a contractile force-dipole, point forces pointing towards each other, the swim-
mer represents a puller. In the case of an extensile force-dipole, the swimmer represents a
pusher [149].1 A simple way to identify this class for swimmers that are driven by surface
flows, is to determine the sign of the velocity mode v(1)

2,0 [149–151]. In our model, it suffices to

1This terminology originates from biological microswimmers that ‘pull’ themselves through the fluid in a
swimming stroke fashion to draw fluid along their body axis or, alternatively, push themselves by repelling
fluid from the body along the axis of motion [151].
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determine the sign of the concentration mode cpol2,0 during translational motion, which differ
from the velocity modes v(1)

2,0 only by a positive prefactor (cf. Eq. (3.39)). From the explicit
expression for the concentration mode cpol2,0 given in Appendix E.1.1, it follows that the active
surface swimmer introduced in this section belongs to the class of pullers. Note that the
trailing stagnation point in the surrounding flow field (red circle in Fig. 3.6 b) had already
revealed this fact: a trailing stagnation point is a known characteristic of pullers [150].

3.3.3 Bifurcation analysis at the spontaneous onset of motion

We conclude Section 3.3 by analysing the bifurcation that is associated with the spontaneous
onset of translational motion just described. Recall that the onset of this motion occurs for
increasing Péclet number Pe at the critical value Pe∗+ given in Eq. (3.37). For Pe < Pe∗+,
the homogeneous state is stable and there is no translational motion. We consider for the
following analysis of this transition a linear regulation of active tension f(c) = c/c0 in
Eq. (3.3) and neglect turnover (k = 0), such that the critical Péclet number Pe∗+ simplifies
to

P̂e∗+ = 2
(

1 + Rη+
ηb

)
. (3.45)

Scaling of the propagation velocity near the instability

To analyse the behaviour of the propagation velocity u0 near the spontaneous onset of motion,
we first note that the approximation of u0 given in Eq. (3.44) can be brought into the form

|u0|
vD

=
(

Pe− P̂e∗+
P̂e∗+

)1/2

(aPe + b)1/2 , (3.46)

where vD = D/R is a fixed characteristic velocity. The coefficients a and b depend only on
Pe∗+ and are given in Appendix E.1.2. Near the onset of the instability, we can introduce the
relative deviation from the critical Péclet number

∆Pe =
Pe− P̂e∗+

P̂e∗+
(3.47)

and find from Eq. (3.46)

|u0|
vD

=
(
aP̂e∗+ + b

)1/2
∆Pe1/2 +O

(
∆Pe3/2

)
. (3.48)

Note that aP̂e∗+ + b > 0, such that the prefactor of ∆Pe1/2 is always real (Appendix E.1.1).
As a final verification of this result, we rescale the numerical data presented in Fig. 3.7 b
according to Eq. (3.48), in which case they indeed collapse on a single curve (Fig. 3.8).
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Figure 3.8: Scaling of the propagation velocity of an active surface swimmer. Crosses
denote the same numerical steady-state solutions as shown in Fig. 3.7 b. Here we rescaled
the data according to Eq. (3.48), where ∆Pe = (Pe− P̂e

∗
+)/P̂e

∗
+ is the relative deviation of

the Péclet number from the critical value P̂e
∗
+ given in Eq. (3.37). Along the ordinate axis,

we depict |ũ0|sc = (aP̂e
∗
+ + b)−1/2|u0|/vD, where vD = D/R is held fixed and the coefficients

a and b depend only on P̂e
∗
+ (Appendix E.1.2). The black dashed line depicts a line with

slope 1 for reference. Increasing deviations of the numerical values appear for larger values of
∆Pe, when higher modes (l ≥ 3) become relevant for the steady-state solution. The collapse
of the numerically obtained solutions confirms the square-root scaling of the propagation
velocity and the spontaneous onset of motion at the critical Péclet number P̂e

∗
+.

Pitchfork bifurcation at the spontaneous onset of motion

The square-root scaling of the velocity amplitude |u0| and the invariance of the dynamic
Eqs. (3.42) and (3.43) under c1,0 → −c1,0 are indications of a pitchfork bifurcation at the
onset of translational motion [152,153]. This can be corroborated by reducing the dynamical
system near the point (c1,0, c2,0) = (0, 0) to an equation for the slow degrees of freedom.
The corresponding center-manifold reduction [152] can be performed analytically in our sys-
tem (Appendix E.1.2). Briefly, we consider near the bifurcation an ansatz c2,0 = ᾱc2

1,0/c0

for the center-manifold. Taking the time derivative of this expression and using Eqs. (3.42)
and (3.43), we can self-consistently determine the coefficient ᾱ. From this, we find a ‘slow’
dynamic equation near (c1,0, c2,0) = (0, 0) in the form

τD
d

dt

c1,0
c0

= 2∆Pec1,0
c0

+ ā

(
c1,0
c0

)3
, (3.49)

where ∆Pe is defined in Eq. (3.47) and the prefactor ā of the cubic term is given by

ā = 1
10π

Rη+ − 4ηs
3Rη+ + 4ηb + 4ηs

(3.50)
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at the bifurcation Pe = P̂e∗+ = 2(1 + Rη+/ηb). Equation (3.49) indeed corresponds to
the dynamic equation of a pitchfork bifurcation at Pe = P̂e∗+. Because the propagation
velocity u0 is directly proportional to the value of c1,0 (Eq. (3.40)), the spontaneous onset of
translational motion itself occurs via a pitchfork bifurcation.

The specific type of the pitchfork bifurcation is determined by the coefficient ā of the
cubic term in Eq. (3.49), where ā > 0 (ā < 0) corresponds to a supercritical (subcritical)
pitchfork bifurcation [152]. We see from Eq. (3.50) that formally both cases can occur,
depending on the amplitude of the exterior viscosity. For Rη+ < 4ηs, the bifurcation is
supercritical. All results discussed here belong to this supercritical regime. We also tried to
collect numerical evidence for a potential transition to the subcritical regime by increasing
the exterior viscosity up to η+ > 4ηs. However, increasing values of η+ also imply larger
critical Péclet numbers Pe∗+ (Eq. (3.37)). Thus, a stronger contractile tension is required for
the instability to occur, when larger values for η+ are chosen. For values of η+ that still
corresponded to the supercritical regime (Rη+ < 4ηs ⇒ ā < 0), the numerical analysis then
indicated the presence of singularities emerging from instabilities of the homogeneous state
before the regime Rη+ > 4ηs could be reached. These singularities likely appear due to the
unsaturated linear regulation of active tension used here. Therefore, we could not conclude
further about the properties of the bifurcation at larger exterior viscosities.

3.4 Discussion

In this chapter, we studied the mechano-chemical self-organisation of an isotropic active fluid
on a sphere. Gradients of a diffusing stress regulator lead to surface flows, which in turn
change the distribution of the stress regulator due to advection. In contrast to the previous
chapter, we considered here the general, non-axisymmetric dynamics on the surface and took
external shear stresses from a surrounding passive fluid into account. We identified a new
mechanism that leads to a spontaneous polarisation on an active fluid surface, as well as to
the formation of a contractile ring in a fully self-organised fashion. Our description also gives
rise to a squirmer model, whose nonlinear properties we characterised in detail.

Throughout this chapter, we used the Péclet number Pe = ξR2/(Dηb), with contractility ξ,
sphere radius R, diffusion constant D, and surface viscosity ηb, to indicate the strength of
active contractile stress in the system. It has been shown previously that the Péclet number
can be used to characterise instabilities in self-organised active fluids [117].

We first derived a closed solution for the general nonlinear dynamics that served as the formal
basis to develop the results presented in this chapter (Section 3.1). This solution builds on
a covariant harmonic expansion of the hydrodynamic shear stresses acting on the surface.

In the first part of the analysis, we focused on interactions with an interior passive
fluid (Section 3.2). This description is motivated by the dynamics of the cellular actomyosin
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cortex, which interacts mechanically with the cytoplasm. Furthermore, it is of general im-
portance for a cell to have access to different modes of spatial organisation, which can help to
robustly guide polarisation and cell division [12, 35]. The corresponding spatial symmetries
can directly be related to specific harmonic modes on the sphere.

We have identified a critical Péclet number Pe∗− given in Eq. (3.32), beyond which the
mode l = 1 is unstable and surface patterns with a polar asymmetry can spontaneously form
from the homogeneous state. Note that for a vanishing interior viscosity, Pe∗− is equivalent
to the critical contractility α∗s given in Eq. (2.41) that was derived for a deformable surface.
The reason for this equivalence is that the instability of the mode l = 1 is driven solely by an
isotropic in-plane compression that is to linear order the same on a fixed and on a deforming
surface. Note in this context also that Pe∗− does only depend on the bulk viscosity ηb, but
not on the shear viscosity ηs.

For larger shear stresses from the interior fluid and a finite homogeneous turnover, the
mode l = 2 can become unstable first for increasing Péclet numbers, leading to a situation
in which a contractile ring with nematic symmetry spontaneously forms. This resembles the
formation of a contractile ring in the cortex of a cell before cytokinesis [39]. Qualitatively,
the appearance of a ring pattern can be understood by considering the hydrodynamic length
scale Lh = ηs/η−, where η− is the viscosity of the interior passive fluid. This length scale
represents a screening length for local contractile tension, similar to a hydrodynamic length
scale that results from friction with a substrate [64, 117]. If Lh becomes smaller than the
radius of the sphere R, patterns other than a single contractile patch can emerge. Note
that an exterior fluid also introduces a hydrodynamic length scale, hence it can affect the
mechano-chemical patterning processes in a similar way. Our description does not take vari-
ous properties associated with an actual actomyosin cortex into account, such as anisotropies
or a complex composition. Even without these ingredients, our minimal model of an isotropic
one-component fluid that integrates a self-organised active stress is sufficient to generate the
steady-state pattern of a contractile ring.

Inspired by the spatially nematic signalling cues that the spindle apparatus in a cell pro-
vides for the cortex, we additionally studied the surface dynamics in the background of a
on-rate kon with a spatially nematic profile on the surface. In parameter regimes for which
the homogeneous state is stable, switching on the spatially dependent rate trivially imprints
a corresponding pattern of stress regulator on the surface. This represents a scenario in which
the organisation of the surface is fully guided by the external cue and the dynamics shows no
signature of mechano-chemical self-organisation. In parameter regimes for which the homo-
geneous state is unstable, several different patterns form and are eventually oriented with the
axis provided by the external nematic cue. For example, a contractile ring can spontaneously
emerge and is eventually oriented in a well-defined way by the external cue. We considered
here a spatially fixed cue, but we point out that its orientation could in principle depend on
the surface dynamics. In the context of a spindle, for example, it is known that feedback
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mechanisms exist between the spindle orientation and the stress distribution on the cellular
cortex [154].

In the last part of this chapter, we focused on interactions of self-organised surface flows with
an exterior passive fluid (Section 3.3). We found that this description gives rise to a squirmer
model: the active surface swimmer. Surface patterns with polar asymmetry spontaneously
form for Péclet numbers beyond a critical value Pe∗+ given in Eq. (3.37). The mechanical
coupling with the surrounding passive fluid leads to a spontaneous onset of force-free motion
relative to the laboratory frame. We obtained numerical solutions of the full problem and
found a trailing stagnation point in the passive fluid flow around the active surface swimmer.
A trailing stagnation point indicates that our swimmer belongs to the class of pullers [150],
which we also confirmed analytically.

We used the general closed solution of the nonlinear problem to approximate the steady-
state propagation velocity of the active surface swimmer, and found good agreement with
solutions obtained numerically. We derived the normal form of the bifurcation associated with
the spontaneous onset of translational motion. From this, we found that the onset of motion
appears as a supercritical pitchfork bifurcation, and we identified the relative deviation from
the critical Péclet number ∆Pe = (Pe− Pe∗+)/Pe∗+ as the corresponding control parameter.

Finally, we note that for the special case of vanishing surface viscosity, ηb = ηs = 0,
our model shares several features with descriptions previously used to study Marangoni
flows [149,155,156]. These are flows that arise due to surface tension gradients on fluid-fluid
interfaces, which can be used to generate spontaneously moving droplets [157]. It would be
interesting to study whether the results presented here are applicable in systems where such
Marangoni flows occur and vice versa.
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Chapter 4
Self-organised contractility
oscillations on an active
viscoelastic surface
In this chapter, we analyse the dynamics of a self-organised active surface with viscoelastic
properties. This is motivated by the fact that the cellular cortex and epithelial tissues
typically show a viscoelastic response to applied stress [12,72,111]. To study this property in
the context of the mechano-chemical self-organisation of surfaces, we extend the description
developed in the previous chapter and consider here a Maxwell model to describe the response
of the surface material to active stress. A Maxwell model is characterised by a time scale τM
on which elastic stress in the material relaxes. Such a relaxation time leads to an elastic
response at short times and a fluid-like response at long times if the material is deformed at
a constant rate.

The chapter is organised as follows. In Section 4.1, we introduce covariant constitutive
relations of an active viscoelastic surface. In Section 4.2, we perform a linear stability analysis
of the material dynamics on a sphere. From this, we identify a critical Maxwell time τ∗M that
indicates the transition to an oscillatory instability. In Section 4.3, we study the full nonlinear
dynamics of these oscillations using a numerical approach. We find steady states in which
chemically regulated active stress oscillates between two opposite poles. In Section 4.4, we
summarise and discuss the main results of this chapter.

4.1 Constitutive relation of an active viscoelastic surface

We consider in this chapter an isotropic viscoelastic material on a fixed surface Γ̄ with
constitutive relation

tij = tel
ij + taij . (4.1)
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Here, taij is an active isotropic tension and tel
ij is described by a Maxwell model, which we

write as (
1 + τM

D̄

Dt

)
tel, j
i = 2ηs

(
v j
i −

1
2v

k
kδ

j
i

)
+ ηbv

k
kδ

j
i . (4.2)

Here, τM is the Maxwell relaxation time and we have assumed for simplicity that its value
is the same for shear deformations and isotropic deformations of the material. As in the
previous chapter, vij = (∇ivj +∇jvi)/2 denotes the symmetric part of the strain rate tensor
on the fixed surface. In Eq. (4.2), we use the covariant form of the convected corotational
derivative D̄/Dt (Jaumann derivative) given by

D̄

Dt
t ji = ∂tt

j
i + vk∇kt ji + ωn

(
εikt

kj + εjktik
)
, (4.3)

where ωn = 1
2ε
ij∇ivj denotes the in-plane vorticity of the flow field. Equation (4.3) represents

the symmetrised form of a general Lagrangian derivative D/Dt on curved surfaces and is
derived in Appendix E.2.1. There, we also show that the metric tensor gij does not commute
with D̄/Dt, even on a fixed surface. However, D̄/Dt does commute with the Kronecker
delta δji . Writing the Maxwell model Eq. (4.2) in terms of mixed coordinates therefore ensures
that the traceless symmetric part of tel

ij is related exclusively to shear deformations and the
trace of tel

ij is exclusively related to isotropic compressions and expansions of the material.
For a more detailed discussion of these rather technical aspects, we refer to Appendix E.2.1.

We consider for the active contribution taij in Eq. (4.2) an isotropic tension taij = ξf(c)gij
that depends on the concentration c of a stress regulator. The dynamic equation of the
concentration field is given by

∂tc = −∇i
(
cvi
)

+D∆Γ̄c+R(c), (4.4)

where D is the diffusion constant and ∆Γ̄ is the Laplace-Beltrami operator. The reaction
term in Eq. (4.4) is given by R(c) = −koffc+ kon. We use the characteristic concentra-
tion c0 = kon/koff and the degradation rate k = koff as the two free parameters and write
R(c) = −k(c− c0). The model is closed by the force balance equation

∇itij = −f ext
j , (4.5)

where we neglect inertial effects. We study in the following sections the dynamics of the
viscoelastic self-organised isotropic active surface as described by Eqs. (4.1)–(4.5) on a sphere.
We also include external shear forces f ext

j from an interior passive, incompressible fluid with
viscosity η− as introduced in Section 3.1.2.
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4.2 Linear stability analysis

4.2 Linear stability analysis

In the following, we present the linear stability analysis of the homogeneous steady state for
the active viscoelastic surface model on a sphere. First, we derive the Jacobian of this system
using tensor spherical harmonics to represent the elastic tension tensor tel

ij . The general
problem contains at each point on the surface four degrees of freedom: the concentration
field c and three degrees of freedom described by the symmetric tensor tel

ij . We show here
that this problem can be reduced to two independent degrees of freedom by using a suitable
transformation. From this, we determine a critical Maxwell time τ∗M that indicates the
presence of oscillatory instabilities in the system if the Maxwell relaxation time τM becomes
larger than τ∗M .

4.2.1 Derivation of the Jacobian

Here, we derive the Jacobian for perturbations of the homogeneous state c = c0, vi = 0
and tel

ij = 0 on a sphere of radius R. Note that as in Chapter 3, we consider the spe-
cific parametrisation of a unit sphere to represent tensor components and covariant deriva-
tives (Appendix A.3.2), but keep the covariant component notation general to simplify the
calculations. In contrast to the purely viscous surface, the tension tensor tel

ij(θ, ϕ) is now an
independent dynamic variable. We expand perturbations around tel

ij = 0 as

δtel
ij =

∑
l,m

(
δt

(0)
lmη

(lm)
ij + δt

(1)
lmΨ(lm)

ij + δt
(2)
lmΦ(lm)

ij

)
. (4.6)

Here, the time-dependent mode coefficients {δt(0)
lm , δt

(1)
lm , δt

(2)
lm} represent the three local de-

grees of freedom of δtel
ij and {η(lm)

ij (θ, ϕ),Ψ(lm)
ij (θ, ϕ),Φ(lm)

ij (θ, ϕ)} denote tensor spherical har-
monics [158]. Briefly, η(lm)

ij denotes modes of the isotropic part of a tensor on a sphere,
while Ψ(lm)

ij and Φ(lm)
ij represent modes associated with the two degrees of freedom of a trace-

less symmetric tensor on a sphere. Tensor spherical harmonics obey eigenvalue equations
with the Laplace-Beltrami operator on a sphere and are therefore orthogonal with respect to
a suitably defined scalar product. Furthermore, covariant divergences of tensor harmonics
can be expressed in terms of vector harmonics, such that Eq. (4.6) can be combined with
expansions of other quantities in terms of vector and scalar spherical harmonics. Explicit
representations of tensor spherical harmonics together with an overview of their relevant
properties are given in Appendix B.1.3.

Small perturbations of the surface flow δvi(θ, ϕ) and concentration field δc(θ, ϕ) are ex-
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panded as

δvi =
∑
l,m

(
δv

(1)
lmΨlm

i + δv
(2)
lmΦlm

i

)
(4.7)

δc =
∑
l,m

δclmYlm, (4.8)

where we use scalar and vector spherical harmonics, Ylm(θ, ϕ) and {Ψ(lm)
i (θ, ϕ),Φ(lm)

i (θ, ϕ)},
respectively (Appendix B).

With the expansions Eqs. (4.6) and (4.7), we first derive a linearised form of the Maxwell
constitutive relation Eq. (4.2). To this end, we note that the right-hand side of Eq. (4.2) can
be written with Eq. (4.7) as

2ηs
(
δvij −

1
2δv

k
k gij

)
+ ηbδv

k
k gij =

1
R

∑
l,m

[
δv

(1)
lm

(
2ηsΨ(lm)

ij − ηbl(l + 1)η(lm)
ij

)
+ 2δv(2)

lmηsΦ
(lm)
ij

]
, (4.9)

where we have used the definitions of vector and tensor spherical harmonics
(Appendix B.3.2). Inserting Eqs. (4.6) and (4.9) in the constitutive relation Eq. (4.2), and
using the orthogonality of tensor spherical harmonics, we find

d

dt
δt

(0)
lm = − 1

τM
δt

(0)
lm − l(l + 1) ηb

τMR
δv

(1)
lm (4.10)

d

dt
δt

(1)
lm = − 1

τM
δt

(1)
lm + 2ηs

τMR
δv

(1)
lm (4.11)

d

dt
δt

(2)
lm = − 1

τM
δt

(2)
lm + 2ηs

τMR
δv

(2)
lm , (4.12)

where we have additionally used D̄/Dt ≈ ∂t to linear order. This system can be simplified
by introducing a new set of coefficients {δt̃(0)

lm , δt̃
(1)
lm} defined by

δt̃
(0)
lm = δt

(0)
lm + l(l + 1) ηb2ηs

δt
(1)
lm (4.13)

δt̃
(1)
lm = δt

(0)
lm +

(
1− l(l + 1)

2

)
δt

(1)
lm . (4.14)

With this transformation, Eqs. (4.10) and (4.11) yield

d

dt
δt̃

(0)
lm = − 1

τM
δt̃

(0)
lm (4.15)

d

dt
δt̃

(1)
lm = − 1

τM
δt̃

(1)
lm + ηs [2− l(l + 1)]− ηbl(l + 1)

τMR
δv

(1)
lm , (4.16)
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which implies that a stable degree of freedom described by δt̃(0)
lm drops out of the problem.1

In the next step, we use the force balance to determine the flow field δvi. For δtij =
δtel
ij + δtaij with δtel

ij given in Eq. (4.6) and δtaij = ξc0∂cf(c0)δc gij the force balance Eq. (4.5)
yields

∑
l,m

{(
δt̃

(1)
lm + ξ∂cf(c0)δclm

)
Ψ(lm)
i +

[
1− l(l + 1)

2

]
δt

(2)
lmΦ(lm)

i

}
= −Rδf ext

i . (4.17)

We consider here external forces δf ext
j from an interior passive fluid as introduced in Sec-

tion 3.1.2. We recall that this force can be expressed as

δf ext
i =

∑
l,m

(
δf

(1)
lm Ψ(lm)

i + δf
(2)
lm Φ(lm)

i

)
, (4.18)

with

δf
(1)
lm = −η−

R
(2l + 1)δv(1)

lm (4.19)

δf
(2)
lm = −η−

R
(l − 1)δv(2)

lm , (4.20)

where η− denotes the viscosity of the interior fluid. Note that the velocity modes δv(2)
lm for

l = 1 represent full body rotation that are not relevant for this problem and can be set to
zero. Furthermore, the special case η− = 0 yields δf ext

i = 0, such that the force balance
Eq. (4.17) implies δt(2)

lm = 0 and δt̃
(1)
lm ∼ δclm. Hence, for η− = 0 only the concentration

mode δclm remains as an independent degree of freedom and we find a dispersion relation
similar to the case already studied in Section 3.2. In the following, we therefore focus on the
case η− > 0.

Using Eqs. (4.19) and (4.20) in Eq. (4.17), the velocity modes are determined as

δv
(1)
lm =

(
δt̃

(1)
lm + ξ∂cf(c0)δclm

)
η−(1 + 2l) (4.21)

δv
(2)
lm = − [l(l + 1)− 2]

2η−(l − 1) δt̃
(2)
lm . (4.22)

From Eqs. (4.12) and Eq. (4.22), we find that the stationary state is always stable against
perturbations described by the mode coefficients δt(2)

lm . Using Eq. (4.21) to eliminate the

1The physical meaning of the coefficients δt̃(0)
lm can be understood as follows. Equation (4.15) implies that

at long times δt̃(0)
lm → 0. Hence, the mode coefficients δt(0)

lm and δt
(1)
lm , which respectively describe isotropic

and anisotropic tension, become linearly dependent according to Eq. (4.13) and their relative amplitude is
essentially set by the surface viscosity ratio ηb/ηs at long times. Only at short times, the modes δt(0)

lm and δt
(1)
lm

describe independent degrees of freedom that correspond to elastic responses with effective moduli Eb = ηb/τM
and Es = ηs/τM .
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Figure 4.1: Representative stability diagram of the homogeneous state on a self-organised
viscoelastic active surface. The Péclet number and dimensionless Maxwell time are defined by
Pe = ξR2/(ηbD) and τ̃M = τM/τD, respectively. Here, τD = D/R2 is the time scale of diffu-
sion that is held fixed in this stability diagram. The homogeneous state is unstable in the blue
shaded region. The eigenvalues of the Jacobian Jlel described by Eqs. (4.23) and (4.24) are
complex in the region shaded in dark blue, indicating oscillatory instabilities. For τM → 0,
we recover the stability properties of the purely viscous surface studied in Chapter 3. The
critical Péclet number Pe∗− is given in Eq. (3.32). For Maxwell times τM > τ∗M (τ∗M is given
in Eq. (4.25)) instabilities occur at Pe = Pe∗oi (Pe∗oi is given in Eq. (4.26)). In the stability
diagram, we have annotated the dimensionless critical Maxwell time: τ̃∗M = τ∗M/τD. The
black circle depicts parameter values for which we representatively discuss the full nonlinear
dynamics in Section 4.3. Parameters: k = 0, ηs/ηb = 1, Rη−/ηb = 0.15, c0∂cf(c0) = 1.

velocity modes in the dynamic Eq. (4.16) leads finally to

d

dt
δt̃

(1)
lm = − 1

τM
δt̃

(1)
lm + ηs [2− l(l + 1)]− ηbl(l + 1)

RτMη−(1 + 2l)
(
δt̃

(1)
lm + ξ∂cf(c0)δclm

)
. (4.23)

Hence, only a single relevant degree of freedom of the tension tensor remains after the lineari-
sation of the force balance equation. The dynamics of the corresponding modes is described
by Eq. (4.23). The system is closed by the linearisation of the dynamic equation for the
concentration field Eq. (4.4), which reads

d

dt
δclm = l(l + 1)

η−(1 + 2l)
c0
R
δt̃

(1)
lm −

[
D

R2 l(l + 1) + k − l(l + 1)
η−(1 + 2l)

c0
R
ξ∂cf(c0)

]
δclm. (4.24)

Here, we have used Eqs. (3.26) and (4.21). Equations (4.23) and (4.24) define the final
Jacobian Jlel for the dynamics of the modes δt̃(1)

lm and δclm. We write Jlel explicitly in Ap-
pendix E.2.2. The eigenvalues of Jlel indicate the stability of the homogeneous state, which
we analyse in the next part.
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4.2.2 Critical Maxwell time

In the limit τM → 0, the Jacobian Jlel defined by the linear system Eqs. (4.23) and (4.24) leads
to a dispersion relation that is equivalent to the dispersion relation derived in Section 3.2.1
for a purely viscous fluid surface.1 There, we have discussed that stationary instabilities2 can
occur on a viscous surface for increasing Péclet numbers Pe = ξR2/(ηbD) at a critical value
Pe∗−. In the regime τM > 0 for the viscoelastic surface studied here, we can additionally
identify a critical Maxwell time given by

τ∗M =
1 + 3

2
Rη−
ηb

2D
R2 + k

(4.25)

from the Jacobian Jlel (see Appendix E.2.2 for details). For τM > τ∗M , oscillatory instabilities
can occur. In particular, for increasing Péclet numbers the mode l = 1 becomes unstable at
Pe = Pe∗oi with

Pe∗oi = 3Rη−
2ηbc0∂cf(c0)

[
2 + kR2

D
+ R2

τMD

(
1 + 2ηb

3Rη−

)]
. (4.26)

A representative stability diagram is shown in Fig. 4.1. The homogeneous state is unstable
in the blue shaded region. Parameter regimes with complex eigenvalues of the underlying
Jacobian Jlel are shaded in dark blue. For Maxwell times τM < τ∗M with τ∗M given in Eq. (4.25),
the homogeneous state undergoes a stationary instability for increasing Péclet number at
Pe = Pe∗−, with Pe∗− given in Eq. (3.32). For τM > τ∗M , oscillatory instabilities occur. In
this regime, the critical Péclet number depends on the Maxwell time τM and is given in
Eq. (4.26).

4.3 Nonlinear dynamics of contractility oscillations

In the final section of this chapter, we study the full nonlinear dynamics of the self-organised
viscoelastic active surface on a sphere. For this purpose, we have developed a spectral
numerical approach that enables us to solve nonlinear tensor-valued differential equations
on the surface of a sphere. The details of this method are introduced in Appendix E.3.3.
Finally, we present an explicit expression for the frequencies of the steady-state oscillations
and compare them to numerical results.

In the following, we use our numerical approach to analyse the nonlinear dynamics in pa-
rameter regimes for which the stability analysis presented in Section 4.2 indicates oscillatory
instabilities. Using a randomly perturbed concentration field as initial condition, we find
the formation of steady states in which a single contractile region appears and disappears

1This is shown explicitly in Appendix E.2.2.
2Stationary instabilities correspond to unstable modes with a real-valued growth rate. If the mode becomes
unstable and the growth rate has an imaginary part, an oscillatory instability is present [135].
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Figure 4.2: Characterisation of steady-state oscillations on a viscoelastic active surface.
a) Surface view of the concentration field c̃ = c/c0 and the flow velocity v‖ (red arrows)
over one period of an oscillation cycle. Snapshots are shown for six equidistant time points
enumerated from (1) to (6). During one cycle, a region of large contractile tension (high
concentration) appears and disappears on two opposite poles in an axisymmetric fashion.
b) Quantitative details of the oscillations starting from a random initial condition. Scales
for nondimensionalisation are given by the time scale of diffusion τD = R2/D and the
characteristic velocity vD = R/τD, where R denotes the radius of the sphere. We depict
over time t̃ = t/τD the only non-vanishing component of the flow velocity, ṽθ = ēθ ·v‖/vD,
at the equator θ = π/2, and the values of the concentration field at the poles θ ∈ {0, π}.
The position of the poles is defined by the axis of the oscillating pattern at steady state. On
the bottom, we plot the fields starting from the initial condition. Nonlinearities eventually
saturate the oscillation amplitudes. In the upper graph, we show a close-up view of over
one oscillation cycle at steady state. The time points of the surface images shown in a) are
indicated by black crosses. The accumulation of stress regulator is preceded by the large
tangential flow with a small phase shift. Parameters: k = 0, ηs/ηb = 1, Rη−/ηb = 0.15,
τM/τD = 1.3, and Pe = 1.5 (Black circle in the stability diagram Fig. 4.1). Active tension
is regulated by f(c) = 2c2/(c2

0 + c2), such that c0∂cf(c0) = 1.

alternately on opposite surface poles. In Fig. 4.2 a, we show a time series of concentration
patterns and flow profiles that occur during one period of the corresponding steady-state
oscillations. There, we use k = 0 (no turnover), Pe = 1.5 and τ̃M = 1.3. For reference, these
parameters are denoted by a black circle in the stability diagram Fig. 4.1. The steady states
observed in the numerical solutions are always axisymmetric, even if the initial conditions
are chosen non-axisymmetric. Hence, the final axis of the pole-to-pole oscillations remains
fixed over time. The surface views in Fig. 4.2 a are accordingly orthogonal to the axis defined
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4.3 Nonlinear dynamics of contractility oscillations

by the pole-to-pole oscillations.
In Fig. 4.2 b, we give a more quantitative overview of the oscillations. For this, we orient

the z-axis parallel to the axis defined by the steady-state oscillations and plot the time course
of the concentration field and velocity on characteristic points on the surface. In particular,
we show the concentration field at the poles at θ ∈ {0, π} and the amplitude of the tangential
velocity at the equator θ = π/2.1 In the time course shown in Fig. 4.2 b (bottom), we see
that the nonlinearities saturate the amplitudes of the oscillations. During oscillations, the
concentration values at the opposite poles, c̃(0) and c̃(π), cross at the conserved average
concentration value of c̃ = c/c0 = 1.

In the graph at the top of Fig. 4.2 b, we depict a close-up view of the time course over
exactly one oscillation period at steady state. The black crosses depict the time points of
the surface snapshots shown in Fig. 4.2 a. To ‘read’ this graph, note that a positive value
of the tangential flow field at the equator, ṽθ(π/2) > 0, corresponds to tangential flows and
a corresponding advection of stress regulator towards the pole at θ = π. Negative values
ṽθ(π/2) < 0 accordingly correspond to flows towards the pole at θ = 0. If we focus at the pole
at θ = π, we recognise that the appearance of a concentration maximum c̃(π) is preceded by
the maximum of the flow amplitude towards this pole. Furthermore, we can identify a more
subtle phase shift between the appearance of minimum-maximum pairs on opposite poles.
This can be seen particularly well by comparing the curves for c̃(0) and c̃(π) in the close-up
view of the oscillation dynamics (Fig. 4.2 b, top).

Oscillation frequencies

The Jacobian Jlel, defined by the linear system Eqs. (4.23) and (4.24), also contains infor-
mation about the oscillation frequency ω associated with the oscillatory instability. At the
critical Péclet number Pe∗oi given in Eq. (4.26), this frequency (squared) is given by the
determinant of the Jacobian [135]. From this, we find

ω2 = 2ηb
3Rη−

(2D
R2 + k

)(
1− τ∗M

τM

) 1
τM

, (4.27)

with the critical Maxwell time τ∗M given in Eq. (4.25). It follows from Eq. (4.27) that the
oscillation frequency is maximal at τM = 2τ∗M .

Finally, we have verified the expression for ω given in Eq. (4.27) by comparing it to
oscillation frequencies that we obtained from solving the full nonlinear problem numerically.
In particular, we varied τM ≥ τ∗M , then calculated the critical Péclet number Pe∗oi from
Eq. (4.26) and obtained numerical solutions for Pe = Pe∗oi + 0.01. In Fig. 4.3, we show the
curve described by Eq. (4.27) (solid line) against the oscillation frequencies obtained from
the numerical solutions (crosses). Numerical results agree well with the analytic expression,

1By symmetry, the velocity of an axisymmetric flow profile vanishes at the poles. Hence, the velocity field at
the equator is the natural choice for depicting the kinetics of the oscillations.
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Figure 4.3: Comparison of the analytic prediction for the oscillation frequencies Eq. (4.27)
with numerical solutions. We depict here dimensionless frequencies ω̃ = ωτD against τ̃M =
τM/τD for a diffusion time scale τD = R2/D that is held fixed. The dimensionless critical
Maxwell time reads τ̃∗M = τ∗M/τD with τ∗M given in Eq. (4.25). The solid lines follows from
Eq. (4.27). Crosses depict oscillation frequencies obtained from numerical solution. The
inset shows the same quantities over a larger range of Maxwell times. Parameters: k = 0,
ηs/ηb = 1, and Rη−/ηb = 0.15. Active tension is regulated by f(c) = 2c2/(c2

0 + c2), such
that c0∂cf(c0) = 1.

indicating that the observed oscillatory dynamics on the surface can be understood from a
linear instability of the homogeneous state.

4.4 Discussion

In this chapter, we studied the effects of viscoelasticity on the mechano-chemical
self-organisation of an active surface. To describe the response of the viscoelastic surface to
active stress, we introduced a covariant Maxwell model with a relaxation time τM . To analyse
the active viscoelastic surface, we considered the non-axisymmetric dynamics on a sphere and
included external shear stresses from an interior passive fluid. As in the previous chapter,
we characterised mechano-chemical instabilities using the Péclet number Pe = ξR2/(ηbD),
and we used a one-component description for the active surface. For a viscoelastic mate-
rial, this description implies that we effectively neglected permeation effects, which can arise
from friction of the viscoelastic gel with a solvent. Permeation could be included into our
model by using a multi-component description in which the gel and the solvent are treated
explicitly [5, 109,110]. In general, a one-component description captures many characteristic
features of active viscoelastic gels [5, 108, 159], but its quantitative validity for experimental
comparisons certainly depends on the concrete system to which it is applied.
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4.4 Discussion

To analyse the linear stability properties of the viscoelastic surface, we first derived the gen-
eral Jacobian for perturbations of the homogeneous state (Section 4.2). To this end, we
introduced a transformation to reduce the problem from originally four local degrees of free-
dom to only two in the linear analysis. This allowed for a detailed analytic characterisation
of the Jacobian. As a key result, we found a critical Maxwell time τ∗M given in Eq. (4.25),
which indicates the presence of oscillatory instabilities for sufficiently large Péclet numbers.
For relaxation times smaller than τ∗M , the homogeneous state becomes unstable when the
Péclet number is increased up to Pe = Pe∗−. The critical value Pe∗− does not depend on
τM and is the same as already found for the purely viscous surface (Eq. (3.32)). Hence, the
mechano-chemical stability properties of the viscous and the viscoelastic active surface are
equivalent for τM < τ∗M . For τM → 0, we recover exactly the purely viscous surface studied
in Chapter 3. In the regime τM > τ∗M , we identified an oscillatory instability that appears
for an increasing Péclet number at Pe = Pe∗oi. The critical Péclet number Pe∗oi associated
with this instability depends on τM and is given in Eq. (4.26).

For simplicity, we have focused here on parameter regimes for which the mode l = 1
becomes unstable first when the Péclet number is increased. However, in regimes of larger
interior viscosity η−, other modes can also become unstable first, which is similar to the
case of a purely viscous surface (Section 3.2.2). The critical Maxwell time τ∗M and Péclet
number Pe∗oi can be generalised to these situations, in which case they indicate oscillatory
instabilities of higher modes (Appendix E.2.2).

To analyse the full nonlinear dynamics, we developed a spectral approach, which enabled
us to numerically solve tensor-valued, non-linear differential equations on the surface of a
sphere (Appendix E.3.3). An alternative application of our approach could be the study of
nematic surfaces. For example, the actomyosin cortex shares properties with an active ne-
matic fluid [33,101] and active nematic shells have been successfully constituted in-vitro [145].
Continuum theories of nematic surfaces can also be formulated as tensor-valued, non-linear
differential equations [160], and therefore impose very similar constraints on a numerical
solution scheme as the viscoelastic surface dynamics studied here.

Using our numerical approach, we then verified the results of the linear stability analysis,
and we studied non-trivial steady states emerging from instabilities of the homogeneous
state (Section 4.3). In the regime of Maxwell times with τM < τ∗M , the mechano-chemical
stability properties and steady states of the active viscoelastic surface are essentially the same
as for a purely viscous active surface. The existence of such a regime could be one reason
why the cellular cortex can often be sufficiently well described by taking only its viscous
properties into account [31–33, 120], even though the cortex is in general viscoelastic [13].
In the regime τM > τ∗M , and for an increasing Péclet number, oscillatory steady states start
emerging at Pe = Pe∗oi, which is in agreement with the linear stability analysis. These steady
states are characterised by a single contractile region that appears and disappears alternately
on opposite surface poles. At steady state, the corresponding pole-to-pole oscillations are
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axisymmetric, even if a non-axisymmetric initial condition is chosen.
To develop a qualitative understanding of these oscillatory steady states, we recall that they

emerge from an instability of the mode l = 1. In the unstable regime, the active surface tends
to generate mechano-chemical patterns with a polar asymmetry, which appear in the form of
a single contractile patch. If the delay between the formation of this patch due to contractile
flows and the relaxation of associated elastic tension becomes sufficiently large (τM > τ∗M ),
the polar surface pattern starts to oscillate between opposite poles. Interestingly, pole-to-
pole oscillations of contractile tension have been observed experimentally during cell size
oscillations [131]. These results were explained theoretically by introducing a ‘cytoplasmic
elasticity’, which summarised elastic contributions from the cytoplasm and the cortex into an
effective parameter. We demonstrated here that the mechano-chemical self-organisation of
a viscoelastic surface provides an alternative mechanism that also leads to the spontaneous
emergence of pole-to-pole oscillations of contractile tension.
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Chapter 5
Conclusion and Outlook
In this thesis, we identified and characterised various processes related to the self-organisation
of active surfaces. In particular, we studied mechano-chemical processes on these surfaces,
as well as their interaction with the surface shape and external forces. To this end, we used
the hydrodynamic theory of active surfaces, and we explored minimal models that reflect
key principles of the mechano-chemical self-organisation observed in biological systems. In
this concluding chapter, we summarise the key results and point out possible directions for
future work.

In Chapter 2, we presented a simple but general model for the mechano-chemical self-
organisation of the geometry of an isotropic active surface. In our description, active isotropic
tension in the surface is regulated by a diffusible and advected molecular species. Gradients of
active tension induce surface flows and shape changes, which in turn influence the distribution
of the regulator. To solve the nonlinear dynamic equations for the shape, the flows and the
concentration of the regulator species, we developed a novel numerical approach based on an
integral representation of axisymmetric surfaces and a dynamic coordinate transformation.

Using this framework, we found that a sphere becomes unstable for increasing contractil-
ity. Shape perturbations of an unstable sphere lead to concentration and flow patterns with
polar asymmetry, and to a axisymmetric oblate shapes with broken mirror symmetry. Cylin-
drical surfaces become unstable at a critical aspect ratio of 2π if the contractility is small,
which corresponds to a Plateau-Rayleigh instability [133]. We also found a critical contrac-
tility, beyond which the cylinder becomes unstable at aspect ratios smaller than 2π. In this
regime, instabilities are induced by the active contractility. In contrast to mechano-chemical
instabilities that have been previously studied on fixed geometries [117, 120, 124, 136], we
described here new phenomena that give rise to shape changes and crucially depend on the
shape changes that occur.

On tubular surfaces for which a small neck radius is stabilised at long times, we have addi-
tionally described the emergent formation of directed surface flows via spontaneous symmetry
breaking. In a reference frame, where the average of the surface velocity vanishes, this results
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in a propagating surface constriction that resembles the dynamics of a peristaltic wave. In-
terestingly, we found that directed surface flows occur independently of the mechanism with
which neck radii are stabilised. Hence, the spontaneous symmetry breaking seems to be a
generic feature of a self-organised active fluid that prescribes a deforming tubular surface.

Our general framework provides the basis to explore a large variety of alternative consti-
tutive relations of active materials on axisymmetric surfaces. An important future challenge
is certainly the generalisation of the numerical approach so that it enables also to study
non-axisymmetric surface shapes and deformations.

In Chapter 3, we studied the mechano-chemical self-organisation of an isotropic active fluid
on a sphere. In contrast to the analysis of the deforming surface, we considered here the
general, non-axisymmetric dynamics of a self-organised stress regulator on the surface and
took external shear stresses from a surrounding passive fluid into account.

We identified a new mechanism that leads to the spontaneous formation of surface pat-
terns with polar asymmetry and to the formation of a contractile ring in a fully self-organised
fashion. The formation of polar patterns appears generally for small viscosities of the sur-
rounding fluid. For larger external viscosities and finite homogeneous turnover, a contractile
ring with nematic symmetry can spontaneously emerge from an instability of the homoge-
neous state. This resembles the formation of a contractile ring in the cortex of a cell before
cytokinesis [39]. We showed that this ring pattern, as well as patterns with polar asymmetry,
can be oriented by an external nematic cue. An interesting question for future investigations
is whether a similar minimal model can describe the emergence of asymmetrically positioned
contractile rings, which appears during asymmetric cell divisions [57,64].

Our description of an active surface embedded in a passive fluid also gives rise to a squirmer
model that we characterised in detail. We used the general closed solution of the nonlinear
problem to approximate the steady-state propagation velocity of this active surface swim-
mer, and we found good agreement with solutions obtained numerically. We studied the
spontaneous onset of translational motion and derived the normal form of the associated bi-
furcation. From this, we found that the onset of motion appears as a supercritical pitchfork
bifurcation.

In Chapter 4, we studied the effects of viscoelasticity on the mechano-chemical self-
organisation of an active surface. To describe the response of the viscoelastic surface to
active stress, we introduced a covariant Maxwell model. To characterise linear stability
properties of the active viscoelastic surface, we derived the fully general Jacobian for per-
turbations of the homogeneous state. To this end, we used tensor spherical harmonics [158],
which provide a powerful tool to conveniently expand tensor fields on a sphere. From the
Jacobian, we identified a minimal time scale for the relaxation of elastic stress, beyond which
spatio-temporal oscillations of active stress can spontaneously emerge. These steady-state
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oscillations are characterised by a single contractile region that appears and disappears alter-
nately on opposite surface poles. At steady state, the corresponding pole-to-pole oscillations
are axisymmetric, even if a non-axisymmetric initial condition is chosen.

To analyse the full nonlinear dynamics of this system, we developed a spectral approach,
which enabled us to numerically solve tensor-valued, non-linear differential equations on the
surface of a sphere. Our numerical approach could also be used to study nematic surfaces,
which are described by continuum theories that impose very similar constraints on a numer-
ical solution scheme as the viscoelastic surface dynamics.

For our description of the viscoelastic surface, we chose for simplicity a one-component de-
scription and therefore effectively neglected permeation effects. These can arise from friction
of the viscoelastic gel with a solvent. In order to develop a more complete picture, it would
be interesting to include permeation into our framework by treating the gel and the solvent
explicitly in a multi-component description [5, 109,110].

Not only for the viscoelastic surface, but throughout the thesis, we used minimal models
with a single chemical species to regulate active stress. This enabled us to reveal generic
features of the mechano-chemical feedback acting on surfaces. Our formulations on fixed
and deforming surfaces can easily be extended to more complex chemical schemes, involving
several chemical species [84]. Such extended models could represent, for example, the actin
dynamics present in the cell cortex and its biochemical regulators [58,120], or the behaviour of
sets of morphogens spreading in epithelial tissues [73,98]. The description can be generalised
further by explicitly treating a potential mass exchange of the surface with the environment,
as well as height changes of the surface.

Furthermore, our work exclusively focussed on materials that are isotropic in the surface
plane. However, the numerical tools we developed could also be used to explore consti-
tutive relations of surface materials that generate anisotropic or chiral active tension in
the plane [36,80,112]. Finally, we note that a future challenge of particular interest is to
further develop these numerical tools so that they enable to combine the deformation dy-
namics of self-organised active surfaces with mechanical interactions of material surrounding
this surface.
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Appendix A
Differential geometry of
embedded surfaces
Here, we present an overview of the mathematical framework used in this thesis to describe
the differential geometry of surfaces embedded in Euclidean space. Section A.1 is devoted
to an introduction of the basic definitions of a surface parametrisation, invariants of tensor
fields and covariant derivatives on curved surfaces. These elements provide the mathematical
language to construct models of complex materials on surfaces and to formulate conserva-
tion laws in the form of differential equations on them. In Section A.2, we introduce the
description of surface deformations of parametrised surfaces. To this end, we first present
the variations of surface quantities under small shape perturbations. Furthermore, we state
general dynamic equation of a surface for a prescribed deformation field. In Section A.3, we
present explicit parametrisations of axisymmetric surfaces that are relevant for this thesis.

A.1 Definitions and basic identities

A.1.1 Parametrisation of an embedded surface

Consider a two-dimensional surface Γ that is embedded in Euclidean space and parametrised
by a vector field X(s1, s2) ⊂ R3. Tangential basis vectors are defined as derivatives with
respect to the surface parameters s1 and s2:

ei = ∂iX, (A.1)

where i = 1, 2 and we use the notation ∂i := ∂/∂si. The surface normal is given by

n = e1 × e2
|e1 × e2|

. (A.2)

The metric tensor is given by
gij = ei · ej , (A.3)
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where the dot denotes the scalar product in Euclidean space. The inverse metric tensor
gij = (gij)−1 obeys

gikgkj = δij (A.4)

The metric tensor relates covariant and contravariant components by

vi = gijv
j , (A.5)

such that scalar products in the tangent space of Γ can be expressed as

v‖ ·w‖ = gijv
iwj = viwi. (A.6)

Here, we have introduced the decomposition

v = v‖ + v⊥ (A.7)

with tangential and normal parts of a vector field, v‖ = viei and v⊥ = vnn, respectively.
The covariant antisymmetric Levi-Civita tensor εij is defined by

ei × ej = εijn, (A.8)

which implies additionally
n× ei = ε ji ej . (A.9)

Derivatives of the basis vectors are determined by the Gauss-Weingarten relations [128]

∂iej = −Cijn + Γkijek (A.10)

∂in = C j
i ej , (A.11)

which define the curvature tensor

Cij = −n · ∂i∂jX, (A.12)

and Christoffel symbols

Γkij = ek · ∂i∂jX

= 1
2g

kl (∂igjk + ∂jgik − ∂kgij) . (A.13)

A.1.2 Invariants of surface tensors

The parametrisation-invariant trace of a tensor field is computed by T kk = gijTij . The trace
of the metric tensor on a two-dimensional surface therefore yields gijgij = δkk = 2. The trace
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of the curvature tensor Cij defines the mean curvature H by

H = 1
2C

k
k. (A.14)

Any tensor field Tij can be decomposed into

Tij = T̃ij + 1
2T

k
kgij + 1

2Tklε
klεij , (A.15)

where

T̃ij = 1
2
(
Tij + Tji − T kkgij

)
(A.16)

is the symmetric, traceless part of the tensor Tij . The second and third term on the right hand
side of Eq. (A.15) correspond to the trace and the antisymmetric part of Tij , respectively.

For any tensor field Tij , we can define a parametrisation-invariant determinant by

det
(
T ij

)
= 1

2εijε
klT ikT

j
l. (A.17)

The parametrisation-invariant determinant of the metric tensor on any two-dimensional sur-
face is meaningfully determined from Eq. (A.17) as det

(
gij

)
= det

(
δij

)
= 1. The determi-

nant of the curvature tensor Cij defines the Gaussian curvature K (intrinsic curvature)

K = det
(
Cij

)
. (A.18)

Importantly, definition Eq. (A.17) is distinct from what is typically referred to as the deter-
minant of the metric given by

g = det (gij) = g11g22 − g12g12, (A.19)

from which one can construct the surface area element

dA = √gds1ds2. (A.20)

The field g is calculated from the covariant metric tensor components only and therefore
parametrisation-dependent. This is also evident from Eq. (A.20): The surface area dA should
not depend on the parametrisation, such that √g must have a different form for different
choices of parameters s1 and s2.

A useful relation between the trace and the determinant of a tensor field Tij on a two-
dimensional surface is given by [112]

T kiTkj = T kkTij − gij det
(
T kl

)
. (A.21)
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This implies a relation between mean curvature and Gaussian curvature:

CikC
k
j = 2HCij −Kgij . (A.22)

A.1.3 Differentiation on curved surfaces

Definition and properties of the covariant derivative

The covariant derivative of vector field in the tangent space is defined by ∇ivj = ej · ∂iv‖,
which yields

∇ivj = ∂iv
j + Γjikv

k. (A.23)

For a tensor t = tijeiej , we define ∇itjk = ej · ∂it · ek, which yields

∇itjk = ∂it
jk + Γjilt

lk + Γkiltjl. (A.24)

These definitions, together with the requirement that the covariant derivative on a scalar
field has to be equivalent to a partial derivative, also determine the action of ∇i on covariant
vector and tensor components vi and tij :

∇ivj = ∂ivj − Γkijvk (A.25)

∇itjk = ∂itjk − Γlijtlk − Γliktjl. (A.26)

The Laplace-Beltrami operator is defined as

∆Γf = gij∇i∇jf. (A.27)

Additional properties of the covariant derivative that are relevant for this thesis are briefly
introduced in the following. First, note that ∇igjk = ∇iεjk = 0, such that the metric tensor
and the Levi-Civita tensor commute with the covariant derivative. Furthermore, we have
∇i∇jf = ∇j∇if , but the covariant derivative does not commute when acting on vector and
tensor fields. Instead, it obeys Ricci identities given by [158]

∇i∇jvk −∇j∇ivk = Rklijv
l, (A.28)

∇i∇jtkm −∇j∇itkm = Rklijt
lm +Rmlijt

kl, (A.29)

where Rijkl is the Riemann tensor that describes intrinsic geometric properties of curved
spaces. For two-dimensional spaces Rijkl only depends on the Gaussian curvature K and
can be expressed as [128]

Rijkl = K
(
δikgjl − δilgjk

)
. (A.30)

Equations (A.28) and (A.30) have important consequences for the force balance equation of
two-dimensional fluid surfaces, particularly for contributions from shear flows. The latter
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are described by the traceless symmetric part of the strain rate tensor, which is given on a
fixed surface by (∇ivj + ∇jvi − ∇kvkgij)/2. The force balance of the surface includes the
divergence of this tensor, which reads

1
2∇i

(
∇ivj +∇jvi −∇kvkδij

)
= 1

2
(
∇i∇ivj +∇i∇jvi −∇j∇ivi

)
= 1

2
(
∇i∇ivj +Kvj

)
, (A.31)

where we have used Eqs. (A.28) and (A.30). Equation (A.31) gives rise to the additional
term in the shear part given in Eq. (3.16), where we have used K = 1/R2 on a sphere of
radius R.

Furthermore, the curvature tensor obeys the Mainardi-Codazzi equation [128]

∇iCjk = ∇jCik. (A.32)

The covariant derivative can also be used to formulate the Stokes integral theorem [112]∫
Γ
∇ividA =

∫
∂Γ
νiv

ids. (A.33)

Here, ν = νiei is a tangential unit vector that is orthogonal to the curve prescribed by the
surface boundary ∂Γ and points away from the surface.

Definition of the surface vector gradient

The surface vector gradient operator is defined by

∇Γf = ei∂if. (A.34)

The in-plane divergence of a tangential vector field obeys

∇Γ ·v‖ = ∇ivi. (A.35)

The Laplace-Beltrami operator defined in Eq. (A.27) can accordingly be written as

∆Γf = ∇Γ · ∇Γf. (A.36)

A.2 Geometric surface variation under small deformations

In the following, we consider a small variation of the surface shape given by

X′(s1, s2)−X(s1, s2) = δXnn. (A.37)
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From the definitions Eqs. (A.1), (A.2), (A.3), (A.8), (A.12) and (A.13) of surface quantities
as a function of the parametrisation X(s1, s2), it follows to linear order that

δn = −ei∇iδXn (A.38)

δei = ejCjiδXn + n∇iδXn (A.39)

δgij = 2CijδXn (A.40)

δεij =
(
εikC

k
j − εjkCki

)
δXn (A.41)

δCij = −∇i∇jδXn + CikC
k
jδXn (A.42)

δΓkij = Cki∇jδXn + Ckj∇iδXn + Cij∇kδXn + δXn∇iCkj . (A.43)

Variations of gij follow from Eq. (A.4) and read

δgij = −2CijδXn. (A.44)

Using Eqs. (A.5) and (A.44), the variations of contravariant vector and tensor components
can be determined from Eqs. (A.39), (A.41), and (A.42) as

δei = −ejCijδXn + n∇iδXn (A.45)

δεij =
(
εikCkj + εjkC

ki
)
δXn (A.46)

δCij = −∇i∇jδXn − CikCkjδXn. (A.47)

Variations of the mean curvature follow from Eqs. (A.14) and (A.47) and read

δH =
(
K − 2H2

)
δXn −

1
2∆ΓδXn. (A.48)

The variation of the Gaussian curvature then follows from Eq. (A.22) and Eq. (A.48) as

δK = −2H (KδXn + ∆ΓδXn) + Cij∇i∇jδXn. (A.49)

A.2.1 Dynamic equations of geometric surface properties

Dynamic equations of any geometric surface property described in an Eulerian parametrisa-
tion can be found by using the variational expressions derived above and considering δXn = vndt.
Dynamic equations that are relevant for this thesis are given by

∂tgij = 2Cijvn (A.50)

∂tCij = −∇i∇jvn + CikC
k
jvn (A.51)

∂tΓkij = Cki∇jvn + Ckj∇ivn + Cij∇kvn + vn∇iCkj , (A.52)
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as well as

∂tei = ejCjivn + n∇ivn (A.53)

∂tei = −ejCijvn + n∇ivn. (A.54)

A.3 Parametrisation of axisymmetric surfaces

In this section, we define a general parametrisation for surfaces with axial symmetry. We
explain how particular choices for the parametrisation are linked by a coordinate transfor-
mation and introduce the special case of an arc length parametrisation. Finally, we collect
the explicit expressions of metric tensor, curvature tensor and Christoffel symbols for these
parametrisations using the definitions introduced in Section A.1.1.

A.3.1 Arc length surface parametrisation

A general parametrisation of an axisymmetric surface can be written as

X(ϕ, u) = ρ(u)ēρ + z(u)ēz, (A.55)

where {ēρ, ēϕ, ēz} is the normalised standard basis ēα · ēβ = δαβ with α, β ∈ {ρ, ϕ, z} in
cylindrical coordinates and u is a parameter that runs along the meridional outline of the
surface. In the following, we will use the coordinates i ∈ {ϕ, u} as explicit tensor indices.
The basis vectors ei = ∂iX and n = eϕ × eu/|eϕ × eu| read:

eϕ = ∂ϕX = ρēϕ (A.56)

eu = ∂uX = ∂uρēρ + ∂uzēz (A.57)

n = ∂uzēρ − ∂uρēz√
(∂uz)2 + (∂uρ)2

. (A.58)

Alternative parametrisations are related to Eq. (A.55) by coordinate transformations. In
the following, we consider a coordinate transformation of u to a new coordinate s that is
described by a scale factor1

h(u) = ds

du
. (A.59)

This represents a standard coordinate transformation that can be used interchangeably in
its explicit forms s(u) and u(s). With this, Eq. (A.55) leads to define a new parametrisa-
tion given by X(ϕ, s) = X(ϕ, u(s)). The tangent vectors along the meridional outline for
each parametrisation are related by: eu = ∂s

∂ues = hes. A particularly useful choice for a
parametrisation is defined by imposing |es| = 1, in which case X(ϕ, s) is the well-known arc

1This refers to the fact that such a coordinate transformation corresponds to a (potentially inhomogeneous)
scaling of the coordinates along a single curvilinear coordinate axis.
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length parametrisation [161]. Of the basis vectors given above, the form of eϕ is unchanged
and we have

es = ∂sρ ēρ + ∂sz ēz (A.60)

n = ∂sz ēρ − ∂sρ ēz. (A.61)

Here, we have used ∂u = h∂s and the expression for n simplifies because the normalisation
of es implies (∂sρ)2 + (∂sz)2 = 1. The latter relation motivates the definition of an an-
gle ψ(s) by (∂sρ, ∂sz) = (cosψ, sinψ), which can be identified as the tangent angle along the
meridional outline [161].

The non-vanishing components of the metric tensor and curvature tensor for each parametri-
sation follow from Eqs. (A.3) and (A.12). For both parametrisations, we have gϕϕ = ρ2, the
meridional metric tensor components are given by gss = 1 for the arc length parametrisation
and guu = h2 for the parametrisation with the parameter u. Furthermore, we have

Css = Cuu = ∂sψ(s) = 1
h
∂uψ[s(u)] (A.62)

Cϕϕ = sinψ
ρ

. (A.63)

The relevant Christoffel symbols of the two parametrisations follow from Eq. (A.13) and
read:

Γϕsϕ = 1
2g

ϕϕ∂sgϕϕ = cosψ
ρ

= 1
2hg

ϕϕ∂ugϕϕ = 1
h

Γϕuϕ (A.64)

Γsϕϕ = −1
2g

ss∂sgϕϕ = −ρ cosψ

= −1
2h

2guu
1
h
∂ugϕϕ = hΓuϕϕ. (A.65)

The Levi-Civita tensor follows from Eq. (A.8) is given by

εϕs = ρ (A.66)

= 1
h
εϕu. (A.67)

A.3.2 Parametrisation of the unit sphere

The surface of a unit sphere, denoted in this thesis by S̄, is parametrised by

X(θ, ϕ) = ēr, (A.68)
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where {ēr, ēθ, ēϕ} is the normalised standard basis ēα · ēβ = δαβ with α, β ∈ {r, θ, ϕ} in
spherical coordinates. The parametrisation Eq. (A.68) defines basis vectors

eθ = ēθ (A.69)

eϕ = sin θ ēϕ (A.70)

n = ēr (A.71)

and a diagonal metric tensor with gθθ = 1, gϕϕ = sin2 θ. Furthermore, εθϕ = −εϕθ = sin θ and
the only non-vanishing Christoffel symbols are given by Γϕθϕ = cot θ and Γθϕϕ = − sin θ cos θ.
Finally, note that the curvature of a spherical surface is isotropic, such that the curvature
tensor Cij has the same components as the metric tensor on the unit sphere and we can use
Cij = gij in equations that concern fixed1 spherical surfaces.

From the definitions Eqs. (A.34) and (A.27), vector gradient and Laplace operator on the
unit sphere S̄ are given by

∇S̄f =
(

ēθ∂θ + ēϕ
1

sin θ∂ϕ
)
f (A.72)

∆S̄f =
(
∂2
θ + cot θ∂θ + 1

sin2 θ
∂2
ϕ

)
f. (A.73)

1For example, δgij 6= δCij under deformations of the surface of a sphere, which can be seen by comparing the
right hand side of Eqs. (A.40) and (A.42).
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Appendix B
Definitions and applications of
scalar, vector and tensor spherical
harmonics
In this chapter, we systematically introduce scalar, vector and tensor spherical harmonics.
Additionally, we present details of calculations involving spherical harmonics that have only
been explained briefly in the main part of this thesis.

In Section B.1, we first introduce the form of scalar spherical harmonics used in this thesis
and present the construction of vector and tensor spherical harmonics from them. Then, in
Section B.2, we present a detailed derivation the hydrodynamic stress on the surface of a
sphere that we have used in Chapters 3 and 4. For this, we present the general solution of
the Stokes equation and show how forces resulting from viscous shear stress on the surface
can be compactly expressed in terms of covariant vector harmonics. Finally, in Section B.3,
we derive additional relations used in this thesis that are based on harmonic expansions in
terms of vector and tensor harmonics.

B.1 Definitions and basic identities

B.1.1 Scalar spherical harmonics

Scalar spherical harmonics can be defined as eigenfunctions of the Laplace-Beltrami operator
on the unit sphere S

∆S̄Ylm = −l(l + 1)Ylm, (B.1)

where the explicit form of ∆S̄ is given in Eq. (A.73). Throughout this thesis, we use real
spherical harmonics given by [162]

Ylm(θ, ϕ) =
√

2l + 1
4π

(n− |m|)!
(n+ |m|)! P

|m|
l (cos θ)Nm (ϕ) , (B.2)
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where

Nm (ϕ) =


√

2 cos (mϕ) if m > 0
1 if m = 0
√

2 sin θ (|m|ϕ) if m < 0
. (B.3)

The mode numbers l ≥ 0 are integers and we have for each l a set of 2l + 1 modes labelled
by m ∈ {−l,−l + 1, ..., l − 1, l}. The prefactor in Eq. (B.2) ensures that the functions Ylm
are orthonormal, i.e. they obey ∫

YlmYl′m′dΩ = δll′δmm′ , (B.4)

where dΩ = sin θdϕdθ denotes the differential solid angle.

B.1.2 Vector spherical harmonics

Vector harmonics are defined as [158]

Ψ(lm)
i = ∂iYlm (B.5)

Φ(lm)
i = εji∂jYlm, (B.6)

which can be used to represent any vector field in the tangent space of the surface of a sphere.
The vector harmonics Eqs. (B.5) and (B.6) are orthogonal with∫

gijΨ(lm)
i Ψ(l′m′)

j dΩ =
∫
gijΦ(lm)

i Φ(l′m′)
j dΩ = l(l + 1)δl,l′δm,m′ (B.7)∫

gijΨ(lm)
i Φ(l′m′)

j dΩ = 0. (B.8)

The first relation implies that vector harmonics are non-vanishing only for l ≥ 1. The compo-
nents of the vector harmonics with respect to the basis vectors Eqs. (A.69) and (A.70) defined
by the parametrisation of the unit sphere1 read

Ψ(lm)
θ = ∂θYlm (B.9)

Ψ(lm)
ϕ = ∂ϕYlm (B.10)

Φ(lm)
θ = − 1

sin θ∂ϕYlm (B.11)

Φ(lm)
ϕ = sin θ ∂θYlm. (B.12)

1Note that the corresponding azimuthal basis vector eϕ of this parametrisation that is not normalised. We
intentionally keep it this way, such that we treat the parametrisation of the sphere as a general parametrisation
X(s1, s2). This way, we can use the fully covariant calculus with abstract index notation to performing
computations on the sphere and can write the final identities in terms of the harmonic vector components
given here.
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Vector harmonics obey an eigenvalue equation [158]

∇j∇jΨ(lm)
i = [1− l(l + 1)] Ψ(lm)

i (B.13)

∇j∇jΦ(lm)
i = [1− l(l + 1)] Φ(lm)

i . (B.14)

Furthermore, it follows from their definition that

∇iΨ(lm)
i = −l(l + 1)Ylm (B.15)

∇iΦ(lm)
i = 0. (B.16)

The definitions (B.5) and (B.6) are equivalent to

Ψ(lm) = ∇S̄Ylm (B.17)

Φ(lm) = ēr ×Ψ(lm), (B.18)

which is the form that is more commonly found in the literature. To perform computations
in the tangent space of the spherical surface, it is convenient to work with the covariant
components of the vector harmonics Eqs. (B.5) and (B.6). The two representations are
related by Ψ(lm)

i = ei ·Ψ(lm) and Φ(lm)
i = ei ·Φ(lm), as can be verified by determining their

explicit representations. Additionally, one defines a radial vector harmonic by

Y(lm) = Ylmēr. (B.19)

From the definition of the vector spherical harmonics, Eqs. (B.17) and (B.19), it follows that

ēx = −
√

4π
3
(
Y(11) + Ψ(11)

)
(B.20)

ēy = −
√

4π
3
(
Y(1,−1) + Ψ(1,−1)

)
(B.21)

ēz =
√

4π
3
(
Y(10) + Ψ(10)

)
, (B.22)

which are useful relations to derive identities that connect representations of vector fields in
spherical and Cartesian coordinates (see Section B.2.4).

Note that Ψ(lm), Φ(lm) and Y(lm) are not eigenfunctions of the Laplace-Beltrami operator.
To see this, consider on a general curved surface Γ the identities

∆Γv‖ = ei∇j∇jvi − 2nCij∇ivj − ekviCjiC
k
j (B.23)

∆Γv⊥ = n∆Γvn + 2eiCij∇jvn − nCijC
j
ivn, (B.24)

which can be derived by several times applying the Gauss-Weingarten relation Eq. (A.10).
Using Eqs. (B.23) and (B.24) for Cij = gij and n = ēr on the surface of the unit sphere S̄
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implies

∆S̄Ψ
(lm) = −l(l + 1)Ψ(lm) + 2l(l + 1)Y(lm) (B.25)

∆S̄Φ
(lm) = −l(l + 1)Φ(lm) (B.26)

∆S̄Y
(lm) = − [2 + l(l + 1)] Y(lm) + 2Ψ(lm), (B.27)

where ∆S̄ is the Laplace-Beltrami operator on the unit sphere Eq. (A.73). From ∇Γ ·v⊥ =
Ciivn and ∇Γ ·v‖ = ∇ivi on a general surface, it follows additionally that

∇S̄ ·Ψ
(lm) = −l(l + 1)Ylm (B.28)

∇S̄ ·Φ
(lm) = 0 (B.29)

∇S̄ ·Y
(lm) = 2Ylm. (B.30)

Equations (B.25)–(B.30) can be used to solve the Stokes equation using an ansatz for the
flow field in terms of vector harmonics (see Section B.2).

B.1.3 Tensor spherical harmonics

Tensor harmonics are defined as [158]

η
(lm)
ij = Ylmgij (B.31)

χ
(lm)
ij = Ylmεij (B.32)

Ψ(lm)
ij = ∇iΨ(lm)

j + 1
2 l(l + 1)Ylmgij (B.33)

Φ(lm)
ij = 1

2
(
∇iΦ(lm)

j +∇jΦ(lm)
i

)
. (B.34)

Tensor spherical harmonics can be used to decompose tensor fields on the sphere into isotropic
(η(lm)
ij ), fully antisymmetric (χ(lm)

ij ) and traceless1, symmetric modes (Ψ(lm)
ij and Φ(lm)

ij ). Ten-
sor spherical harmonics are orthogonal with∫

gikgjlη
(lm)
ij η

(l′m′)
kl dΩ =

∫
gikgjlχ

(lm)
ij χ

(l′m′)
kl dΩ = 2δl,l′δm,m′ (B.35)∫

gikgjlΨ(lm)
ij Ψ(l′m′)

kl dΩ =
∫
gikgjlΦ(lm)

ij Φ(l′m′)
kl dΩ = l(l + 1)

(1
2 l(l + 1)− 1

)
δl,l′δm,m′ ,

(B.36)

all other pairwise integrals vanish. This implies that isotropic and fully antisymmetric tensors
can contain contributions from modes with l ≥ 0, traceless symmetric tensor fields only
for l ≥ 2. The components of the traceless symmetric tensor harmonics with respect to the

1This follows from Eqs. (B.15) and (B.16).
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basis Eqs. (A.69) and (A.70) are given and related by

Ψ(lm)
θθ = − 1

sin2 θ
Ψ(lm)
ϕϕ = 1

sin θΦ(lm)
ϕθ = ∂2

θYlm + 1
2 l(l + 1)Ylm (B.37)

Ψ(lm)
θϕ = (∂ϕ∂θ − cot θ∂ϕ )Ylm (B.38)

Φ(lm)
θθ = − 1

sin2 θ
Φ(lm)
ϕϕ = − 1

sin θΨ(lm)
θϕ . (B.39)

Tensor spherical harmonics obey eigenvalue equations [158]

∇k∇kη
(lm)
ij = −l(l + 1)η(lm)

ij (B.40)

∇k∇kχ
(lm)
ij = −l(l + 1)χ(lm)

ij (B.41)

∇k∇kΨ
(lm)
ij = [4− l(l + 1)]Ψ(lm)

ij (B.42)

∇k∇kΦ
(lm)
ij = [4− l(l + 1)]Φ(lm)

ij , (B.43)

which follows from their definition and using the Ricci identity Eq. (A.29), together with
Eq. (A.30) and K = 1 on the unit sphere. Divergences of the tensor harmonics are given by

∇iη(lm)
ij = Ψ(lm)

j (B.44)

∇iχ(lm)
ij = Φ(lm)

j (B.45)

for isotropic and antisymmetric harmonic tensor fields and

∇iΨ(lm)
ij =

(
1− 1

2 l(l + 1)
)

Ψ(lm)
j (B.46)

∇iΦ(lm)
ij =

(
1− 1

2 l(l + 1)
)

Φ(lm)
j (B.47)

for the traceless, symmetric harmonic tensor fields.

B.2 Solution of the Stokes equation in terms of vector spherical
harmonics

In the following, we derive the hydrodynamic stress exerted by a passive incompressible fluid
onto the deforming surface of a sphere. To this end, we first have to solve the Stokes equation

η∆u = ∇p (B.48)

with boundary conditions given by flows and deformations on and of the spherical surface.
The pressure p is determined by the incompressibility constraint

∇ ·u = 0. (B.49)
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Here, ∇ denotes the vector gradient in R3 and ∆ the Laplace operator in R3. They are
related to the corresponding operators on a unit sphere, given in Eqs. (A.72) and (A.73), by

∇ = ēr∂r + 1
r
∇S̄ (B.50)

∆ = ∂2
r + 2

r
∂r + 1

r2 ∆S̄ . (B.51)

B.2.1 General solution

We make an ansatz for the flow field and the pressure in the form

u =
∞∑
l=0

l∑
m=−l

(
urlm(r)Y(lm) + u

(1)
lm(r)Ψ(lm) + u

(2)
lm(r)Φ(lm)

)
, (B.52)

and

p =
∞∑
l

l∑
m=−l

plm(r)Ylm. (B.53)

This ansatz is plugged into Eqs. (B.48) and (B.49) and the differential operators in the form
Eqs. (B.50) and (B.51) can be conveniently evaluated using the identities given in Eqs. (B.25)–
(B.30). From the orthogonality of the vector harmonics, one then finds a system of ordinary
differential equations for the coefficient functions u(1)

lm(r), u(2)
lm(r), urlm(r) and plm(r). With a

power law ansatz, the solution can be determined as

urlm(r) = A
(1)
lmr

l+1 +A
(2)
lmr

l−1 +A
(3)
lmr
−l +A

(4)
lmr
−l−2 (B.54)

u
(1)
lm(r) = 1

l(l + 1)
(
(l + 3)A(1)

lmr
l+1 + (l + 1)A(2)

lmr
l−1 − (l − 2)A(3)

lmr
−l − lA(4)

lmr
−l−2

)
(B.55)

u
(2)
lm(r) = B

(1)
lm r

l +B
(2)
lm r

−l−1 (B.56)

plm(r) = η

(4l + 6
l

A
(1)
lmr

l + 4l − 2
l + 1 A

(3)
lmr
−l−1

)
, (B.57)

where A(1)
lm , A

(2)
lm , B

(1)
lm , A

(3)
lm , A

(4)
lm , B

(2)
lm are integration constants that need to be determined

from boundary conditions. The first (last) three coefficients yield solutions that are finite at
r = 0 (r →∞), which are denoted in this thesis by u−, p− (u+, p+) and referred to as interior
(−) and exterior (+). The modes A(2)

1,m describe three degrees of translation, the modes B(1)
1,m

describe rotations around three axis. This solution is equivalent to the result given in [163],
where the Laplace operator in Eq. (B.48) was replaced with ∆u = ∇ (∇ ·u)−∇× (∇× u)
and computation rules for the curl operator on vector harmonics have been employed [164].

B.2.2 Solution of the boundary value problem

In the following, we determine the integration constants in Eqs. (B.54)–(B.57) from boundary
conditions on a spherical surface. To this end, we consider the flow and deformation of a
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spherical surface with radius R given by

v =
∞∑
l=0

l∑
m=−l

(
vrlmY(lm) + v

(1)
lmΨ(lm) + v

(2)
lmΦ(lm)

)
. (B.58)

Impermeability of the surface and no-slip boundary conditions for a deforming spherical
surface implies u(1)

lm(R) = v
(1)
lm , u(2)

lm(R) = v
(2)
lm , and urlm(R) = vrlm, which leads to an interior

solution given by

A
(1)
lm = 1

2(1 + l)
(
lv

(1)
lm − v

r
lm

)
(B.59)

A
(2)
lm = 1

2
(
−l(l + 1)v(1)

lm + (l + 3)vrlm
)

(B.60)

B
(1)
lm = v

(2)
lm (B.61)

and an exterior solution given by

A
(3)
lm = 1

2 l
(
(l + 1)v(1)

lm + vrlm

)
− 3

2A
(2)
lmδl,1 (B.62)

A
(4)
lm = 1

2
(
−l(l + 1)v(1)

lm + (2− l)vrlm
)

+ 1
2A

(2)
lmδl,1 (B.63)

B
(2)
lm = v

(2)
lm . (B.64)

Here, we have redefined the integration constants with appropriate powers of R,
A

(1)′
lm = Rl+1A

(1)
lm , A(2)′

lm = Rl−1A
(2)
lm , A(3)′

lm = R−lA
(3)
lm , A(4)′

lm = R−l−2A
(4)
lm , B(1)′

lm = RlB
(1)
lm ,

and B
(2)′
lm = R−l−1B

(2)
lm , and dropped the ′ again for brevity. We additionally kept the

coefficient A(2)
1m, which describes translations and is determined in Section (B.2.4).

B.2.3 The hydrodynamic stress on a spherical surface

In order to find the hydrodynamic stress on a spherical surface in terms of vector spherical
harmonics, we consider first the general form of the hydrodynamic stress tensor

σ = η
(
∇u + (∇u)T

)
− pI, (B.65)

where the superscript T denotes the transpose of the dyadic tensor ∇u. The force (per area)
f on a surface with normal n is in general given by f = n ·σ, which yields for a sphere with
radius r and n = ēr the expression

f = ēr ·σ

= η (∂ru + ēr · ∇u)− pēr

= η

(
∂ru +∇ur −

1
r
PS̄u

)
− pēr., (B.66)
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Here, we performed a partial integration, introduced ur = u · ēr, and defined the tangential
projection operator on the unit sphere

PS̄ = r∇ēr
= I− ērēr
= ēθēθ + ēϕēϕ. (B.67)

This follows from ēr = r/r and standard rules of vector calculus: ∇r = I and ∇r = ēr. From
Eqs. (B.52) and (B.66), we find

f =
∞∑
l=0

m=l∑
m=−l

(
f rlm(r)Y(lm) + f

(1)
lm (r)Ψ(lm) + f

(2)
lm (r)Φ(lm)

)
, (B.68)

where

f rlm(r) = 2ηdu
r
lm(r)
dr

− plm(r) (B.69)

f
(1)
lm (r) = η

(
du

(1)
lm(r)
dr

−
u

(1)
lm(r)
r

+ urlm(r)
r

)
(B.70)

f
(2)
lm (r) = η

(
du

(2)
lm(r)
dr

−
u

(2)
lm(r)
r

)
. (B.71)

Interior and exterior passive fluid flow u± contribute shear forces on the surface in the form

f− = −ēr ·σ−
∣∣
r=R (B.72)

f+ = ēr ·σ+
∣∣∣
r=R

, (B.73)

respectively, to the total viscous surface force fη = f− + f+. From Eqs. (B.54)–(B.57),
(B.59)–(B.64), and (B.68)–(B.71) we eventually find its representation in the form

fη =
∞∑
l=0

m=l∑
m=−l

(
fη,rlm Y(lm) + f

η,(1)
lm Ψ(lm) + f

η,(2)
lm Φ(lm)

)
, (B.74)

where

Rfη,rlm = 3 [η−(l + 1) + η+l] v(1)
lm

−
[
(η− + η+)

(
4 + 3l + 2l2

)
l + 3η−

] vrlm
l(l + 1) + η+

3
2A

(2)
lmδl,1 (B.75)

Rf
η,(1)
lm = − (η− + η+)(1 + 2l)v(1)

lm + 3[η−(l + 1) + η+l]
vrlm

l(l + 1) + η+
3
2A

(2)
lmδl,1 (B.76)

Rf
η,(2)
lm = − [η−(l − 1) + η+(l + 2)] v(2)

lm . (B.77)
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The coefficients A(2)
1m, which are related to translational motion, are determined in the next

section.

B.2.4 Generalised Stokes drag

In the following, we determine a general expression for the viscous net force that is exerted by
the passive fluid onto the spherical surface and discuss the implications of a force-free surface
dynamics. In the absence of external body forces acting on the interior fluid or directly on
the surface, the viscous net force is fully determined by interactions with the exterior fluid
and we denote it accordingly as F+ =

∫
Γ f+dA. Its components can be determined from

F+
α

R2η+
= 1
η+

∫
S̄

ēr ·σ+ · ēα dΩ

=
∑
l,m

(
2du

r
lm(r)
dr

− p(r)lm
η+

)∣∣∣∣
r=R

∫
S̄
Ylmēr · ēα dΩ

+
∑
l,m

(
du

(1)
lm(r)
dr

−
u

(1)
lm(r)
r

+ urlm(r)
r

)∣∣∣∣∣
r=R

∫
S̄

Ψ(lm) · ēα dΩ. (B.78)

To evaluate the integrals, we note that from the definitions of the scalar spherical har-
monics Eq. (B.2), it follows that ēr · ēx = −

√
4π/3Y11, ēr · ēy = −

√
4π/3Y1,−1 and ēr · ēz =√

4π/3Y10. From the orthogonality of the scalar and vector spherical harmonics and
Eqs. (B.20)–(B.22), we can then evaluate the integrals in Eq. (B.78). Using additionally
Eqs. (B.54)–(B.57), we find that the viscous net force acting on the surface is related to the
integration constants of the Stokes problem by

F+
x

R2η+
=
√

12πA(3)
1,1 (B.79)

F+
y

R2η+
=
√

12πA(3)
1,−1 (B.80)

F+
z

R2η+
= −
√

12πA(3)
1,0. (B.81)

As can be seen from Eqs. (B.54) and (B.55), these coefficients describe contributions to the
passive fluid flow that decay with 1/r, which indeed corresponds to the far field of a force
monopole.

To relate the force F+ to flows on the spherical surface and translational motion, we first
note that one can express a constant flow u(r → ∞) = −u0 of the passive fluid using the
integration constants A(2)

1m defined by

− u0 =
√

3
4π
(
−A(2)

1,1ēx −A
(2)
1,−1ēy +A

(2)
1,0ēz

)
. (B.82)

This follows from Eqs. (B.54) and (B.55), together with Eqs. (B.20)–(B.22). The velocity
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−u0 is ‘measured’ relative to the surface, such that the boundary condition u(r →∞) = −u0

corresponds to a motion of the surface through the fluid with velocity +u0 relative to the
laboratory frame.1 Using the solution of the boundary value problem Eq. (B.62) together
with Eqs. (B.79)–(B.82), the viscous force exerted by the passive fluid onto the surface can
be determined as

F+

R2η+
= −6πu0 +

√
3π

∑
m=−1,0,1

sm
(
2v(1)

1m + vr1m

)
ēαm , (B.83)

where we have introduced the sign-vector s1 = s−1 = −s0 = 1, as well as indices α1 = x,
α−1 = y, α0 = z. Equation (B.83) generalises the Stokes drag to situations, where flows and
deformations on and of the spherical surface additionally interact with the surrounding fluid.

Force free surface dynamics

To discuss the total net force Fext =
∫

Γ f extdA acting on the surface, we note that on a closed
surface we have in general

∇iti = −f ext ⇒ Fext = −
∫

Γ
∇itidA = 0, (B.84)

where the last step follows from the Stokes integral theorem Eq. (A.33). In the models that
are discussed in this thesis, the external forces are given by the viscous stress alone, such
that Fext = F+. In this case, Eq. (B.84) states that a solution of the force balance equations
also implies F+ = 0. From Eq. (B.83) it then follows that

u0 =
√

1
12π

∑
m=−1,0,1

sm
(
2v(1)

1m + vr1m

)
ēαm , (B.85)

where the coefficients vr1,m and v(1)
1,m have to be determined from the force balance equations of

the surface. Whenever the right-hand side of Eq. (B.85) is non-zero, flows and deformations
on and of the surface lead to a force-free, translational motion relative to the laboratory
frame.

Solving the linearised force balance equations of a deforming spherical surface,
Eqs. (D.61) and (D.63), one finds 2v(1)

1m + vr1m = 0. Hence, there is no translational mo-
tion associated with the onset of the deformation.

On the surface of a non-deforming sphere we have vr1m = 0. In this case, any contribution
to surface flows with modes v(1)

1m leads to a force-free translational motion relative to the
laboratory frame. The propagation speed can be determined from Eqs. (B.85). This result
was used in Section 3.3 to describe the spontaneous onset of motion due to self-organised

1The Stokes equation is invariant under u→ u + u0. Additionally, the force balance equations on the surface
considered in this thesis are invariant under v → v + u0, such that boundary conditions on the surface are
still satisfied.
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active surface flows.
Certainly, the surface dynamics does not have to be force-free with respect to the external

viscous net forces. In general, additional body forces Fb from, for example, gravity, magnetic
or electric fields may act on the interior fluid or directly on the surface. We then have
Fext = Fb + F+ and it follows from Eq. (B.84) that F+ = −Fb, which then has to be used
in the more general relation Eq. (B.83) to determine the propagation velocity u0.

Finally, note that the aspects presented in Sections B.2.3 and B.2.4 can be analogously
discussed for the viscous net torque T+ =

∫
S̄ ēr × ēr ·σ+dΩ acting on the surface. In this

case, the coefficients that represent full body rotations of the surrounding fluid, B(1)
1,m in

Eq. (B.56) of the general solution of the Stokes problem, have to be included into the exterior
flow solution and rotations relative to the laboratory frame can be discussed.

B.3 Further relations used in this thesis

B.3.1 Harmonic projection of the nonlinear advection term

In the following, we determine the projections

Alm =
∫
∇i
(
cvi
)
YlmdΩ (B.86)

in terms of scalar harmonics only, which we have used in Section 3.1 to derive a closed analytic
solution and in Section 3.3 to approximate nonlinear steady-states. For harmonic expansions
of the concentration field c =

∑
l,m clmYlm and the flow velocity vi =

∑
l,m v

(1)
lmΨ(lm)

i , we have
by the chain rule

∇i
(
cvi
)

=
∑

l,l′,m,m′

clmv
(1)
l′m′

(
Ψ(lm)
i Ψi,(l′m′) − l′(l′ + 1)YlmYl′m′

)
, (B.87)

where we used Eqs. (B.5) and (B.15). The harmonic projection of the first term follows from
integration by parts:∫

Ψ(lm)
i Ψi,(l′m′)Yl̄m̄dΩ

=
∫

(∇iYlm)
(
∇iYl′m′

)
Yl̄m̄dΩ

= −
∫
Ylm∇i

((
∇iYl′m′

)
Yl̄m̄

)
dΩ

= l′(l′ + 1)
∫
YlmYl′m′Yl̄m̄dΩ−

∫
Ylm (∇iYl′m′)

(
∇iYl̄m̄

)
=
[
l′(l′ + 1)− l̄(l̄ + 1)

] ∫
YlmYl′m′Yl̄m̄dΩ +

∫
Yl′m′ (∇iYl̄m̄)

(
∇iYlm

)
dΩ

=
[
l(l + 1) + l′(l′ + 1)− l̄(l̄ + 1)

] ∫
YlmYl′m′Yl̄m̄dΩ−

∫
Ψ(lm)
i Ψi,(l′m′)Yl̄m̄dΩ.
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Combining the first and the last expression we eventually find∫
Ψ(lm)
i Ψi,(l′m′)Yl̄m̄dΩ = 1

2
[
l(l + 1) + l′(l′ + 1)− l̄(l̄ + 1)

] ∫
YlmYl′m′Yl̄m̄dΩ. (B.88)

Using equations (B.87) and (B.88) and relabelling of the modes yields

Alm = 1
2

∑
l1,l2,m1,m2

cl1m1v
(1)
l2m2

[l(l + 1) + l2(l2 + 1)− l1(l1 + 1)]
∫
dΩYl1m1Yl2m2Ylm, (B.89)

where the integrals over three spherical harmonics is known as Gaunt coefficients or 3-jm
symbols [162]. Note that A00 = 0, which is consistent with the fact that the advection term
does not contribute to changes in the total number of molecules ∂tc00 in Eq. (3.23).

B.3.2 Harmonic decomposition of the surface strain rate tensor

The harmonic fields introduced in Section B.1 are particularly convenient to treat prob-
lems that require to simultaneously describe scalar, vector and tensor fields on the surface
of a sphere. This becomes evident when analysing different representations of the in-plane
strain rate tensor ∇ivj using vector and tensor spherical harmonics. Decomposing this ten-
sor according to Eq. (A.15), the trace can be associated with the compression rate, the
antisymmetric part ωn = εij∇ivj/2 describes the in-plane vorticity and

ṽij = 1
2
(
∇ivj +∇jvi −∇kvkgij

)
(B.90)

describes pure shear in the moving fluid surface. For a general flow field expressed in terms
of vector spherical harmonics

vi =
∑
l,m

(
v

(1)
lmΨ(lm)

i + v
(2)
lmΦ(lm)

i

)
(B.91)

we find

ṽij = 1
2
∑
l,m

[
v

(1)
lm

(
2∇iΨ(lm)

j + l(l + 1)Y (lm)gij
)

+ v
(2)
lm

(
∇iΦ(lm)

j +∇jΦ(lm)
i

)]
(B.92)

=
∑
l,m

(
v

(1)
lmΨ(lm)

ij + v
(2)
lmΦ(lm)

ij

)
, (B.93)

such that the mode coefficients associated with distinct set of modes at the vector level
are also independently linked to distinct set of modes at the tensorial level. The trace and
antisymmetric part of the in-plane strain rate tensor ∇ivj can be expressed in terms of the
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tensor harmonics Eqs. (B.31) and (B.32) as

1
2∇kv

kgij = −1
2
∑
l,m

v
(1)
lm l(l + 1)η(lm)

ij (B.94)

1
2ε

kl∇kvlεij = −1
2
∑
l,m

v
(2)
lm l(l + 1)χ(lm)

ij . (B.95)

Equations (B.93)–(B.95) illustrate the different physical contributions of the mode coefficients
v

(1)
lm and v(2)

lm to the total surface shear rate. Note that for brevity, we have written expansions
here on a unit sphere with radius R = 1. On a sphere with arbitrary radius, Eqs. (B.93)–
(B.95) must be supplemented by a prefactor 1/R.
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Appendix C
Strain rate tensor and viscous
stress in deforming thin films
Here, we derive and discuss the three-dimensional strain rate tensor ∂αvβ in curved and
deforming fluid films. From this, effective constitutive relations for two-dimensional viscous
fluid surfaces can be derived in the thin film limit.

First, in Section C.1, we derive a representation of ∂αvβ on the midplane of a curved and
deforming fluid film. This derivation requires geometric assumptions about the flows on and
near the midplane, which we introduce in detail. In Section C.2, we discuss the symmetric
part of ∂αvβ. Based on its representation on the midplane of the fluid film, we determine
a thin film limit and identify constitutive relation of a viscous fluid surface. Finally, in
Section C.3, we discuss the antisymmetric part of ∂αvβ, which is related to rotational flows
in the fluid film.

C.1 General expression for the strain rate tensor in a thin film

The three-dimensional strain rate tensor on the material midplane of a fluid film can by
generically computed by [112]

(∇v)αβ = ∂αvβ

= (∂ivβ)
(
ei
)
α

+ (∂nvβ)nα, (C.1)

where ∂n denotes the derivative along the direction normal to the midplane. In this appendix,
Greek indices represent Cartesian coordinates α, β ∈ {x, y, z} and we denote dyadic products
interchangeably as

(vw)αβ = vαwβ. (C.2)

The first term in the in Eq. (C.1) corresponds to the dyadic product ei∂iv. The vector ∂iv
can be further split into tangential and normal part such that we can express Eq. (C.1) in
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terms of the local basis as

∇v = ej · ∂iv eiej + n · ∂iv ein + n ∂nv. (C.3)

To determine an expression for the normal derivative ∂nv, we generalise an approach that
has been described in [112]. The derivation is based on the geometric assumption that
points on a straight line along the normal of the initial surface, remain along a straight line
along the normal of the deformed surface. In analogy to the thin shell assumption in elastic
shells [115,165], we refer to this geometric constraint in the following as thin film assumption.
As will be discussed below, an additional assumption is required about flows parallel to the
midplane that are not associated with midplane deformations.

Figure C.1: Parametrisation of the thin film. Material points in the vicinity of the mid-
plane are described by a parametrisation X̄(s1, s2, z) = X(s1, s2)+zn. During deformations,
a material point (red dot) away from the midplane moves with the changing surface nor-
mal (zδn) and it can change its distance to the midplane by moving along the normal (nδz).

The starting point for the derivation of an expression for ∂n is a parametrisation of the
material points around the midplane of the surface given by X̄(s1, s2, z) = X(s1, s2) + nz.
We then consider a material deformation that is determined by a variation of the midplane
δX = δXiei + δXnn, and motion of material along the surface normal nδz (Fig. C.1). The
corresponding variation of the material points on and around the midplane reads

δX̄(s1, s2, z) = δX(s1, s2) + zδn + nδz (C.4)

The variation of the surface normal is given by δn = − (n · ∂iδX) ei, which follows from
n · δn = 0 and ei · δn = −n · δei. Furthermore, we can formally expand the motion of
material points in z-direction near the surface to linear order as δz ≈ z∂nδXn. The zeroth
order contribution of this expansion is already contained in δX. Because of the thin film
assumption, we can identify ∂zδX̄ with ∂nδX and evaluate the resulting relation for δX = vdt,
where we denote ∂nδXn = dt∂nvn. Altogether, we then have

∂nv = − (n · ∂iv) ei + ∂nvnn. (C.5)

Using Eqs. (C.2), (C.3) and (C.5), the three-dimensional strain rate tensor given in Eq. (C.1)
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can be therefore be expressed in the local basis on the midplane surface as

∇v = ej · ∂iv eiej + n · ∂iv
(
ein− nei

)
+ ∂nvnnn. (C.6)

The explicit form of ∂nvn follows from an additional assumption about flows near the
midplane that are not associated with deformations. If we consider for simplicity a non-
deforming, flat fluid film with δXn = 0 and δn = 0, we see from Eq. (C.4) that the choice
∂nvn = 0⇔ δz = 0 corresponds to the assumption that material points move along the fluid
film independently of z, i.e. parallel to the midplane. The form of the strain rate tensor in
the limit ∂nvn = 0 will be discussed in Section C.2.1. Alternatively, an expression for ∂nvn
can be derived by imposing incompressibility of the three-dimensional fluid film, which we
discuss in Section C.2.2.

C.2 Discussion of the symmetric part

The symmetric part of (∇v)αβ corresponds to the symmetric strain rate tensor
vαβ = (∂αvβ + ∂βvα) /2. According to Eq. (C.6), it can be written as

1
2
(
∇v + (∇v)T

)
= 1

2 (ej · ∂iv + ei · ∂jv) eiej + ∂nvnnn. (C.7)

Here, we have used the transposition property of dyadic products: (vw)T = wv.
Note that as a consequence of the thin film assumption, the symmetric strain rate ten-

sor in Eq. (C.7) has no contribution from the dyadic products nei and ein, or equiva-
lently: vαβ (ei)α nβ = 0. This corresponds to the absence of transverse shear in the fluid film,
which is generally at the heart of the thin film assumption.

From Eq. (C.7), we can define a two-dimensional strain rate tensor by

vij = vαβ (ei)α (ej)β , (C.8)

which is the in-plane part of the three-dimensional strain rate tensor. We have

vij = 1
2 (ej · ∂iv + ei · ∂jv)

= 1
2 (∇ivj +∇jvi) + Cijvn. (C.9)

Here, we have used v = viei + vnn to explicitly evaluate ∂iv. The strain rate tensor vij is
defined on the midplane of the curved and deforming thin film. Note that for ∂nvn = 0, we
even have vαβ = vij (ei)α (ej)β, such that in this case the two-dimensional tensor vij contains
the full information about shear and compression (∇ ·v = vkk) in the three dimensional
fluid film.
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C.2.1 Viscous stress in compressible thin films

We now consider the viscous stress in the fluid film given by (see Eq. (1.14))

σηαβ = 2η̄s
(
vαβ −

1
3vγγδαβ

)
+ η̄bvγγδαβ. (C.10)

We chose ∂nvn = 0 and determine the effective tension tensor tηij that is defined by Eq. (C.10)
in the thin film limit. For this, we write the projected stress tensor σηij = σηαβ (ei)α (ej)β with
the help of Eq. (C.8) as

σηij = 2η̄s
(
vij −

1
3v

k
kgij

)
+ η̄bv

k
kgij

= 2η̄s
(
vij −

1
2v

k
kgij

)
+
(
η̄b + 1

3 η̄s
)
vkkgij , (C.11)

where we have restored the separation into traceless part and trace of the surface strain rate
tensor in the second line. In the thin film limit, we find a tension tensor tηij ≈ hσηij , where
h is the height of the film. Furthermore, we can identify effective shear and bulk viscosities
for the corresponding fluid surface as

ηs = hη̄s (C.12)

ηb = h

(
η̄b + 1

3 η̄s
)
, (C.13)

which follows from the comparison of Eq. (C.11) with Eq. (2.11).

C.2.2 Viscous stress in incompressible thin films

So far, we have discussed the thin film description for ∂nvn = 0 in Eq. (C.7). In this case, the
three-dimensional incompressibility of the thin film is equivalent with the incompressibility
of the midplane, i.e. ∂γvγ = 0 ⇔ vkk = 0. We now consider an alternative flow field of the
fluid film, which is incompressible in three-dimensions but can have a non-vanishing normal
derivative. To distinguish this case from the previous section, we denote this flow field by u.
We allow in general ∂nun 6= 0 and derive an expression for ∂nun from the three-dimensional
incompressibility ∂γuγ = 0. From Eq. (C.7), it directly follows that

∂nun = −ukk, (C.14)

where uij has the same form as vij in Eq. (C.9) and the symmetric part of the three-
dimensional strain rate tensor uαβ of the thin film reads

1
2
(
∇u + (∇u)T

)
= uijeiej − ukknn. (C.15)

To find a closed description of the effective thin film properties represented on the midplane
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surface, further assumptions are required. We consider for the three-dimensional thin film
an incompressible fluid described by

σuαβ = 2η̄uαβ − Pδαβ, (C.16)

where the pressure P is determined by the incompressibility. In the next step, we inspect
the stress tensor component σunn defined by

σunn = σuαβnαnβ (C.17)

= −2η̄ukk − P. (C.18)

We follow [36] and assume that σunn is approximately constant across the film height and bal-
anced by an external force density f ext

n . From this, we find from Eq. (C.18) that
−P = f ext

n + 2η̄ukk. Using this relation to eliminate the pressure in Eq. (C.16), we find
a closed expression of the projected thin film stress σuij = σuαβ (ei)α (ej)β given by

σuij = 2η̄
(
uij + ukkgij

)
+ f ext

n gij (C.19)

= 2η̄
(
uij −

1
2u

k
kgij

)
+ 3η̄ukk + f ext

n gij . (C.20)

This shows that the corresponding two dimensional fluid surface is compressible, where the
effective surface viscosities are given by

ηs = hη̄ (C.21)

ηb = 3hη̄. (C.22)

Here, h is the thin film height and we have compared Eq. (C.20) with Eq. (2.11) to read off
effective surface viscosities.

Importantly, we note that within a thin film that is incompressible in three dimensions
there cannot exist an independent three-dimensional isotropic active stress. However, it
is possible that active stresses, which are anisotropic in the three-dimensional film, yield
effectively isotropic contributions in the two-dimensional thin film limit [36,41].

C.3 Discussion of the antisymmetric part

For completeness, we finally discuss the antisymmetric part of the three-dimensional strain
rate tensor ∇v. Note that this component is in a tensorial sense orthogonal to the symmetric
part and can therefore be discussed independently of the aspects described in Section C.2.
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From Eq. (C.6), we find that the antisymmetric part of ∇v is given by

Ω = 1
2
(
∇v− (∇v)T

)
(C.23)

= 1
2ej · ∂iv

(
eiej − ejei

)
+ n · ∂iv

(
ein− nei

)
. (C.24)

The antisymmetric Cartesian tensor Ω has three independent degrees of freedom, which can
be conveniently represented using the vorticity ω of the flow defined by ωα = 1

2εαβγΩβγ . Note
that this definition is equivalent to ω = (∇× v) /2. We realise that contracting Eq. (C.23)
with the Cartesian Levi-Civita tensor εαβγ corresponds to calculating the cross-products
between the vectors that form the dyadic tensors. These cross-products can be evaluated
using Eqs. (A.8) and (A.9), which yields

ω = 1
2ε

ijej · ∂iv n− εijn · ∂iv ej (C.25)

= ωnn + ωiei, (C.26)

where

ωn = 1
2ε

ij∇ivj (C.27)

ωi = εij
(
∂jvn − Cjkvk

)
. (C.28)

Hence, under the thin film assumption, we find an expression ωα = ωi (ei)α + ωnnα on
the midplane that contains the full information about the antisymmetric part of the three-
dimensional strain rate tensor ∂αvβ of the thin film. Note that the normal component ωn is
equal to the antisymmetric part of the surface strain rate tensor vij given in Eq. (C.9).

The vorticity vector describes an axis around which the fluid film locally rotates. Therefore,
ωn describes in-plane rotations and ωi describes rotations out of the plane. The gradient
of vorticity n · ∂iω has been identified as a conjugate thermodynamic flux in the entropy
production of active surfaces, where it is associated with the dissipative cost of gradients of
rotations [112].
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Appendix D
Active fluid dynamics on
deforming surfaces
In this appendix, we present the formal details and derivations underlying the results pre-
sented in Chapter 2.

First, in Section D.1, we derive the dynamic equations to evolve the geometry of a de-
forming axisymmetric surface for a given deformation field. This deformation field is in our
description given by the solution of the force balance equations of the active fluid surface.
The explicit formulation of the latter on an axisymmetric surface is presented in Section D.2.
The boundary conditions and global constraints, we have used to solve these equations, are
introduced in Section D.3. In Section D.4, we derive the linearisation of the surface dynamics
for the active fluid surface around homogeneous states of a sphere and a cylindrical surface,
from which the linear stability analysis presented in Sections 2.3.1 and 2.4.1 follows. In
Section D.5, we derive a toy model to quantitatively understand the scaling of neck radii
of tubular surfaces with bending rigidity. Finally, in Section D.6, we present details of the
numerical discretisation scheme and validation results of the implementation with which we
have obtained numerical solutions of the full nonlinear surface dynamics.

D.1 Dynamic representation of deforming axisymmetric surfaces

In the following, we derive the dynamic equations for geometric surface properties of a
deforming axisymmetric surface that have been presented in Sections 2.3 and 2.4. The
corresponding fields, the curvature tensor and Christoffel symbols, are required to represent
the surface implicitly and to formulate covariant differential equations on the surface that
determine its dynamics.

In this section, we interchangeably use the two parametrisations introduced in Section 2.2.1
and described in full detail in Section A.3.1: an arc length surface parametrisation and a
fixed Eulerian parametrisation for which the meridional outline of the axisymmetric surface
is respectively described by an arc length parameter s ∈ [0, L(t)] and an Eulerian coor-
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dinate u ∈ [0, L0]. The two parametrisations are related via a time-dependent coordinate
transformation h(u, t) introduced in Section 2.2.2, for which we recall the dynamic equation

∂th(u, t) = hCssvn. (D.1)

Spatial derivatives with respect to the arc length parameter s can be written as

∂s = 1
h
∂u, (D.2)

which we make use of several times in the following derivations.

Time-dependence of the tangent angle

First, we derive a dynamic equation for the tangent angle ψ. For this, we take the time
derivative of both sides of the identity sinψ = eu · ēz/h (see Section A.3.1), which yields

cosψ∂tψ = ēz ·
(
−eu

∂th

h2 + 1
h
∂teu

)
= ēz · (−esCssvn + n∂svn + vnC

s
ses)

= ēz ·n ∂svn
⇒∂tψ = −∂svn, (D.3)

where we have used Eq. (A.53) in the third step and ēz ·n = − cosψ in the last step.
Although this derivation is only valid for ψ 6= n+ π/2, n ∈ Z, the same calculation starting
with cosψ = eu · ēρ/h shows that Eq. (D.3) is indeed valid for all ψ.

Time-dependence of the curvature tensor

From its definition Eq. (A.62), we find for the meridional curvature

∂tC
s
s = ∂t

(1
h
∂uψ

)
= −∂th

h2 ∂uψ + ∂s∂tψ

= −Cssvn∂sψ − ∂2
svn. (D.4)
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where we have used Eqs (D.1), and (D.3). Similarly, from the definition of the azimuthal
curvature given in Eqs. (A.63), we find

∂tC
ϕ
ϕ = ∂t

sinψ
ρ

= −sinψ
ρ2 ∂tρ+ cosψ

ρ
∂tψ

= −
(sinψ

ρ

)2
vn −

cosψ
ρ

∂svn. (D.5)

Here, we have additionally used
∂tρ = vn sinψ, (D.6)

which follows from the dynamic equation for the metric tensor Eq. (A.50) and gϕϕ = ρ2.

Time-dependence of the Christoffel symbols

For the Christoffel symbol Γϕϕu defined in Eqs. (A.64), we have

∂tΓϕϕu = ∂t
(
hΓϕϕs

)
= vnC

s
sΓϕϕu + h

(sinψ
ρ

∂svn −
cosψ sinψ

ρ2 vn

)
= vnC

s
sΓϕϕu + Cϕϕ∂uvn + hvn

(
∂s

sinψ
ρ
− cosψ

ρ
∂sψ

)
= ∂u

(
Cϕϕvn

)
. (D.7)

In the second step, we have used Eqs. (D.1), (D.3), and (D.6). In the last two steps, we used
∂sρ = cosψ and the explicit components of the curvature tensor given in Eqs. (A.62) and (A.63).
Similarly, starting with Eq. (A.65), we find:

∂tΓuϕϕ = ∂t

(1
h

Γsϕϕ
)

= −vnC
s
s

h
Γsϕϕ −

1
h

(ρ sinψ∂svn + cosψ sinψ vn) (D.8)

= −vnC
s
s

h
Γsϕϕ −

ρ2

h

[sinψ
ρ

∂svn − vn
(
∂s

sinψ
ρ
− cosψ

ρ
∂sψ

)]
= gϕϕ

h2

(
vn∂uC

ϕ
ϕ − Cϕϕ∂uvn

)
. (D.9)

This relation is not used in this thesis, but given here for completeness.

To determine the time dependent initial points of the integral surface reconstruction for
the examples presented in this work, we used Eqs. (D.3), (D.6), and ∂tz = −vn cosψ at
s = u = 0. The latter relation follows from ∂tX = vnn, Eqs. (A.55) and (D.6).
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Finally, note that as a consistency check, Eqs. (D.4)–(D.9) can also be found by expressing
the general covariant dynamic equations for tensor fields, Eqs. (A.50)–(A.52) in terms of the
arc length parametrisation introduced in Section A.3.1.

D.2 Governing equations for axisymmetric active fluid surfaces

In this section, we provide explicit expressions for the force balance equations and for the
dynamic equation of the concentration field used in Chapter 2. These governing equations
have been used to determine numerical solutions of the deformation field, in-plane flows and
concentration dynamics on an axisymmetric active fluid surface. Furthermore, we derive
the analytic limits of these equations at the parametric poles of spherical surfaces, where
axisymmetric parametrisations contains spurious divergences.

D.2.1 Force and torque balance equations

The bending moment tensor mH
ij used in this work is purely antisymmetric, such that the

normal moment-balance Eq. (2.6) with mi
n = 0 implies that the tension tensor has no anti-

symmetric contribution, i.e. εijt
ij = 0. Using εikε

kj = −δji , the in-plane moment balance,
Eq. (2.5), implies:

ti,n = 2κ∂iCkk. (D.10)

The remaining force balance Eqs. (2.3) and (2.4) for an axisymmetric surface in terms of an
arc length parametrisation read:

∂st
s
s + Γϕϕs

(
tss − tϕϕ

)
+ Csst

s
n = −f ext

s (D.11)

∂st
s
ϕ − Γsϕϕtϕs + Cϕϕt

ϕ
n = −f ext

ϕ (D.12)

∂st
s
n + Γϕϕs (tsn + tϕn)− Csstss − Cϕϕtϕϕ = −f ext

n , (D.13)

which can be found using Eqs. (A.23) and (A.24). Here, we have assumed that all fields are
axisymmetric, such that they only depend on the arc length parameter s. The components
of the tension tensor tij = tdij + tHij thus read

tss = (ηs + ηb)vss + (ηb − ηs)vϕϕ + ξf(c) + γ + κCkk

(
Cϕϕ − Css

)
(D.14)

tϕϕ = (ηs + ηb)vϕϕ + (ηb − ηs)vss + ξf(c) + γ − κCkk
(
Cϕϕ − Css

)
(D.15)

tsϕ = ρ2tsϕ = 2ηsvsϕ. (D.16)
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The components of the symmetrised strain-rate tensor vij , defined in Eq. (C.9), read:

vss = ∂sv
s + Cssvn (D.17)

vϕϕ = Γϕϕsvs + Cϕϕvn (D.18)

vsϕ = ρ2

2 ∂sv
ϕ. (D.19)

In our examples, we have f ext
ϕ and tϕn = 0, such that Eq. (D.12) together with Eq. (D.19)

yields:
∂s
(
ρ2∂sv

ϕ
)

+ ρ cosψ ∂svϕ = 0. (D.20)

This equation is solved by
vϕ(s) = A

∫ s

0

1
ρ3ds

′ + vϕ0 , (D.21)

with integration constants A and vϕ0 . The latter corresponds to rigid-body rotations about
the symmetry axis, which appear because we did not include any external friction forces
in our description and we can arbitrarily choose vϕ0 = 0. On spherical surfaces, as well as
on tubular surfaces with periodic or no-flux boundary conditions, the form of Eq. (D.21)
implies A = 0. Under the assumptions made in this work, Eq. (D.12) therefore implies
vϕ = 0. Using the explicit form of the tension tensor components Eqs. (D.14) and (D.15) in
Eqs. (D.11) and (D.13), one finds the final parametric form of the force balance equations

(ηs + ηb) ∂svss + (ηb − ηs) ∂svϕϕ + 2ηsΓϕϕs
(
vss − vϕϕ

)
+ ξ∂sf(c) = 0 (D.22)

(ηs + ηb)
(
Cssv

s
s + Cϕϕv

ϕ
ϕ

)
+ (ηb − ηs)

(
Cssv

ϕ
ϕ + Cϕϕv

s
s

)
+ (ξf(c) + γ)Ckk

−κCkk
(
Css − Cϕϕ

)2
− 2κ

(
∂2
sC

k
k + Γϕϕs∂sCkk

)
= p. (D.23)

Equations (D.22) and (D.23) form a closed system of ordinary differential equations, which
are – for a given geometry – linear in the unknown flow fields vs, vn, and the pressure f ext

n = p.
These effectively linear equations contain inhomogeneities arising from active contractility ξ,
passive surface tension γ, and bending rigidity κ. At the poles of a spherical surface, where
Γϕϕs diverges, Eq. (D.22) vanishes identically by symmetry, and Eq. (D.23) yields a non-trivial
analytic limit, which is derived below. The following helpful identities avoid the numerical
approximation of certain derivatives that appear in those equations:

∂sC
ϕ
ϕ = Γϕϕs

(
Css − Cϕϕ

)
∂sΓϕϕs = −CϕϕCss − (Γϕϕs)2.

This directly follows from the explicit form of these fields given in Eqs (A.63) and (A.64).
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D.2.2 Dynamic equation for the concentration field

The dynamic equation for the concentration field reads:

∂tc = −∂s (cvs)− Γϕsϕcvs − cvnCkk +D
(
∂2
s c+ Γϕsϕ∂sc

)
− k (c− c0) . (D.24)

D.2.3 Analytic limits at the poles of axisymmetric spherical surfaces

In the following, we derive analytic limits of the governing Eqs. (D.22), (D.23) and (D.24)
at the poles of axisymmetric spherical surfaces where r → 0 and the Christoffel symbol
Γϕsϕ = 1

r cosψ diverges. These spurious singularities arise due to the axisymmetric surface
parametrisation of a spherical surface. The limits we derive here are required to determine
a complete numerical solution of the force balance equations and the dynamic equation for
the concentration field, including the points on the poles of spherical surfaces.

From the Taylor theorem, it follows that for any function g(s) ∈ C2(R) with g(u) = 0 we
have

lim
s→u

g(s)
s− u

= dg

ds

∣∣∣∣
u
. (D.25)

Furthermore, smooth axisymmetric vector fields must vanish at the poles of a spherical
surface. This implies for any scalar function G(s): ∂sG|0,L = 0. Most importantly, such
scalars include the mean curvature H = Ckk/2, as well as vn. With Eq. (D.25), we therefore
find the analytic limis

Γϕsϕvs → ∂svs (D.26)

Γϕsϕ∂sCkk → ∂2
sC

k
k (D.27)

at the parametric poles. Additionally, we have for the principal curvatures Cϕϕ|0,L = Css|0,L,
because the curvature must be isotropic at the pole of an axisymmetric surface. This allows
us to evaluate Cϕϕ = 1

r sinψ at the poles as follows: Near the pole at s = 0, we have
ψ(δs) = O(δs) and therefore, using Eq. (21),

r(δs) =
∫ δs

0
cosψ(s′)ds′ = δs+O(δs3). (D.28)

Using Eq. (D.25), the explicit form of the azimuthal curvature in Eq. (18) therefore implies

lim
δs→0

Cϕϕ(δs) = lim
δs→0

sinψ
δs

= ∂sψ|s=0 = Css(0). (D.29)

Similarly, it can be shown that Cϕϕ(L) = ∂sψ|L on a spherical surface.

Using Eqs. (D.26)–(D.27), it follows that the tangential force balance Eq. (D.22) vanishes
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identically at s = {0, L}, and the normal force balance Eq. (D.23) reads:

4ηbCss (∂svs + Cssvn) + 2(ξf(c) + γ)Css − 8κ∂2
sC

s
s = p (D.30)

at the poles. This is the final form we use in our numerical scheme to solve the force
balance equations at s = {0, L}. This analysis also implies that the equations derived for the
time evolution of the curvature tensor components in Eq. (D.4) and (D.5) are equivalent at
the poles, such that Cϕϕ|0,L = Css|0,L is consistently conserved during deformations. Using
similar arguments, we find of the dynamic equation for the concentration field at the poles
of a spherical surface:

∂tc = 2
(
−∂s (cvs)− cvnCss +D∂2

s c
)
− k (c− c0) . (D.31)

D.3 Boundary conditions and global constraints

Here, we present details on the boundary conditions and global constraints, we have used
to determine solutions of the force balance equations and the surface dynamics. Fields on
axisymmetric spherical surfaces must have specific symmetries at the poles so that their global
smoothness is ensured. These closure conditions effectively define boundary conditions for
solutions of the force balance equations, which we discuss in the first part of this section. In
the second part, we derive a condition on the deformation field vn that ensures conservation
of the volume enclosed by the surface during deformations. The corresponding Lagrange
multiplier defines a pressure that we have used as an external force in the numerical solutions.
In the last part, we discuss the translational invariance of the governing equations and explain
how specific reference frames have been chosen in this work to determine unique solutions
for the flow field v.

D.3.1 Closure conditions on spherical axisymmetric surfaces

On spherical, axially symmetric surfaces, there exist generic constraints at the parametric
poles s ∈ {0, L} that ensure global regularity of the fields and smooth poles throughout the
deformation process.

To ensure global regularity of, we require at the poles of an axisymmetric spherical surface

v‖
∣∣∣
s=0,L

= 0 (D.32)

∂sc|s=0,L = 0. (D.33)

Smoothness of the surface at the poles requires ψ|s=0 = 0 and ψ|s=L = π. We see from
Eq. (D.3) that this can be ensured during deformations by the condition

∂svn|s=0,L = 0. (D.34)
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For initial conditions with smooth poles, the constraint Eq. (D.34) additionally ensures that
the integral representation of a spherical surface is well-defined. This can be seen from
Eq. (D.6), which indeed implies ∂tρ|s=0,L = 0 if ψ|s=0 = 0 and ψ|s=L = π. Even though the
surface is constructed from an integral along the azimuthal outline that can change its length
and local curvature, the local constraint given by Eq. (D.34) is sufficient for the endpoint of
this integral curve (ρ|s=L = 0) to remain on the symmetry-axis.

Equations (D.32) and (D.34) are formally imposed as boundary conditions when solving
the force balance Eqs. (D.22) and (D.23) for the in-plane velocity vs and the deformation
field vn on a spherical surface. Eq. (D.33) only needs to be fulfilled by the initial condition
for c, because on an axisymmetric surface the dynamic equation for the concentration field
Eq (D.24) implies ∂t(∂sc)|s=0,L = 0.

On tubular surfaces, we use Eqs. (D.3) and (D.6) to keep track of ψ(t)|s=0 and ρ(t)|s=0,
respectively, which is required to reconstruct tubular surfaces using Eqs. (2.22)–(2.24). The
coordinate z(t)|s=0 can be chosen arbitrarily due to the translational invariance discussed
below.

D.3.2 Conservation of the enclosed volume

For our numerical results, we have considered the case where the volume enclosed by the
surface is conserved throughout the deformation process. Here, we briefly explain how this
constraint was implemented into our framework. The volume enclosed by an axisymmetric
surface can be expressed in our parametrisation as

V = π

∫ z(ub)

z(ua)
ρ2dz = π

∫ ub

ua
ρ2 sinψ hdu. (D.35)

For a deformation velocity vn, volume changes are therefore given by

∂tV = π

∫ s(ub,t)

s(ua,t)

(
2ρvn sin2 ψ − ρ2 cosψ ∂svn + ρ2vnC

s
s sinψ

)
ds

= 2π
∫ ub

ua
vn
√
gdu− πρ2 cosψ vn

∣∣∣s(ub,t)
s(ua,t)

. (D.36)

Here, we have used Eqs. (A.62), (D.1), (D.3), and (D.6) and
√
g(u) = ρh. Equation (D.36)

is valid for spherical surfaces, as well as for open surfaces (ρ|s=0,L 6= 0) with vs|s=0,L = 0 and
for tubular surfaces with periodic boundary conditions. On spherical surfaces and on tubular
surfaces with periodic boundary conditions, the boundary term in Eq. (D.36) vanishes. For
the examples in this thesis, we use the integral expression in Eq. (D.36) as a constraint on the
deformation velocity vn in order to impose ∂tV = 0 and introduce an internal pressure p =
f ext
n as the corresponding Lagrange multiplier.
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D.3.3 Translational invariance and choice of reference frame

The governing equations for the deforming active fluid surface introduced in Section 2.1 are
translational invariant, such that solutions are only defined up to a constant velocity vector.
When solving the force balance equations on axisymmetric surfaces, we have eliminated this
degeneracy by choosing specific reference frames, which is explained here in more detail.

For an axisymmetric parametrisation, only translations along the z-axis with a constant
vector v0 = v0ēz are relevant. In the local basis of an axisymmetric surface, a constant
vector can be expressed as

v0 = v0 (sinψ es − cosψ n) . (D.37)

We write a translation for the purpose of this discussion as v = v′ − v0, where v′ and
c′(s′, t) is an arbitrary solution of the force balance equations and the dynamic equation of
the concentration field. Using v0

s = v0 sinψ and v0
n = −v0 cosψ, one can verify explicitly

that the force balance Eqs. (D.22) and (D.23) are unchanged and the dynamic equation of
the concentration field is invariant under v′ → v + v0 and c′(s′, t) → c(s − v0

s t, t). In the
following, we briefly explain which reference frame we have chosen in the different examples
shown in Chapter 2 and how these choices fix v0 in a way that v is uniquely determined.

To fix v0 on spherical surfaces discussed in Section 2.3, we have chosen the reference frame
where v|s=0 = −v|s=L ⇒ vn|s=0 = vn|s=L, which implies v0 = (v′n|s=L − v′n|s=0) /2. This
choice ensures that vn = 0 everywhere, if the geometry of the surfaces shape is stationary.

On periodic tubular surfaces discussed in Section 2.4, we have imposed
∫ L

0 vsds = 0
when determining the flow fields using our numerical approach. This implicitly fixes v0 =∫ L

0 v′sds/L0 (where L0 = L|t=0) and was used to determine the flow fields shown in Fig. 2.5.
To determine the in-plane flow field in the reference frame of the stationary constriction
shown in Fig. 2.6, we have used that the surface geometry does not change in the final
steady state. Therefore, the normal flow field must be of the form v′n = −v′0 cosψ. We then
chose v0 = v′0, for which v = v′ − v0 yields a flow field with vn = 0, such that the con-
striction does not move. The corresponding tangential flow in this reference frame is shown
in Figs. 2.6 a and b.

D.4 Linearisation of the dynamics of deforming active fluid
surfaces

Here, we present a detailed derivation of the linearisation of shape perturbations used in
this thesis. The brute-force approach to perform linearisations of vector- and tensor-valued
problems along with surface shape changes would be using the specific parameterisation of the
reference shape from the start. This requires expressing all covariant (differential) equations
and their perturbations component by component, including Christoffel symbols and the
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components of all tensor fields that are relevant for the problem. However, this procedure is
not only fairly tedious, but can also make it difficult to identify potentially more compact and
instructive forms of the final linearised equations. To avoid these technicalities, we follow
a different approach and first rewrite in Section D.4.1 the force balance equations for an
arbitrary surface presented in a coordinate-free1 form. To compute linearised equations of
spherical and tubular surfaces in Sections D.4.2 and D.4.3, it is then sufficient to specify
the effect of shape perturbations on the mean curvature and the Gaussian curvature of the
reference geometry and calculations on the level parameterisation-dependent components are
avoided.

D.4.1 Coordinate-free form of the governing equations

Force balance equations

As a preparatory step for the linearisations, we first determine the coordinate-free represen-
tation of the force balance equations for the viscous part of the tension tensor

tηij = 2ηs
(
vij −

1
2v

k
kgij

)
+ ηbv

k
kgij , (D.38)

with the symmetric strain rate tensor vij given in Eq. (2.10). Additionally, we introduce the
decomposition

tηij = tη‖,ij + tη⊥,ij , (D.39)

where tη‖,ij and tη⊥,ij , respectively, contain the contributions from tangential flow fields vi and
the deformation field vn. To determine a coordinate-free representation of tη‖,ij , we first note
that

∇itη,i‖, j = ηs
(
∇i∇ivj +∇i∇jvi −∇j∇ivi

)
= ηs

(
∇i∇ivj +Kvj

)
= ηs

(
ej ·∆Γv‖ + 2HCijvi

)
. (D.40)

In the first step, we have used the Ricci-identity for a two-dimensional surface Eq. (A.28).
In the second step, we have used the tangential projection of Eq. (B.24)

∇i∇ivj = ej ·∆Γv‖ + CijC
i
kv
k, (D.41)

as well as Eq. (A.22). From Eq. (D.40) it then follows that the tangential force balance for
in-plane flows can be equivalently expressed in the embedding Euclidean space as

ej∇i∇itη,i‖, j = ηs
(
PΓ ·∆Γv‖ + 2HC ·v‖

)
. (D.42)

1Here, we mean coordinate-free in the sense that no explicit vector or tensor components appear in the expres-
sion. Effectively, this amounts to expressing all equations in the embedding Euclidean space.
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Here, we have introduced the general tangential projection operator

PΓ = eiei, (D.43)

as well as the representation of the curvature C = Cijeiej = ∇Γn as a 3 × 3 matrix, where
we recall that ∇Γ = ei∇i. Contributions of the deformation field vn to the tangential force
balance can be written as

ej∇itη⊥,ij = 2ηsej∇i
(
Cijvn −

1
2C

k
kδ
i
jvn

)
+ ηbej∇jCkkvn

= 2ηs (vn∇ΓH −H∇Γvn + C · ∇Γvn) + 2ηb∇Γ (Hvn) , (D.44)

where we have used Eq. (A.32).
To rewrite the normal force balance, one proceeds in a similar fashion using Eq. (A.22).

From this and Eqs. (D.42) and (D.44) it follows that the force balance Eqs. (2.3) and (2.4)
for an active fluid surface can be written as

ηs
[
PΓ ·∆Γv‖ + 2HC ·v‖ + 2 (vn∇ΓH −H∇Γvn + C · ∇Γvn)

]
+ηb∇Γ

(
∇Γ ·v‖ + 2Hvn

)
+ T ‖ = −f ext

‖ (D.45)

2ηs
[
∇Γ ·

(
C ·v‖

)
− 2 v‖ · ∇ΓH −H∇Γ ·v‖ + 2

(
H2 −K

)
vn
]

+2ηbH
(
∇Γ ·v‖ + 2Hvn

)
+ TH = f ext

(n) . (D.46)

Here, T ‖ = ∇Γξa denotes contributions from the isotropic active tension, and f ext
‖ = PΓ · f ext

and f ext
(n) = n · f ext denote tangential and normal contributions from external forces. We have

additionally included a term TH in Eq. (D.46), which comprises the remaining passive terms
that are used in this thesis and which are derived from the Helfrich energy

FH =
∫
γ + κ

(
Ckk − 2C0

)2
dA. (D.47)

In Chapter 2, we have considered the case of a vanishing spontaneous curvature C0 = 0. In
the more general form given in Eq. (D.47), the Helfrich energy corresponds to tension and
moments in the surface given by [112,129]

tijH = γgij + κ
(
Ckk − 2C0

) ((
Ckk − 2C0

)
gij − 2Cij

)
(D.48)

mij
H = 2κ

(
Ckk − 2C0

)
εij . (D.49)

Because mij
H is antisymmetric, the normal torque balance Eq. (2.6) is satisfied with tijεij = 0

in the absence of external torques. The in-plane torque balance Eq. (2.5) yields tin,H =
2κ∇iCkk. Using this and tijH , the tangential force balance Eq. (2.3) yields ∇itijH +Cjitin,H = 0,
such that there are no additional terms to Eq. (D.45). The contributions to the normal force
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balance Eq. (D.46) read

TH = 2γH + 4κ
[
2K (H − C0)− 2H3 + 2HC2

0 −∆ΓH
]
, (D.50)

which, in the absence of flows and active stresses, yields the well-known shape equation for
surfaces with bending rigidity [129].

Equations (D.45) and (D.46) are valid for any surface and will be the starting point for
the linearisations derived in the following Section D.4.2. Note that these equations can
also be used in numerical approaches that compute differential operators in the embedding
space, as is done for example in level set methods [137]. Solving Eqs. (D.45), (D.46) in such a
framework corresponds to determining the dynamics of an active fluid surface whose covariant
constitutive equations for the tension and moment tensor are given by Eqs. (2.12) and (2.13).

Dynamic equation of the concentration field

The dynamic equation of the concentration field Eq. (3.4) can be written as

∂tc+∇Γ ·
(
cv‖

)
+ 2Hcvn = D∆Γc− k (c− c0) , (D.51)

where we have used Eqs. (A.35) and the definition of the mean curvature Eq. (A.14).

D.4.2 Linearisation on spherical surfaces

In the following, we present the linearisation of the active surface dynamics on spherical
geometries used in Section 2.3. Using the formal preparations derived in Section D.4.1, in
particular Eqs. (D.45), (D.46), and (D.51), the linearisation procedure now reduces essentially
to specifying perturbations of mean and Gaussian curvature, as well as to finding a convenient
representation of the curvature tensor C = Cijeiej . The latter is only needed to zeroth order,
as it appears always in products with the flow field, which we expand around v = 0. On the
surface of a sphere with radius R0, the curvature is isotropic and can be written as

C
(0)
ij = 1

R0
gij . (D.52)

This implies the matrix form
C

(0)
ij eiej = 1

R0
PS , (D.53)

where the projection onto the unit sphere PS is defined in Eq. (B.67). Perturbations of mean
and Gaussian curvature for a shape variation δXn = δR are given by

δH = −δR
R2

0
− 1

2∆SδR (D.54)

δK = −2δR
R3

0
− 1
R0

∆SδR, (D.55)
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where we have used Eqs. (A.48) and (A.49). Furthermore, it follows from the dynamic
equation of the surface ∂tX = vnn and δX = δRn that

δvn = n · ∂tδX

= ∂tδR, (D.56)

where we have additionally used ∂tn ∼ ei due to the normalisation of n. We consider an
expansion of flows, deformations and concentration perturbations in the form1

δc =
∑
l,m

δclmYlm (D.57)

δR =
∑
l,m

δRlmYlm (D.58)

δv‖ =
∑
l,m

(
δv

(1)
lmΨ(lm) + δv

(2)
lmΦ(lm)

)
, (D.59)

and general external forces given by

δf ext =
∑
l,m

(
fe,rlm (r)Y(lm) + f

e,(1)
lm (r)Ψ(lm) + f

e,(2)
lm (r)Φ(lm)

)
, (D.60)

where
∑
l,m =

∑∞
l=−∞

∑l
m=−l. We then collect terms to linear order from Eqs. (D.45), (D.46)

and find from the orthogonality of scalar and vector harmonics the general linearised force
balance equations for perturbations of a sphere:

ηs
R2

0
(1− l)(l + 2)δv(1)

lm +
[
ηb
R2

0

(
2δṘlm − l(l + 1)δv(1)

lm

)
+ ξ

R0
∂cfδclm

]
= −δfe,(1)

lm (D.61)

ηs
R2

0
(1− l)(l + 2)δv(2)

lm = −δfe,(2)
lm (D.62)

2ηb
R2

0

(
2δṘlm − l(l + 1)δv(1)

lm

)
+ 2ξ
R0
∂cf(c0)δclm

+
[

2κ
R4

0
{l(l + 1)− 4C0R0}+ γ + 4κC2

0 + ξf(c0)
R2

0

]
(l − 1)(l + 2)δRlm = δfe,rlm , (D.63)

where δṘlm = d
dtδRlm and the differentiation of the vector harmonics was performed using

Eqs. (B.25), (B.26), (B.28), and (B.29). Furthermore, we have used Eqs. (D.54) and (D.55)
together with the eigenfunction property of scalar harmonics Eq. (B.1). For external forces
that result from hydrodynamic stresses of a passive surrounding fluid, the expansion coef-
ficients δfe,rlm , δfe,(1)

lm and δf
e,(2)
lm are given in Eqs. (B.75)–(B.77). The linearised dynamic

1Note that in Chapter 2, we have discussed axisymmetric perturbations with m = 0 and presented numerical
solutions of the axisymmetric nonlinear problem. We keep the expansion here general, to demonstrate that
the linear dynamics described by the dispersion relation is degenerate in m.
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equation of the concentration field (D.51) reads

δċlm + c0
R0

(
2δṘlm − l(l + 1)δv(1)

lm

)
+
(
D

R2
0
l(l + 1) + k

)
δclm = 0. (D.64)

For each mode number l, Eqs. (D.61)–(D.64) yield a closed system of equations for the
coefficients {δv(1)

lm , δv
(2)
lm , δRlm, δclm}. Note that there is a 2l+ 1-fold degeneracy for each l in

these equations. The force balance equations can be used to eliminate δv(1)
lm and δv

(2)
lm from

this system, which leads to a two-dimensional Jacobian for the dynamics of the modes δRlm
and δclm.

D.4.3 Linearisation on tubular surfaces

In the following, we present the linearisation of the active surface dynamics on tubular
geometries used in Section 2.4. We use cylindrical coordinates {ρ, ϕ, z} with the normalised
standard basis {ēρ, ēϕ, ēz}. For reference, we present the linearisation of perturbations of
a cylindrical surface also for the fully general case of non-axisymmetric perturbations. The
stationary state around which we linearise is given by a cylindrical surface C of radius ρ0

and length L0, where v‖ = 0 and a concentration c = c0 is homogeneous. The expansions of
concentration, shape, and flow perturbations read

δc =
∑
n,q

δcnqynq(z, ϕ) (D.65)

δρ =
∑
n,q

δρnqynq(z, ϕ) (D.66)

δv‖ =
∑
n,q

(
δvznqēz + δvϕnqēϕ

)
ynq(z, ϕ) (D.67)

and general external forces are written as

δf ext =
∑
m,q

(
δfρnqēρ + δfznqēz + δfϕnqēϕ

)
ynq(z, ϕ) (D.68)

with summation
∑
n,q =

∑∞
n=−∞

∑∞
q=−∞. Here, we have defined

ynq(z, ϕ) = exp [i (knz + qϕ)] , (D.69)

where kn = bπn/L are the wave numbers with b = 2 (b = 1) for periodic (no-flux) boundary
conditions. These definitions imply

∆Cynq = −λnqynq/ρ2
0 (D.70)
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where λnq = k2
nρ

2
0 + q2 and

∇C · δv‖ = i
∑
n,q

(
δvznqkn + δvϕnq

q

ρ0

)
ynq (D.71)

∆Cδv‖ = −λnq
ρ2

0
δv‖ −

∑
n,q

δvϕnq
ρ2

0
ynq (2iqēρ + ēϕ) . (D.72)

Here,∇C and ∆C are the vector gradient and Laplace-Beltrami operator defined in Eqs. (A.27)
and (A.34) on a surface parametrised by X(ϕ, z) = ρ0ēρ + zēz.

The curvature tensor of a cylindrical surface can be expressed in matrix form as

C
(0)
ij eiej = 1

ρ0
ēϕēϕ, (D.73)

which acts as an anisotropic projection operator on the cylindrical surface. From Eqs. (A.48)
and (A.49) it follows for δXn = δρ that

δH = − δρ

2ρ2
0
− 1

2∆Cδρ (D.74)

δK = −∂
2
zδρ

ρ0
. (D.75)

Furthermore, note that in an Eulerian representation we have

δvn = n · ∂tδX

= ∂tδρ, (D.76)

which follows from the same arguments as Eq. (D.56). For an expansion of flows, deformations
and concentration perturbations given in Eqs. (D.65)–(D.67), we can then directly collect
terms to linear order from Eqs. (D.45), (D.46), and (D.51) and from which we find the general
linearised force balance equations for perturbations of a cylindrical surface

− ηs
(
λnq

δvznq
ρ2

0
+ ikn

ρ0
δρ̇nq

)
+ kn

[
ηb

(
−q

δvϕnq
ρ0
− knδvznq + i

δρ̇nq
ρ0

)
+ iξ∂cf(c0)δcnq

]
= −δfznq

(D.77)

ηs

(
−λnq

δvϕnq
ρ2

0
+ iq

δρ̇nq
ρ2

0

)
+ q

ρ0

[
ηb

(
−q

δvϕnq
ρ0
− knδvznq + i

δρ̇nq
ρ0

)
+ iξ∂cf(c0)δcnq

]
= −δfϕnq

(D.78)
ηs
ρ0

(
iq
δvϕnq
ρ0
− iknδvznq + δρ̇nq

ρ0

)
+ ηb
ρ0

(
iq
δvϕ
ρ0

+ iknδv
z
nq + δρ̇nq

ρ0

)
+ ξ

ρ0
∂cf(c0)δcnq

+
[
4κk

2
n

ρ2
0

(1− 2C0ρ0) + κ

ρ4
0

(λnq − 1) (2λnq − 3) + γ + 4κC2
0 + ξf(c0)
ρ2

0
(λnq − 1)

]
δρnq = δfρnq

(D.79)

of the force balance equations in z, ϕ and ρ-direction, respectively. For external forces that
result from hydrodynamic stresses of a passive surrounding fluid, the expansion coefficients
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δfρnq, δfznq and δfϕnq can be determined in terms of Bessel-functions [166,167]. The linearised
dynamic equation for the concentration field

δċnq + c0

(
iq
δvϕnq
ρ0

+ iknδv
z
nq + δρ̇nq

ρ0

)
+
(
D

ρ2
0
λnq + k

)
δcnq = 0, (D.80)

where δρ̇nq = d
dtδρnq and Eqs. (D.71)–(D.75) have been repeatedly used.

Linearised dynamic equations for the constitutive relations studied in Section 2.4 on ax-
isymmetric tubular surfaces can be obtained for q = 0. We can then use Eqs. (D.77) and (D.79)
to eliminate the modes δvzn,0 = δvzn. Together with Eq. (D.80), we find

d

dt

δρn
ρ0

= ηs + ηb
4ηsηb

{
−κBκ(knρ0) + [γ + ξf(c0)]

(
1− k2

nρ
2
0
)} δρn

ρ0
− ξc0∂cf(c0)

2ηb
δcn
c0

(D.81)

d

dt

δcn
c0

= 1
2ηb

{
κBc(knr0)− [γ + ξf(c0))

(
1− k2

nr
2
0
]} δρn

ρ0
+
(
ξc0∂cf(c0)

ηb
−Dk2

n − k
)
δcn
c0
, (D.82)

where all terms related to the bending rigidity have been collected into

Bκ(knρ0) = 4k
2
n

ρ2
0

+ 1
ρ4

0
(2k2

nρ
2
0 − 3)

(
ρ2
nρ

2
0 − 1

)
(D.83)

and we dropped the q = 0 subscripts for brevity. Equations (2.50) and (2.51) follow from
Eqs. (D.81) and (D.82) for κ = 0. Evaluating the Jacobian defined by this system numerically
reveals that that critical contractility α∗c used in Section 2.4 depends in general on κ.

D.5 Neck radius scaling of tubular surfaces with bending rigidity

In the following, we present a geometric toy model to analyse the neck radius of tubular
surface shapes discussed in Section 2.4.4. In this toy model, we ignore for simplicity tension
inhomogeneities due to flows and contractility. Force-balanced surface shapes then corre-
spond to minima of the energy

FH(L0, V ) = γ̄A+ 4κ
∫
H2dA, (D.84)

where γ̄ is an effective surface tension, κ is the bending rigidity and H is the mean curvature.
According to the constraints used in the numerical simulations, the total length of the initial
cylinder L0, as well as its volume V are fixed.
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D.5 Neck radius scaling of tubular surfaces with bending rigidity

Figure D.1: Overview of the geometric parameters used to derive a simplified shape
parameterisation of a constricting tubular surface with bending rigidity. Surface shapes
are parametrised by inverted spherical caps with radius R at the boundaries, which are
connected by a cylindrical neck of length ln and radius ρne. For fixed enclosed volume V
and total length L0, the neck radius ρne is the only free parameter to uniquely describe this
toy model geometry. The length ∆ is a dummy variable that is required for the geometric
calculations.

We parametrise surface shapes as inverted spherical caps with radius R at the boundaries
that are connected by a cylindrical neck of length ln and radius ρne. We denote surface areas
and volumes of the spherical caps by As and Vs, those of the neck forming cylindrical surface
by An and Vn. The total surface area is then given by Atot = 2A2 +An. The mean curvatures
of each domain read Hs = 1/R on the spherical caps and Hn = 1/(2ρne) in the neck region.
The Helfrich energy Eq. (D.84) can be expressed in terms of this shape parameterisation as

FH
2π = γ̄

(
ρneln + 2R2 sin θ

)
+ κ

(
ln
ρne

+ 8 sin θ
)
. (D.85)

In the following, we use the geometric relations imposed by fixing L0 and V and express
Eq. (D.85) as F (ρne, L0, V ). First, we derive two geometric relations that are needed later.
To this end, we note that the total length can be expressed as

L0 = ln + 2
√
R2 − ρ2

ne. (D.86)

Therefore, we can write

R2 = 1
4 (L0 − ln)2 + ρ2

ne (D.87)√
R2 − ρ2

ne = 1
2 (L0 − ln) . (D.88)

The total volume can be written as

V = πlnρ
2
ne + 2π

3
[
2R3 −∆2 (3R−∆)

]
. (D.89)
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The last term corrects the over estimation of volume due to the spherical cap penetrating
with depth ∆ into the neck cylinder volume. Using the geometric consistency relation ∆ =
R−

√
R2 − ρ2

ne, this simplifies to

V = πlnρ
2
ne + 2π

3

√
R2 − ρ2

ne

(
2R2 + ρ2

ne

)
. (D.90)

We can then use Eqs. (D.87) and (D.88) in Eq. (D.90) and find1

ln = L0 − 61/3
(
V

π
− L0ρ

2
ne

)1/3
. (D.91)

As a consistency check of this relation, we consider two limiting cases. First, we assume
the volume is given by πL0ρ

2
ne. In this case we find ln = L0, which is consistent with the

fact that the ‘neck’ takes up all the available volume and the geometry is given simply by a
cylindrical surface. For V = 4πR3/3 and ρne = 0, we find ln = L0 − 2R because two fully
closed spherical caps contribute with 2R to the total length and the remaining part belongs
to the neck.

Using Eqs. (D.87) and (D.91), we find

R2 = 62/3

4

(
V

π
− L0ρ

2
ne

)2/3
+ ρ2

ne. (D.92)

Finally, we use sin θ =
√
R2 − ρ2

ne/R, Eqs. (D.88), (D.91) and (D.92) to write

sin θ =
61/3

(
V
π − L0ρ

2
ne

)1/3√
62/3

(
V
π − L0ρ2

ne

)2/3
+ 4ρ2

ne

. (D.93)

With Eqs. (D.91), (D.92) and (D.93) we can fully parametrise the energy Eq. (D.85) in
terms of the fixed quantities L0 and V , as well as the neck radius ρne. We parametrise
the volume in terms of the radius of the initial cylindrical surface ρ0 as V = πL0ρ

2
0 and

define the dimensionless neck radius ρ̃ne = ρne/ρ0, the aspect ratio L̃0 = L0/ρ0 and bending
rigidity κ̃ = κ/(γ̄ρ2

0). Altogether, we can write the free energy given in Eq. (D.84) for this

1The resulting third order polynomial has only one physical solution
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geometry as

FH
2πγ̄ρ2

0
=
[
ρ̃neL̃0 + (6L̃0)1/3

(
1− ρ̃2

ne

)1/3
{

1
2

(
(6L̃0)2/3

(
1− ρ̃2

ne

)2/3
+ 4ρ̃2

ne

)1/2
− ρ̃ne

}]

+ κ̃

 L̃0
ρ̃ne

+ (6L̃0)1/3
(
1− ρ̃2

ne

)1/3
 8√

(6L̃0)2/3 (1− ρ̃2
ne)

2/3 + 4ρ̃2
ne

− 1
ρ̃ne

 (D.94)

= F̃0 + L̃0

[(
1− 61/3

L̃
2/3
0

)(
ρ̃ne + κ̃

ρ̃ne

)
+ 2κ̃ 1

(6L̃0)2/3 ρ̃ne

]

+ L̃0

[(
1
L̃0
− 2 1

(6L̃0)1/3 − κ̃
8
3

61/3

L̃
5/3
0

)
ρ̃2

ne +O
(
ρ̃3

ne, L̃
−2/3
0

)]
. (D.95)

If the volume constraint is dropped, we have ρ0 = ρne ⇒ ρ̃ne = 1 in Eq. (D.94) and only
the leading terms in squared brackets remain, predicting from ∂F/∂ρ̃ne = 0 a neck radius√
κ/γ̄. As discussed in Section 2.4.4, these are also the terms that remain to leading order

in L̃0 � 1. This can be seen more easily from the way we have written Eq. (D.95). From
this equation, we can essentially read off the coefficients used in Eq. (2.60):

F0 = πγ̄(6L0)2/3ρ
4/3
0 + 16πκ (D.96)

A = 2πL0

[
γ̄

(
1− 61/3 ρ

2/3
0

L
2/3
0

)
+ κ

2
62/3

1
L

2/3
0 ρ

4/3
0

]
(D.97)

B = 2πL0κ

(
1− 61/3 ρ

2/3
0

L
2/3
0

)
(D.98)

C = 2π
[
γ̄

(
1− 2

61/3
L

2/3
0

ρ
2/3
0

)
− κ61/3 8

3
1

L
5/3
0 ρ

1/3
0

]
. (D.99)

The increase in neck radii discussed in Section 2.4.4 compared to
√
κ/γ̄ follows from C < 0.

This inequality can be seen from Eq. (D.99) as follows. We note that the relations derived
above only describe FH correctly for all neck radii ρne ∈ [0, ρ0] only if 6−1/3L

2/3
0 ρ

−2/3
0 > 1,

or equivalently L0/ρ0 >
√

6 ≈ 2.4.1 All the cases we have studied in this thesis obey this
threshold. This implies that all terms that appear in Eq. (D.99) are negative and hence C < 0.

D.6 Details of the numerical approach

In the following, we present a detailed description of the numerical discretisation method
we have used to solve the differential equations introduced above. We present validation
results of this implementation and list the parameters we have used to obtain the numerical
solutions presented in this work.

1If this condition is not fulfilled, the spherical caps permeate each other for a neck radius ρne > 0 and the
geometric description would need to be changed.
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D.6.1 Numerical discretisation

We discretise Eqs. (D.22) and (D.23) on the initial arc length domain S|t=0 = S0 = [0, L0]
by N equally spaced collocation points at coordinates u(i), i = 1, 2, ..., N . Each point car-
ries the local differential geometric information of the initial shape, given by the extrinsic
curvature and the Christoffel symbols, as well as other problem-specific quantities, such as
concentration fields. For brevity, we collectively refer to all fields stored on collocation points
u(i) ∈ S0 as {Φ(i)}. On this grid, we express the derivative operators of the force balance
Eqs. (D.22) and (D.23) using centred fourth-order finite difference operators [168] and solve
the resulting linear system of equations for the flow field components (vn, v‖) and the internal
pressure p. The latter follows from conservation of the enclosed volume, which is imposed
using the integral constraint Eq. (D.36) using Simpson integration weights [168]. Then, we
use the dynamic equations for the intrinsic and extrinsic geometry, Eqs. (D.1), (D.6), and
Eqs. (D.4)–(D.7), as well as the dynamic equation for the concentration field Eq. (D.24) to
update the set {Φ(i)} using explicit Euler time stepping with step size δt. In subsequent
time steps, the coordinate transformation h is used to express all equations in the reference
space S0, which allows solving the force-balance equations and evolving the set {Φ(i)} on the
same equidistant grid.
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Figure D.2: Exemplary dynamics of collocation points and the geometric fields required to
reconstruct and iterate axisymmetric surface shapes. (shown for the surface relaxation dis-
cussed in Section 2.3.2). a) Collocation points in physical space are initially homogeneously
spaced (h = 1) and become inhomogeneously distributed during shape changes. b) Dy-
namic coordinate transformation h and dimensionless meridional curvature C̃ss = R0C

s
s in

the reference space S0 = [0, L0]. Note the compression (dilution) of collocation points in
a) in regions with h < 1 (h > 1). c) In-plane flow field ṽs = es ·vτ/R0 and deformation
velocity ṽn = vnτ/R0, where τ = ηb/γ. The parameter values used are given in Table D.1.
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D.6 Details of the numerical approach

Figure D.2 shows an example of the typical dynamics of collocation points in the physical
space, as well as a time series of the different fields that are required to reconstruct and
iterate the surface shape. The expected error convergence behaviour O(N−4, δt) is verified
in the following section, using a range of numerical tests.

D.6.2 Grid convergence analysis and simulation code validation

We validate the spatial discretisation of S0 by inverting the force balance Eqs. (D.22) and
(D.23) on a spheroidal surface for increasing numbers N of collocation points. Figure D.2 a
shows the maximum error norm with respect to the numerical solution computed for N =
3201 collocation points for the flow-field components vn and vs, confirming fourth-order
convergence.

Next, we validate the temporal convergence using a similar numerical experiment as shown
in Fig. D.2, gradually increasing the number of time steps Nt used to reach a fixed final time
point (Fig. D.2 b). As expected from using explicit Euler time stepping, the geometric fields
converge with ∼ N−1

t .
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Figure D.3: Validation of convergence behaviour and conservation properties. a) Grid
convergence of the spatial discretisation: Numerical solutions fh of Eqs. (D.22) and (D.23)
for single time step on a prolate spheroid with eccentricity 0.6 and homogeneous surface
concentration compared with the high-resolution solution f for N = 3201 in the maximum
error norm || · ||∞. b) Grid convergence of the temporal discretisation: Principle curvatures
of a passive tubular surface (ξ = 0) after convergence to non-trivial stationary shape (inset)
compared with the solution for Nt = 3.2×105 in the maximum error norm || · ||∞. c) Relative
numerical error of the conservation of the enclosed volume and the total number of molecules:
Relaxation of an active, spheroidal surface with initial eccentricity 0.6. A complete overview
of the parameters used for the corresponding simulations is given in Table D.1.

Finally, we test the conservation of enclosed volume and total molecule number, for which
we consider a shape relaxation as presented in Fig. 2.3 b. The volume is determined by
integrating the surface shape via Eqs. (2.22)–(2.24) and using

V = π

∫ z(L)

z(0)
ρ2dz. (D.100)

This is an important validation of the constraint imposed by Eq. (D.36), which enforces vol-
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ume conservation using intrinsic fields on the surface, while Eq. (D.100) determines the vol-
ume using the surface representation in the embedding space. The total number of molecules
is given by

Nc =
∫

Γ
c dA. (D.101)

Even though the concentration field c and the surface area are changing in space and time
in this test case, Nc should be constant when there is no degradation k = 0. In this case
only diffusion and advection on the surface, as well as surface-area changes are modulating
the local concentration. This validation therefore demonstrates that our reparametrisation
approach faithfully evolves the metric properties of the surface. The behaviour of the relative
numerical errors for V and Nc over time are depicted in Fig. D.2 c.

D.6.3 Parameters used for numerical results

L0/(2πρ0) ξ/γ κ/(γl2c ) Dτ/l2c kτ

Fig. 2.3 b / Fig. D.2 – 15 0 8 0

Fig. 2.3 c – 10 0 0.3 0

Fig. 2.5 a 0.82 6 0 0.05 1.95

Fig. 2.5 b 0.95 6 0 0.05 1.95

Fig. 2.6 a 1.1 6 0.25 0.05 1.95

Fig. 2.6 c 2.5 / 1.1 / 2.5 6 0.25 / 0.25 / 0.8 0.05 1.95
Fig. D.3 a – 5 0 – –

Fig. D.3 b 2.5 – 0.15 – –

Fig. D.3 c – 2 0 4 0

Table D.1: Overview of parameters used for the numerical results presented in Chapter 2.
The characteristic length for the sphere is its radius lc = R0, for the tubular surface the
radius of the azimuthal cross-section lc = ρ0. The characteristic time-scale is given by
τ = ηb/γ. The triplet values are given with respect to the positions ‘top/middle/bottom’
of the images shown in Fig. 2.6 c. The enclosed volume spherical surfaces was set in all
simulations to V/R3

0 = 4π/3. On tubular surfaces the volume is implicitly fixed by fixing the
aspect ratio L0/ρ0. The Hill-coefficient m in Eq. (2.16) was in all simulations set to m = 2,
such that f(c0) = c0∂cf(c0) = 1/2. The surface viscosity ratio was in all simulations set to
ηs/ηb = 1.
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Appendix E
Active fluid dynamics on a sphere
In this appendix, we present additional information about the theoretical analysis of the
self-organised active fluid dynamics on a sphere, which we have studied in Chapters 3 and 4.

First, in Section E.1, we introduce a range of intermediate results that were obtained
during the nonlinear analysis of the active surface swimmer studied in Section 3.3. Then,
in Section E.2, we provide supporting information for the analysis of the viscoelastic sur-
face discussed in Chapter 4. In particular, we review general Lagrangian derivatives on
curved surfaces and derive the covariant Jaumann derivative used to formulate viscoelastic
constitutive relations in Section 4.1. Additionally, we present formal details of the analytic
characterisation of the Jacobian derived in Section 4.2. Finally, in Section E.3, we develop
spectral approaches used to obtain numerical solutions of the nonlinear tensor-valued differ-
ential equations that arose in Chapters 3 and 4.

E.1 Active surface swimmer

In this section, we provide further details related to the analysis of the active surface swimmer
model discussed in Section 3.3.

In Section E.1.1, we present the explicit steady-state solutions used to approximate the
propagation velocity of the swimmer. In Section E.1.2, we detail the center-manifold reduc-
tion that we have performed to identify the bifurcation class for the onset of spontaneous
motion.

E.1.1 Steady-state solutions

Here, we present explicit steady-state solutions of the dynamic system Eqs. (3.42) and (3.43)
for the concentration modes c1,0 and c2,0 together with the resulting propagation velocity u0

introduced in Section 3.3.2. For convenience, we recall here the coefficients

Vl = Rξ

(1 + 2l)Rη+ − δl,1Rη+ + l(l + 1)(ηb + ηs)− 2ηs
, (E.1)
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which we have introduce in Section 3.3.2 as proportionality factors between concentration
modes clm and velocity modes v(1)

lm = Vlclm/c0 (no summation). The steady state with polar
asymmetry can be found by first dividing Eqs. (3.42) by c1,0, which yields

cpol2,0
c0

=
√

5π
2DR − 2V1 +Rk

3V2 − V1
. (E.2)

The coefficients Vl are given in Eq. (E.1). Rearranging Eq. (3.43), one finds

cpol1,0
c0

= ±
(√

5πR
3V1c0

)1/2
6 D

R2 c
pol
2,0 −

V2c
pol
2,0

Rc0

(
6c0 + 3

7

√
5
π
cpol2,0

)
+ kcpol2,0

1/2

, (E.3)

which, together with cpol2,0 given in Eq. (E.2), provides a closed steady-state solution for cpol1,0.
Note that additional steady-state solutions exist for the dynamic system Eqs. (3.42)

and (3.43). Besides the the trivial homogeneous solutions chom1,0 = chom2,0 = 0, we also have a
nematic steady state for which cnem1,0 = 0 and

cnem2,0
c0

= 7
3

√
π

5
6DR − 6V2 +Rk

V2
, (E.4)

which directly follows from Eq. (3.43).

Propagation velocity

Using the proportionality of the concentration mode c1,0 with the propagation velocity u0 of
the active surface swimmer, Eq. (3.40), one finds from Eqs. (E.2) and (E.3) the expression
for u0 given in Eq. (3.44), which we recall here for completeness:

|u0|
vD

=
(

Pe
P̂e∗+

− 1
)1/2

(aPe + b)1/2 . (E.5)

In this expression, vD = D/R represents a fixed characteristic velocity, Pe = ξR2/(ηbD) is
the Péclet number and P̂e∗+ = 2(1+Rη+/ηb) is the critical Péclet number at which the mode
l = 1 becomes unstable. The coefficients a and b are given by

a = − 20
3α′

1
1 + 4ν + 5

2 P̂e∗+

(
1 + 5

7α′
)

(E.6)

b = 20
3α′

(
1 + 5

7α′
P̂e∗+

1 + 4ν + 5
2 P̂e∗+

)
, (E.7)

where

α′ = 1− 3
P̂e∗+

1 + 4ν + 5
2 P̂e∗+

. (E.8)
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The parameter ν = ηs/ηb denotes the surface viscosity ratio.

Identifying the active surface swimmer as a puller

As briefly explained at the end of Section 3.3.2, microswimmers can be characterised as
pullers and pushers based on the sign of the velocity mode v(1)

2,0 > 0. This velocity mode
in turn is related to the concentration mode simply by v

(1)
2,0 = V2c2,0/c0, where V2 is just a

positive prefactor given by Eq. (E.1) for l = 2. It therefore suffices to determine the sign of
c2,0 during steady-state motion. The corresponding solution cpol2,0 is given in Eq. (E.2). For
the regime of external viscosities considered in Section 3.3, Rη+ < 4ηs, we have 3V2−V1 < 0.
Parameters with which the mode l = 1 is unstable and translational motion spontaneously
emerges, correspond to D/R − V1 < 0. Hence, we see from Eq. (E.2) that cpol2,0 > 0. This
implies v(1)

2,0 > 0 and shows that the active surface swimmer introduced in this thesis indeed
behaves as a puller [149]. Note that in the regime Rη+ > 4ηs ⇒ 3V2 − V1 > 0, for which the
swimmer would have been characterised as a pusher, our numerical analysis does not yield
physical steady states if the homogeneous state is unstable. This is due the singularities
discussed at the end of Section 3.3.2 that likely arise from the unsaturated linear regulation
of active tension.

E.1.2 Characterisation of the spontaneous onset of motion

Here, we describe the bifurcation analysis performed for the active surface swimmer in Sec-
tion 3.3.3 in more detail. Recall that in this model, we identified a mechano-chemical in-
stability on the surface of a sphere, where the harmonic mode l = 1 becomes unstable for
an increasing Péclet number Pe = ξR2/(ηbD) at the critical value P̂e∗+ given in Eq. (3.37).
Surface flows associated with this instability have a polar asymmetry and the mechanical
interaction with a surrounding passive fluid leads to translational motion with steady-state
propagation velocity u0 relative to the laboratory frame.

Center-manifold

In order to extract the slow dynamics near the equilibrium point (c1,0, c2,0) = (0, 0) of the dy-
namic system of Eqs. (3.42) and (3.43), we have to perform a center-manifold reduction [152].
In our system, this can be done analytically as follows.

First, we note that the polar and nematic mode coefficients c1,0 and c2,0 couple only
according to their symmetry: Eq. (3.42), which describes the dynamics for the mode l = 1,
only contains the ‘odd’ terms proportional to c1,0 and to c1,0c2,0; Eq. (3.43) for the mode
l = 2 contains only ‘even’ terms proportional to c2,0 and c2

1,0. Hence, we consider an ansatz
for the center-manifold near (c1,0, c2,0) = (0, 0) in the form

c2,0 = ᾱ
c2

1,0
c0
, (E.9)
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where ᾱ is coefficient that is determined in the next step. To this end, we take the time
derivative of the ansatz Eq. (E.9) and use the dynamic Eqs. (3.42) and (3.43) to replace the
time derivatives of c1,0 and c2,0. From this, we find a new equation

− 6 D
R2 c2,0 − kc2,0 + 3√

5π
c2

1,0V1

c0R
+ V2c2,0

Rc0

(
6c0 + 3

7

√
5
π
c2,0

)
=

2ᾱ c1,0
c0

(
−2 D

R2 c1,0 − kc1,0 + 2V1c1,0
R

+ 1√
5π

c1,0c2,0
Rc0

(3V2 − V1)
)
. (E.10)

Eliminating c2,0 by the ansatz Eq. (E.9) and neglecting terms c4
1,0, we find

ᾱ = 1√
5π

3V1

2DR − kR+ 4V1 − 6V2
. (E.11)

In the absence of turnover (k = 0), which was the case discussed in Section 3.3.3, we find for
the concentration mode c1,0 a closed dynamic equation near the point (c1,0, c2,0) = (0, 0) in
the form

d

dt

c1,0
c0

= 2
(
V1
R
− D

R2

)
c1,0
c0

+ 1
5πR

3V1 (3V2 − V1)
2DR + 4V1 − 6V2

(
c1,0
c0

)3
. (E.12)

Here, we have used the ansatz Eq. (E.9) with the explicit form of the coefficient Eq. (E.11)
directly in the dynamic Eq. (3.42) for the concentration mode c1,0. Equation (E.12) describes
a pitchfork bifurcation. The coefficient of the cubic term evaluated at the critical Péclet
number Pe = P̂e∗+ yields the expression for ā given in Eq. (3.50), where we have used
Pe = ξR2/(ηbD), P̂e∗+ = 2(1 +Rη+/ηb), ν = ηs/ηb and the coefficients Vl given in Eq. (E.1).

E.2 Active viscoelastic surface theory

In this section, we provide further details and derivations related to the viscoelastic active
surface model studied in Chapter 4.

First, in Section E.2.1, we derive the general Lagrangian derivative D/Dt of vector and
tensor fields on curved surfaces. The corresponding derivation cannot be found readily in the
literature and is therefore presented and discussed in greater detail. We also show that the
metric tensor does not commute with D/Dt, which gives rise to ambiguities when defining
constitutive relations for viscoelastic materials. In Section E.2.2, we provide details about
the analytic characterisation of the Jacobian Jlel derived in Section 4.2.1. In particular, we
derive the critical Maxwell time τ∗M presented Section 4.2.2 and we verify that the dispersion
relation for a viscous surface can be recovered from the Jacobian in the limit τM → 0.

E.2.1 Lagrangian derivative on curved surfaces

In this section, we introduce the Lagrangian derivative on curved and deforming surfaces. We
first explain how this derivative can be determined for geometric quantities that are defined
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by the surface parametrisation. We then define the Lagrangian derivative for a general tensor
field. From this definition, we derive explicit representations of Lagrangian derivatives on
curved and deforming surfaces and show that they are equivalent to the Oldroyd formula [169]
even if the surface is deforming. Finally, we show that the covariant Jaumann derivative,
used in Section 4.1 to formulate constitutive equations of a viscoelastic surface, corresponds
to a symmetrised Lagrangian derivative.

Lagrangian derivatives of geometric quantities

We first introduce the Lagrangian derivative D/Dt of geometric quantities that are defined
by a surface parametrisation X(s1, s2, t), such as the metric tensor, the curvature tensor or
basis vectors.

In the first step, one has to compute the variation of the corresponding vector or tensor
field under a general shape variation δX = δXiei+δXnn. An explicit expression for D/Dt is
then given for δX = vdt, where v is the local velocity of surface area elements. For example,
from δei = ∇iδX it then follows that the Lagrangian derivative of a covariant basis vector
is given by

D

Dt
ei =

(
∇ivj + C j

i vn
)

ej + (∇ivn − Cijvj)n. (E.13)

Applying the same procedure to the metric tensor gij and to the curvature tensor C j
i , we

find

D

Dt
gjk = −

(
∇jvk +∇kvj + 2Cjkvn

)
(E.14)

D

Dt
C j
i = −∇i∇jvn − CikCkjvn + vk∇kC j

i + C j
k ∇iv

k − C k
i ∇kvj , (E.15)

which are two additional relations that are required in the following derivations. Equa-
tion (E.14) implies that the metric tensor does not commute with the Lagrangian derivative.
This gives rise to an ambiguity when defining constitutive relations using D/Dt, which is
discussed in Section E.2.1.

Lagrangian derivative of general vector and tensor fields

The component representation of the Lagrangian derivative of a general tangential vector field
p‖ = piei is determined by

D

Dt
pi = D

Dt

(
p‖ · ei

)
= ei ·

D

Dt
p‖ + p‖ ·

D

Dt
ei. (E.16)
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To evaluate the first term of Eq. (E.16), we use the Lagrangian derivative of a scalar field –
the classical convected time derivative – given by

D

Dt
c = ∂tc+ vk∇kc, (E.17)

which yields

D

Dt
p‖ = ∂tp‖ + vk∇kp‖

= ei∂tpi − pi(ejCijvn + n∇ivn) + vk
(
ei∇kpi − piC i

k n
)
. (E.18)

Here, we have additionally used Eq. (A.54) to evaluate the partial derivative ∂tei. To evaluate
the second term in Eq. (E.16), we use Eq. (E.13). Taking everything together, we find

D

Dt
pi = ∂tpi + vk∇kpi + pj∇ivj . (E.19)

This is the general Lagrangian derivative of a vector field. Note that Eq. (E.19) does not
contain explicit contributions from surface deformations vn.

For a tensor field with t = tijeiej , a similar calculation yields

D

Dt
tij = D

Dt
(ei · t · ej)

= ∂ttij + vk∇ktij + tkj∇ivk + tik∇jvk. (E.20)

From this result, we can also determine the Lagrangian derivative of a tensor in mixed
coordinates

D

Dt
t ji = tik

D

Dt
gjk + gjk

D

Dt
tik

= ∂tt
j
i + vk∇kt ji + t jk ∇iv

k − t ki ∇kvj , (E.21)

where we have used Eq. (E.14), as well as the relation gjk∂ttik = ∂tt
j
i + 2tikCjkvn that

follows from Eq. (A.44) with δXn = vndt. Similarly, we find

D

Dt
tij = ∂tt

ij + vk∇ktij − tkj∇kvi − tik∇kvj . (E.22)

Equations (E.20) and (E.22) in Euclidean space1 correspond to the lower and upper convected
derivatives [114]. The derivation shown here can be easily generalised to higher order tensors.
In this case, one recovers the Oldroyd formula [169], even though the derivation here is more
general in that it allows for the surface to change its shape. As a consistency check one can

1None of the steps in this derivation depend on the dimensionality of the underlying space. We can therefore
also consider a parametrisation X3D(x, y, z) = xēx + yēy + zēz and would formally arrive at the same results
as given in Eqs. (E.20)-(E.22) with i, j, k → α, β, γ.
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verify that for t ji = C j
i , Eq. (E.21) is equivalent to Eq. (E.15), where the latter was derived

from explicitly varying the curvature tensor.

Determining the convected corotational derivative

The property of Lagrangian derivatives to evaluate dynamic changes in a comoving frame is
used to formulate constitutive relations for a viscoelastic material, where it ensures that the
relaxation of elastic stresses is described in the material reference frame.

To recover the covariant form of the Jaumann derivative D̄/Dt given in Eq. (4.3) from
a general Lagrangian derivative D/Dt, we use the latter for tensors in mixed coordinates
Eq. (E.21). This particular choice over Eqs. (E.20) and (E.22) is motivated below. Equa-
tion (E.21) can be written as

D

Dt
t ji = ∂tt

j
i + vk∇kt ji + ωn

(
εikt

s, jk + εjktsik

)
+ 1

2ε
lmtlm

(
εkiv

jk
‖ + εkjv‖,ik

)
+ εjiε

l
mt

s
lkv

km
‖ . (E.23)

Here, we have used the vorticity ωn defined in Eq. (C.27) and introduced the symmetric
part of the in-plane strain rate tensor v‖,ij = (∇ivj +∇jvi) /2, as well as the symmetrised
tensor tsij = (tij + tji) /2. In general, it can be shown that rotational invariance of the
system only fixes the vorticity terms in Eq. (E.23) [114], leading to the covariant form of the
Jaumann derivative used in Chapter 4. The most general form of the Lagrangian derivative
derived here also contains contributions from the antisymmetric part of the tensor tij , as
well as a purely antisymmetric term (first and second term in the second line of Eq. (E.23),
respectively). Because we do not consider chiral surfaces, we have εlmtlm = 0. Interestingly,
the purely antisymmetric term in Eq. (E.23) cannot be excluded based on first principles.
The covariant form of the Jaumann derivative used in Chapter 4 therefore corresponds to
the symmetric part of the Lagrangian derivative given in Eq. (E.21), which can be written
as

D̄

Dt
t ji = 1

2

(
δki
D

Dt
t jk + δjk

D

Dt
t ki

)
. (E.24)

Why did we choose the Lagrangian derivative D/Dt for mixed tensors Eq. (E.21)? Constitu-
tive relation defined for tij using Eq. (E.20) or defined in terms of t ji using Eq. (E.21) are in
general not equivalent, because the metric tensor gij does not commute with the Lagrangian
derivative D/Dt.1 This was already noted by Oldroyd in 1950, who pointed out that this
gives rise to a family of possible constitutive relations for Maxwell- and Kelvin-Voigt-type
viscoelastic materials [169]. The choice of Eq. (E.21) is motivated by the trace-conserving
property of this Lagrangian derivative. Taking the trace of the constitutive relation for the

1Note that for this discussion it is not relevant if we consider symmetrised forms of Lagrangian derivatives or
not.
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elastic tension given in Eq. (4.2) and using D
Dtδ

j
i = 0, which follows from Eq. (E.21), we find(

1 + τM
D̄

Dt

)
t kk = 2ηbv k

k , (E.25)

where we have dropped the superscript ‘el’ on the tension tensor used in Chapter 4 for
brevity. Subtracting Eq. (E.25) from Eq. (4.2) leads to(

1 + τM
D̄

Dt

)(
t ji −

1
2 t

k
k δ

j
i

)
= 2ηsv j

i . (E.26)

Hence, in this formulation the traceless symmetric part of tij is exclusively connected to the
shear deformations of the surface. This is not the case for a constitutive relation in terms
of ‘lower indices’

(
1 + τM

D
Dt

)
t′ij = 2ηs(vij − v k

k gij/2) + ηbv
k
k gij : Taking the trace of this

expression leads according to Eqs. (E.14) to(
1 + τM

D

Dt

)
t′ kk = 2

(
ηbv

k
k + τM t

′
ij∇ivj

)
. (E.27)

In this scalar valued equation, isotropic and anisotropic contributions of the tension tensor
are now getting mixed and hence are no longer independent.

E.2.2 Analysis of the Jacobian

Here, we provide a more detailed analysis of the Jacobian Jlel derived in Section 4.2, which we
have used analyse the linear stability of the homogeneous state on an isotropic, viscoelastic
active surface.

The explicit form of Jlel can be read of from Eqs. (4.23) and (4.24), which yields

Jlel =

− 1
τM

+ 1
RτM

ηs[2−l(l+1)]−ηbl(l+1)
η−(1+2l)

1
RτM

ηs[2−l(l+1)]−ηbl(l+1)
η−(1+2l) ξ∂cf(c0)

l(l+1)
η−(1+2l)

c0
R − D

R2 l(l + 1)− k + l(l+1)
η−(1+2l)

c0
R ξ∂cf(c0)

 . (E.28)

We see from Eq. (E.28), that the eigenvalues of Jlel are smaller than zero for ξ = 0. Hence,
the homogeneous state is stable in the absence of active stress.

To study the case ξ > 0, it is convenient to first non-dimensionalise the linear system
Eqs. (4.23) and (4.24). For this, we chose a characteristic time scale τD, and a characteristic
tension ηb/τD and concentration c0. The Jacobian Eq. (E.28) then takes the form

J̃lel =
(
− 1
τ̃M

[1 + Π1(l)] − 1
τ̃M

Π1(l)Pe c0∂cf(c0)
Π2(l) −l(l + 1)− k̃ + Π2(l)Pe c0∂cf(c0)

)
, (E.29)
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where Pe = R2ξ/(ηbD) is the Péclet number and we have defined

Π1(l) = L̃h
ν [l(l + 1)− 2] + l(l + 1)

1 + 2l (E.30)

Π2(l) = L̃h
l(l + 1)
1 + 2l , (E.31)

and introduced dimensionless parameters: the Maxwell relaxation time τ̃M = τM/τD

(τD = R2/D), the turnover rate k̃ = τDk, the surface viscosity ratio ν = ηs/ηb, and the
hydrodynamic length L̃h = ηs/(Rη−ν).

Linear stability analysis and derivation of the critical Maxwell time

In order to derive the critical Maxwell τ∗M presented in Section 4.2.2 from the Jacobian
Eq. (E.29), we analyse its determinant and trace following [135]. From Eq. (E.29), we can
read off:

τ̃M det(J̃lel) = [1 + Π1(l)]
(
l(l + 1) + k̃

)
−Π2(l)Pe c0∂cf(c0) (E.32)

tr(J̃lel) = − 1
τ̃M

[1 + Π1(l)]− l(l + 1)− k̃ + Π2(l)Pe c0∂cf(c0). (E.33)

We first determine the scaling of eigenvalues of J̃lel for l→∞ to ensure the one-component
description used in Chapter 4 is well-defined for the cases studied in this thesis. We have from
their definitions, Eqs. (E.30) and (E.31), the scaling Π1(l),Π2(l) ∼ l. Therefore, determinant
and trace scale as det(J̃lel) ∼ l3 and tr(J̃lel) ∼ −l2 for l→∞. This implies that the eigenvalues
of J̃lel have negative real part l→∞ [135] and small wavelengths are always stable.

We now derive the detailed stability properties presented in Section 4.2.2. For parameters
at which the determinant becomes negative with a negative trace, a stationary instability
occurs [135]. For the Jacobian Jlel this implies the following. From Eq. (E.32), we find that
the determinant vanishes at

Pesi
l = 1 + Π1(l)

Π2(l)c0∂cf(c0)
(
l(l + 1) + k̃

)
(E.34)

and is negative for Pe > Pesi
l . We study this model in the regime where the mode l = 1

becomes unstable first, when the Péclet number Pe is increased up to a critical value.
Evaluating the right-hand side of Eq. (E.34) for l = 1 with Π1(l) and Π2(l) defined in
Eqs. (E.30) and (E.31), respectively, we find Pesi

1 = Pe∗−, where Pe∗− is the critical Péclet
number found previously for the viscous active surface (Eq. (3.32)). The trace Eq. (E.33) is
smaller than zero at the Péclet number given in Eq. (E.34) if

τ̃M <
1 + Π1(l)

Π1(l)
[
l(l + 1) + k̃

] . (E.35)
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In this regime (the determinant becoming negative at a negative trace), the homogeneous
state undergoes a stationary instability [135] for increasing Péclet number at Pe = Pesi

1 =
Pe∗−. The expression on the right-hand side of Eq. (E.35) defines for each mode l a critical
Maxwell time

τ∗M,l =
Rη−(2l+1)

ηs[2−l(l+1)]+ηbl(l+1) + 1
l(l + 1) D

R2 + k
, (E.36)

which yields for l = 1 the critical Maxwell time τ∗M,1 = τ∗M discussed in Section 4.2.2 and
given by

τ∗M =
3
2
Rη−
ηb

+ 1
2 D
R2 + k

. (E.37)

For parameters at which the trace becomes positive with a positive determinant, the
homogeneous state undergoes an oscillatory instability [135]. To identify the regime in which
such a transition can take place on the viscoelastic active surface, we first note that the trace
Eq. (E.33) vanishes for

Peoi
l = 1

Π2(l)c0∂cf(c0)

(
l(l + 1) + k̃ + 1

τ̃M
[1 + Π1(l)]

)
(E.38)

and it is positive for Pe > Peoi
l . Furthermore, the determinant is positive at Pe = Peoi

l if
τM > τ∗M with τ∗M given in Eq. (E.37). In the regime, where the mode l = 1 becomes unstable
first, the relevant critical Péclet number is Peoi

1 , which we denoted as Pe∗oi in Chapter 4
(Eq. (4.26)). For Maxwell times with τM > τ∗M , it follows that an oscillatory instability occurs
for increasing Péclet numbers at Pe = Pe∗oi. This transition of a stable homogeneous state to
an oscillatory unstable one is depicted by the dark blue line in the stability diagram Fig. 4.1.

Dispersion relation in the limit τM → 0

As an additional consistency check, we can verify that in the limit τM → 0 the Jacobian
Eq. (E.29), or equivalently the linear dynamic system Eqs. (4.23) and (4.24), can be mapped
to the dispersion relation found for a purely viscous surface. In the viscous limit, we have
τM

d
dtδt̃

(1)
lm = 0, such that the dynamic equation for δt̃(1)

lm , Eq. (4.23), implies

τD
ηb
δt̃

(1)
lm = − Π1(l)

1 + Π1(l)Pec0∂cf(c0)δclm
c0

, (E.39)

where Π1(l) has been defined in Eq. (E.30). This can be plugged into the dynamic equation
for the concentration modes, Eq. (4.24), which yields

τD
d

dt
δclm =

[
−l(l + 1)− τDk + Π2(l)

(
1− Π1(l)

1 + Π1(l)

)
Pe c0∂cf(c0)

]
δclm

=
[
−l(l + 1)− τDk + l(l + 1)Pec0∂cf(c0)

(1 + 2l)Rη−/ηb + l(l + 1)(1 + ν)− 2

]
δclm. (E.40)
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The expression in square brackets is indeed equivalent to the dispersion relation Eq. (3.27)
derived for the viscous active surface.

E.3 Details of the numerical approach

In this section, we introduce the framework that we have developed to determine the non-
linear dynamics of the active surface models analysed in Chapters 3 and 4. Our numerical
approach builds on the corresponding linearised solutions, for which we had used expansions
of the relevant variables in terms of scalar, vector and tensor spherical harmonics. Here, we
explain how the remaining nonlinear terms can be projected onto the corresponding harmon-
ics as well, which takes care of all spatial dependencies in the problem. This provides us with
a spectral solution of the full nonlinear dynamics, in which we only have to solve a set of
ordinary differential equations for the mode coefficients of the harmonic expansions. An ad-
ditional advantage of this approach is that the interaction with shear forces from the external
passive fluid can readily be included by using the analytic solution derived in Section B.2.

To introduce the framework, we proceed as follows. In Section E.3.1, we present a least-
square procedure to project scalar functions onto harmonic modes and extend this idea to
the case of tensor-valued fields on the sphere. This projection represents a key element that
underlies our numerical approach to solve tensor-valued partial differential equations on the
surface of a sphere. In Sections E.3.2 and E.3.3, we explain how this method is used to treat
the nonlinearities in the models of the self-organised viscous and viscoelastic fluid on the
sphere, respectively.

E.3.1 Least-square fitting of scalar and tensor spherical harmonics

Here, we introduce the basic ‘workhorse’ that underlies the numerical approach we have
developed: A least square fitting framework that allows efficiently switching between the
representation of tensor components on a sphere in real space and in the space of tensor
spherical harmonics. This concept extends the least square approach that has been previously
developed for scalar functions on a sphere [170]. Both, the scalar and the tensorial method,
are explained in the following.

Harmonic projection of scalar fields

We consider a function G(ξk) given at a number Nk of points ξk = (θk, ϕk) on the surface
of a sphere. The goal is to find an expansion of G(ξk) in terms of a finite number of scalar
spherical harmonics as

G =
lmax∑
l=0

l∑
m=−l

glmYlm (E.41)

141



Appendix E: Active fluid dynamics on a sphere

up to the mode number lmax, which amounts to a total number of

Nl = (lmax + 1)2 (E.42)

harmonics modes. Finding the coefficients glm in this expansion can be generally formulated
as a least-square minimisation problem [170]:

min
glm∈R

Nk∑
k=1

G(ξk)−
lmax∑
l=0

l∑
m=−l

glmYlm(ξk)

2

. (E.43)

Taking the derivative of this expression with respect to the coefficients glm and setting it to
zero yields a (typically under-determined) linear system

lmax∑
l=0

l∑
m=−l

Nk∑
k=1

Ylm(ξk)Yl′m′(ξk)glm =
Nk∑
k=1

Yl′m′(ξk)G(ξk). (E.44)

The right-hand side of Eq. (E.44) defines a column vector G of length Nl. We denote the
column vector of the harmonic coefficients as g = {glm}T . Furthermore, we define a Nk×Nl

matrix (Y)k,(lm) = Ylm(ξk), such that the solution of Eq. (E.44) can be compactly written as

g =
[(

YT ·Y
)−1
·YT

]
·G. (E.45)

The operator in squared brackets represents the pseudo-inverse of Y, which only needs to
be calculated once for a given set of points ξk = (θk, ϕk) and maximum mode number lmax.
Both have been held fixed for the simulation results discussed in this thesis.

Harmonic projection of tensor valued fields

We now generalise the least-square fitting of a scalar function to tensor valued functions on
the sphere. For this, we consider tensor components of a traceless symmetric tensor Q̃ij(ξk) in
covariant coordinates with respect to the parametrisation of the unit sphere (Section A.3.2).
The values of Q̃ij(ξk) are given at the points ξk = (θk, ϕk) on the sphere. The goal is to
determine coefficients {q(1)

lm , q
(2)
lm} in an expansion

Q̃ij =
lmax∑
l=0

l∑
m=−l

(
q

(1)
lmΨ(lm)

ij + q
(2)
lmΦ(lm)

ij

)
, (E.46)
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where Ψ(lm)
ij and Φ(lm)

ij denote tensor spherical harmonics (Section B.1.3). The corresponding
least-square minimisation problem can be written as

min
q

(1)
lm
,q

(2)
lm
∈R

∑
k

Q̃ij(ξk)− lmax∑
l=0

l∑
m=−l

(
q

(1)
lmΨ(lm)

ij (ξk) + q
(2)
lmΦ(lm)

ij (ξk)
)

×

Q̃ij(ξk)− lmax∑
l=0

l∑
m=−l

(
q

(1)
lmΨ(lm),ij(ξk) + q

(2)
lmΦ(lm),ij(ξk)

) ,
(E.47)

where the covariant contractions ensure that the product is always positive. Taking the
derivative of this expression with respect to the expansion coefficients q(1)

lm and q
(2)
lm , we find

Nk∑
k=1

Ψ(l′m′),ij(ξk)
lmax∑
l=0

l∑
m=−l

(
q

(1)
lmΨ(lm)

ij (ξk) + q
(2)
lmΦ(lm)

ij (ξk)
)

=
Nk∑
k=1

Ψ(l′m′),ij(ξk)Qij(ξk) (E.48)

Nk∑
k=1

Φ(l′m′),ij(ξk)
lmax∑
l=0

l∑
m=−l

(
q

(1)
lmΨ(lm)

ij (ξk) + q
(2)
lmΦ(lm)

ij (ξk)
)

=
Nk∑
k=1

Φ(l′m′).ij(ξk)Qij(ξk). (E.49)

To avoid difficulties at the parametric poles θk ∈ {0, π}, where some of the components
Ψ(lm),θϕ and Φ(lm),θϕ diverge, we simply omit values of Q̃ij given at the pole coordinates
from the least square approximation.1

The right hand side of the system of equations (E.48) and (E.49) represents a column
vector Q of length 2(lmax + 1)2, where lmax is the maximum mode number we take into
account for the numerical approximation. We then define the column vector of unknown
coefficients q =

(
q

(1)
lm , q

(2)
lm

)T
, as well as a 2(lmax + 1)2 × 2(lmax + 1)2 matrix M given by

M =
(
MΨ MΨ,Φ

MT
Ψ,Φ MΦ

)
, (E.50)

1The divergences are spurious artefacts of the parametrisation of the unit sphere, for which eϕ vanishes and eϕ
becomes singular at the poles (see Eq (A.70)). Because of the latter, Q̃θϕ vanishes at the poles. The potentially
finite limit of the product Q̃θϕVθϕ,(lm) would need to be determined by an additional interpolation step at
the poles, if this point is included on the right-hand side of Eqs. (E.48) and (E.49). In fact, using simply all
points away from the pole for the least-square procedure and determining the harmonic expansion of Q̃ij , is
itself sufficient to calculate the values of Q̃θϕV(lm),θϕ at the poles, if needed.
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with

(MΨ)(l,m)(l′,m′) =
Nk∑
k=1

Ψ(l′m′),ij(ξk)Ψ
(lm)
ij (ξk)

= 2
Nk∑
k=1

(
Ψ(l′m′)
θθ (ξk)Ψ

(lm)
θθ (ξk) + Φ(l′m′)

θθ (ξk)Φ
(lm)
θθ (ξk)

)
(E.51)

(MΦ)(l,m)(l′,m′) =
Nk∑
k=1

Φ(l′m′),ij(ξk)Φ
(lm)
ij (ξk)

= (MΨ)(l,m)(l′,m′) (E.52)

(MΨ,Φ)(l,m)(l′,m′) =
Nk∑
k=1

Φ(l′m′),ij(ξk)Ψ
(lm)
ij (ξk)

= 2
Nk∑
k=1

(
Φ(l′m′)
θθ (ξk)Ψ

(lm)
θθ (ξk)−Ψ(l′m′)

θθ (ξk)Φ
(lm)
θθ (ξk)

)
. (E.53)

With this, the expansion coefficients q =
(
q

(1)
lm , q

(2)
lm

)T
can be determined from Eqs. (E.48) and

(E.49) as
q = M−1 ·Q. (E.54)

Similar to the pseudo-inverse of Y used for scalar harmonic expansion (Eq. (E.45)), the
matrix M−1 only needs to be calculated once for a given set of points ξk = (θk, ϕk) and
maximum mode number lmax.

E.3.2 Viscous surface dynamics

In the following, we describe in detail how the numerical results presented in Sections 3.2
and 3.3 have been obtained. In both models, the concentration field c is the only dynamic
variable and we have to solve the system of ordinary differential equations given in (3.23) for
the harmonic concentration modes. To this end, the harmonic expansion coefficients of the
advection term Alm have to be computed, which is done as follows. For a given concentration
field c, we first determine the coefficients flm for the stress-regulating function f(c) defined in
the harmonic expansion Eq. (3.17) using the least-square projection described in Sec. E.3.1.
Analytic solutions for the resulting surface flows have been derived in Section 3.1.3 in terms
of the harmonic expansion

vi =
∑
l,m

v
(1)
lmΨ(lm)

i , (E.55)

where v(1)
lm is given in Eq. (3.19). This solution also determines the solution of the interior and

exterior passive fluid flow problem via Eqs. (B.54)–(B.57) for coefficients given in Eqs. (B.59)–
(B.64) with v

(2)
lm = vrlm = 0.

In the next step, a representation of the nonlinear advection term in the space of spherical
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harmonics is obtained from

∇S̄ ·
(
cv‖

)
= v‖ · ∇S̄c+ c∇S̄ ·v‖, (E.56)

where the derivatives on the right-hand side can be computed spectrally from

∇S̄c =
∑
l,m

clmΨ(lm) (E.57)

∇S̄ ·v‖ = −
∑
l,m

v
(1)
lm l(l + 1)Ylm. (E.58)

These identities follow directly from Eqs. (B.17), (B.28), and (B.29). This determines
∇S̄ ·

(
cv‖

)
via the simple chain rule Eq. (E.56). Finally, we compute the projection

Alm = 1
R

∫
S̄
∇S̄ ·

(
cv‖

)
YlmdΩ, (E.59)

using the least-square procedure introduced in Section E.3.1. The dynamic equation of the
stress regulator Eq. (3.23) can then be solved, for which we use the explicit Runge-Kutta
(4,5) formula as implemented in Matlab [171].

E.3.3 Viscoelastic surface dynamics

In the following, we describe how the numerical results presented in Section 4.3 have been
obtained. The dynamic equation of the concentration field, Eq. (4.4), is solved numerically in
the same way as described Section E.3.2. The analytic solution for the surface flows needed
for this approach is on the viscoelastic surface with an interior passive fluid given by

vi =
∑
l,m

v
(1)
lmΨ(lm)

i + v
(2)
lmΦ(lm)

i (E.60)

with

v
(1)
lm = t

(0)
lm + [2− l(l + 1)] t(1)

lm + ξflm
2η−(2l + 1) (E.61)

v
(2)
lm = [2− l(l + 1)] t(2)

lm

2η−(l − 1) . (E.62)

The coefficients flm are defined as previously by a harmonic expansion of the stress-regulating
function f(c) =

∑
l,m flmYlm. The velocity modes v(2)

1,m correspond to full body rotations and
are set to zero.

The nonlinear dynamics of the viscoelastic tension tensor can be obtained as follows. We
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represent the general viscoelastic tension tensor in terms of tensor spherical harmonics1

tel
ij =

∑
l,m

(
t
(0)
lmη

(lm)
ij + t

(1)
lmΨ(lm)

ij + t
(2)
lmΦ(lm)

ij

)
. (E.63)

The general dynamics of the expansion coefficients in Eq. (E.63) is determined by

d

dt
t
(0)
lm = − 1

τM
t
(0)
lm − l(l + 1) ηb

τMR
v

(1)
lm −D

(0)
lm l ≥ 0 (E.64)

d

dt
t
(1)
lm = − 1

τM
t
(1)
lm + 2ηs

τMR
v

(1)
lm −D

(1)
lm l ≥ 2 (E.65)

d

dt
t
(2)
lm = − 1

τM
t
(2)
lm + 2ηs

τMR
v

(2)
lm −D

(2)
lm l ≥ 2. (E.66)

The coefficients D
(0)
lm , D(1)

lm and D
(2)
lm denote contributions from the nonlinear convected,

corotational derivative and are defined by

Dij = vk∇ktel
ij + ω k

i t
el
kj + ω k

j t
el
ki (E.67)

=
∑
l,m

(
D

(0)
lmη

(lm)
ij +D

(1)
lmΨ(lm)

ij +D
(2)
lmΦ(lm)

ij

)
. (E.68)

The remaining terms in Eqs. (E.64)–(E.66) are equivalent to the linearised expressions de-
termined in Section 4.2.1.

The coefficients D(0)
lm , required in Eq. (E.64) to determine the dynamics of t(0)

lm , are related
to the trace of Dij . Taking the trace of Eq. (E.67), we see that the latter can be determined
from

D i
i = vk∇ktel,i

i = 2
∑
l,m

t
(0)
lmv‖ ·Ψ(lm), (E.69)

where we have used gijη
(lm)
ij = 2Ylm, Ψ(lm)

i = ∂iYlm and vkΨ(lm)
k = v‖ ·Ψ(lm). The coeffi-

cients D(0)
lm are then given by

D
(0)
lm = 1

2

∫
D i
i YlmdΩ, (E.70)

which is computed using the least-square approach introduced in Section E.3.1.
The coefficients D(1)

lm and D(2)
lm in Eq. (E.68) are related to the traceless symmetric part of

Dij and have contributions from the convected derivative and from corotational terms. In
the following, we show how to determine D(1)

lm and D
(2)
lm in our framework.

Contributions from the convected derivative to the coefficients D(1)
lm and D(2)

lm

We now require the traceless part of the Maxwell tension tensor given by

t̃el
ij = tel

ij −
1
2 t

el,k
k gij (E.71)

1Tensor spherical harmonics are defined in Appendix B.1.3.
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and first discuss contributions from vk∇k t̃el
ij . To express them in terms of t(1)

lm and t
(2)
lm , we

consider a representation of t̃el
ij in the embedding Euclidean space in the form t̃el = t̃el

ijeiej ,
which is given on the unit sphere by

t̃el = t̃el
ijeiej

= t̃el
θθeθeθ + t̃Mϕϕeϕeϕ + t̃el

θϕ

(
eθeϕ + eϕeθ

)
= t̃el

θθēθēθ + t̃ϕϕēϕēϕ +
t̃el
θϕ

sin θ (ēθēϕ + ēϕēθ)

= t̃el
θθ (ēθēθ − ēϕēϕ) +

t̃el
θϕ

sin θ (ēθēϕ + ēϕēθ) , (E.72)

where we have used eθ = eθ = ēθ, eϕ = sin θ ēϕ and {ēθ, ēϕ} represents the tangential
normalised standard basis of spherical coordinates. The prefactor in the second term is
given by

t̃el
θϕ

sin θ =
∑
l,m

(
−t(1)

lmΦ(lm)
θθ + t

(2)
lmΨ(lm)

θθ

)
, (E.73)

which follows from Eqs. (B.37) and (B.39). With this, we can compute t̃el given by Eq. (E.72)
as a 3x3 matrix in a Cartesian basis with components

t̃el
αβ = ēα · t̃el · ēβ, (E.74)

where α, β ∈ {x, y, z}. Because Eq. (E.74) yields components of t̃el with respect to the fixed
Cartesian basis, the complete angular dependence of this tensor must be contained in the
scalar coefficients tαβ(θ, ϕ). Hence, we can represent t̃el in terms of scalar spherical harmonics
by

t̃el =
∑
α,β

∑
l,m

ēαēβt
(lm)
αβ Ylm, (E.75)

where the coefficients t(lm)
αβ are defined by the harmonic expansions of tαβ(θ, ϕ) and deter-

mined using the least-square harmonic projection (Section E.3.1). Finally, we use the general
definition of the covariant derivative of a tensor given by

∇itij = ei · ∂kt · ej . (E.76)
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For t = t̃el in the form Eq. (E.75), the partial derivative can be easily evaluated using
∂kYlm = Ψ(lm)

k . Therefore, we find for the convected derivative the representation

vk∇k t̃el
ij =

∑
l,m

{
t(lm)
xx (ei)x (ej)x + t(lm)

yy (ei)y (ej)y + t(lm)
zz (ei)z (ej)z

+ t(lm)
xy

[
(ei)x (ej)y + (ei)y (ej)x

]
+ t(lm)

xz

[
(ei)x (ej)z + (ei)z (ej)x

]
+t(lm)

yz

[
(ei)y (ej)z + (ei)z (ej)y

]}
v‖ ·Ψ(lm). (E.77)

Here, we have used that tαβ = tβα by definition Eq. (E.72) and (ei)α denotes the Carte-
sian components of the basis vectors on the sphere: eθ = ēθ and eϕ = sin θ ēϕ. From
Eqs. (E.72)–(E.77), we can obtain the covariant components of vk∇k t̃el

ij from the knowledge
of the coefficients t(1)

lm and t(2)
lm without the need to evaluate explicit spatial derivatives on the

surface.

Contributions from the corotational terms to the coefficients D(1)
lm and D(2)

lm

Contributions of the corotational terms ω k
i t

el
kj +ω k

j t
el
ki to D̃ij are obtained as follows. Using

the explicit form of the antisymmetric part of the strain rate tensor, ωij = (∇ivj −∇jvi) /2,
we first note that ∫

χ
(lm)
ij ωijdΩ =

∑
l′,m′

∫
Ylmv

(2)
l′m′ε

ij∇iΦ(l′m′)
j dΩ

=
∑
l′,m′

∫
Ylmv

(2)
l′m′ε

ijεkj∇i∇kYl′m′dΩ

=
∑
l′,m′

∫
Ylmv

(2)
l′m′g

ik∇i∇kYl′m′dΩ

= −l(l + 1)v(2)
(lm), (E.78)

which corresponds to the projection of ωij onto the antisymmetric tensor harmonics χ(lm)
ij =

Ylmεij . We can therefore write ωij = ωnεij with

ωn = −1
2
∑
lm

l(l + 1)v(2)
(lm)Ylm. (E.79)

The factor 1/2 appears because χ(lm)
ij is not normalised (see Eq. B.35). The remaining task is

to determine the independent components of the contractions ε ki t̃el
kj . For the ‘θθ’ component,
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we find (
ω k
i t

el
kj + ω k

j t
el
ki

)
θθ

= 2ωnε ϕθ t̃
el
ϕθ

= 2ωn
sin θ

∑
l,m

(
t
(1)
(lm)Ψ

(lm)
ϕθ + t

(2)
(lm)Φ

(lm)
ϕθ

)
= ωn

∑
l,m

(
−2t(1)

(lm)Φ
(lm)
θθ + 2t(2)

(lm)Ψ
(lm)
θθ

)
(E.80)

and the ‘θϕ’ component is given by(
ω k
i t̃

el
kj + ω k

j t̃
el
ki

)
θϕ

= ωnε
ϕ
θ t̃

el
ϕϕ + ωnε

θ
ϕ t̃

el
θθ

=
∑
l,m

ωn
(
−2t(1)

(lm)Φ
(lm)
θϕ + 2t(2)

(lm)Ψ
(lm)
θϕ

)
, (E.81)

where we have used εθϕ = sin θ, ε ϕθ = 1/ sin θ and Eqs. (B.37)–(B.39). From Eqs. (E.79)–
(E.81), we can numerically obtain the components of the corotational terms from the current
knowledge of the coefficients t(1)

lm and t
(2)
lm (v(2)

lm needed in Eq. (E.79) is given in Eq. (E.62)).
Therefore, we have completely determined Dij given in Eq. (E.67). Finally, we use the

least square projection for tensor spherical harmonics described in Section E.3.1 to compute
D

(1)
lm and D

(2)
lm , which are required to determine the dynamics of the coefficients t(1)

lm and t
(2)
lm

in Eqs. (E.65) and (E.66).
With this, we have determined all terms on the right-hand side of the dynamic Eqs. (E.64)–

(E.66) for the tension tensor modes. These are solved together with the dynamic equation of
the stress regulator Eq. (3.23) using the explicit Runge-Kutta (4,5) formula as implemented
in Matlab [171].
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G. Salbreux, F. Jülicher, and S. Eaton. Interplay of cell dynamics and epithelial tension during
morphogenesis of the Drosophila pupal wing. eLife, 4 (2015)
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Active elastic thin shell theory for cellular deformations. New J. Phys., 16(6): 065005 (2014)
[116] B. He, K. Doubrovinski, O. Polyakov, and E. Wieschaus. Apical constriction drives tissue-scale

hydrodynamic flow to mediate cell elongation. Nature, 508(7496): 392–396 (2014)
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