1,277 research outputs found

    Bifurcation sequences in the symmetric 1:1 Hamiltonian resonance

    Full text link
    We present a general review of the bifurcation sequences of periodic orbits in general position of a family of resonant Hamiltonian normal forms with nearly equal unperturbed frequencies, invariant under Z2×Z2Z_2 \times Z_2 symmetry. The rich structure of these classical systems is investigated with geometric methods and the relation with the singularity theory approach is also highlighted. The geometric approach is the most straightforward way to obtain a general picture of the phase-space dynamics of the family as is defined by a complete subset in the space of control parameters complying with the symmetry constraint. It is shown how to find an energy-momentum map describing the phase space structure of each member of the family, a catastrophe map that captures its global features and formal expressions for action-angle variables. Several examples, mainly taken from astrodynamics, are used as applications.Comment: 36 pages, 10 figures, accepted on International Journal of Bifurcation and Chaos. arXiv admin note: substantial text overlap with arXiv:1401.285

    On the detuned 2:4 resonance

    Get PDF
    We consider families of Hamiltonian systems in two degrees of freedom with an equilibrium in 1:2 resonance. Under detuning, this "Fermi resonance" typically leads to normal modes losing their stability through period-doubling bifurcations. For cubic potentials this concerns the short axial orbits and in galactic dynamics the resulting stable periodic orbits are called "banana" orbits. Galactic potentials are symmetric with respect to the co-ordinate planes whence the potential -- and the normal form -- both have no cubic terms. This Z2×Z2\mathbb{Z}_2 \times \mathbb{Z}_2-symmetry turns the 1:2 resonance into a higher order resonance and one therefore also speaks of the 2:4 resonance. In this paper we study the 2:4 resonance in its own right, not restricted to natural Hamiltonian systems where H=T+VH = T + V would consist of kinetic and (positional) potential energy. The short axial orbit then turns out to be dynamically stable everywhere except at a simultaneous bifurcation of banana and "anti-banana" orbits, while it is now the long axial orbit that loses and regains stability through two successive period-doubling bifurcations.Comment: 31 pages, 7 figures: On line first on Journal of Nonlinear Science (2020

    An energy-momentum map for the time-reversal symmetric 1:1 resonance with Z_2 X Z_2 symmetry

    Full text link
    We present a general analysis of the bifurcation sequences of periodic orbits in general position of a family of reversible 1:1 resonant Hamiltonian normal forms invariant under Z2×Z2\Z_2\times\Z_2 symmetry. The rich structure of these classical systems is investigated both with a singularity theory approach and geometric methods. The geometric approach readily allows to find an energy-momentum map describing the phase space structure of each member of the family and a catastrophe map that captures its global features. Quadrature formulas for the actions, periods and rotation number are also provided.Comment: 22 pages, 3 figures, 1 tabl

    On local and global aspects of the 1:4 resonance in the conservative cubic H\'enon maps

    Get PDF
    We study the 1:4 resonance for the conservative cubic H\'enon maps C±\mathbf{C}_\pm with positive and negative cubic term. These maps show up different bifurcation structures both for fixed points with eigenvalues ±i\pm i and for 4-periodic orbits. While for C\mathbf{C}_- the 1:4 resonance unfolding has the so-called Arnold degeneracy (the first Birkhoff twist coefficient equals (in absolute value) to the first resonant term coefficient), the map C+\mathbf{C}_+ has a different type of degeneracy because the resonant term can vanish. In the last case, non-symmetric points are created and destroyed at pitchfork bifurcations and, as a result of global bifurcations, the 1:4 resonant chain of islands rotates by π/4\pi/4. For both maps several bifurcations are detected and illustrated.Comment: 21 pages, 13 figure

    Uniform approximations for non-generic bifurcation scenatios including bifurcations of ghost orbits

    Full text link
    Gutzwiller's trace formula allows interpreting the density of states of a classically chaotic quantum system in terms of classical periodic orbits. It diverges when periodic orbits undergo bifurcations, and must be replaced with a uniform approximation in the vicinity of the bifurcations. As a characteristic feature, these approximations require the inclusion of complex ``ghost orbits''. By studying an example taken from the Diamagnetic Kepler Problem, viz. the period-quadrupling of the balloon-orbit, we demonstrate that these ghost orbits themselves can undergo bifurcations, giving rise to non-generic complicated bifurcation scenarios. We extend classical normal form theory so as to yield analytic descriptions of both bifurcations of real orbits and ghost orbit bifurcations. We then show how the normal form serves to obtain a uniform approximation taking the ghost orbit bifurcation into account. We find that the ghost bifurcation produces signatures in the semiclassical spectrum in much the same way as a bifurcation of real orbits does.Comment: 56 pages, 21 figure, LaTeX2e using amsmath, amssymb, epsfig, and rotating packages. To be published in Annals of Physic

    Signatures of classical bifurcations in the quantum scattering resonances of dissociating molecules

    Full text link
    A study is reported of the quantum scattering resonances of dissociating molecules using a semiclassical approach based on periodic-orbit theory. The dynamics takes place on a potential energy surface with an energy barrier separating two channels of dissociation. Above the barrier, the unstable symmetric-stretch periodic orbit may undergo a supercritical pitchfork bifurcation, leading to a classically chaotic regime. Signatures of the bifurcation appear in the spectrum of resonances, which have a shorter lifetime than classically expected. A method is proposed to evaluate semiclassically the energy and lifetime of the quantum resonances in this intermediate regime

    Quadratic Volume-Preserving Maps: Invariant Circles and Bifurcations

    Full text link
    We study the dynamics of the five-parameter quadratic family of volume-preserving diffeomorphisms of R^3. This family is the unfolded normal form for a bifurcation of a fixed point with a triple-one multiplier and also is the general form of a quadratic three-dimensional map with a quadratic inverse. Much of the nontrivial dynamics of this map occurs when its two fixed points are saddle-foci with intersecting two-dimensional stable and unstable manifolds that bound a spherical ``vortex-bubble''. We show that this occurs near a saddle-center-Neimark-Sacker (SCNS) bifurcation that also creates, at least in its normal form, an elliptic invariant circle. We develop a simple algorithm to accurately compute these elliptic invariant circles and their longitudinal and transverse rotation numbers and use it to study their bifurcations, classifying them by the resonances between the rotation numbers. In particular, rational values of the longitudinal rotation number are shown to give rise to a string of pearls that creates multiple copies of the original spherical structure for an iterate of the map.Comment: 53 pages, 29 figure

    Standing wave instabilities in a chain of nonlinear coupled oscillators

    Full text link
    We consider existence and stability properties of nonlinear spatially periodic or quasiperiodic standing waves (SWs) in one-dimensional lattices of coupled anharmonic oscillators. Specifically, we consider Klein-Gordon (KG) chains with either soft (e.g., Morse) or hard (e.g., quartic) on-site potentials, as well as discrete nonlinear Schroedinger (DNLS) chains approximating the small-amplitude dynamics of KG chains with weak inter-site coupling. The SWs are constructed as exact time-periodic multibreather solutions from the anticontinuous limit of uncoupled oscillators. In the validity regime of the DNLS approximation these solutions can be continued into the linear phonon band, where they merge into standard harmonic SWs. For SWs with incommensurate wave vectors, this continuation is associated with an inverse transition by breaking of analyticity. When the DNLS approximation is not valid, the continuation may be interrupted by bifurcations associated with resonances with higher harmonics of the SW. Concerning the stability, we identify one class of SWs which are always linearly stable close to the anticontinuous limit. However, approaching the linear limit all SWs with nontrivial wave vectors become unstable through oscillatory instabilities, persisting for arbitrarily small amplitudes in infinite lattices. Investigating the dynamics resulting from these instabilities, we find two qualitatively different regimes for wave vectors smaller than or larger than pi/2, respectively. In one regime persisting breathers are found, while in the other regime the system rapidly thermalizes.Comment: 57 pages, 21 figures, to be published in Physica D. Revised version: Figs. 5 and 12 (f) replaced, some new results added to Sec. 5, Sec.7 (Conclusions) extended, 3 references adde
    corecore