1,449 research outputs found

    Mesa-type patterns in the one-dimensional Brusselator and their stability

    Full text link
    The Brusselator is a generic reaction-diffusion model for a tri-molecular chemical reaction. We consider the case when the input and output reactions are slow. In this limit, we show the existence of KK-periodic, spatially bi-stable structures, \emph{mesas}, and study their stability. Using singular perturbation techniques, we find a threshold for the stability of KK mesas. This threshold occurs in the regime where the exponentially small tails of the localized structures start to interact. By comparing our results with Turing analysis, we show that in the generic case, a Turing instability is followed by a slow coarsening process whereby logarithmically many mesas are annihilated before the system reaches a steady equilibrium state. We also study a ``breather''-type instability of a mesa, which occurs due to a Hopf bifurcation. Full numerical simulations are shown to confirm the analytical results.Comment: to appear, Physica

    Parameter domains for Turing and stationary flow-distributed waves: I. The influence of nonlinearity

    Get PDF
    new type of instability in coupled reaction-diffusion-advection systems is analysed in a one-dimensional domain. This instability, arising due to the combined action of flow and diffusion, creates spatially periodic stationary waves termed flow and diffusion-distributed structures (FDS). Here we show, via linear stability analysis, that FDS are predicted in a considerably wider domain and are more robust (in the parameter domain) than the classical Turing instability patterns. FDS also represent a natural extension of the recently discovered flow-distributed oscillations (FDO). Nonlinear bifurcation analysis and numerical simulations in one-dimensional spatial domains show that FDS also have much richer solution behaviour than Turing structures. In the framework presented here Turing structures can be viewed as a particular instance of FDS. We conclude that FDS should be more easily obtainable in chemical systems than Turing (and FDO) structures and that they may play a potentially important role in biological pattern formation

    Turing instabilities in general systems

    Get PDF
    We present necessary and sufficient conditions on the stability matrix of a general n(S2)-dimensional reaction-diffusion system which guarantee that its uniform steady state can undergo a Turing bifurcation. The necessary (kinetic) condition, requiring that the system be composed of an unstable (or activator) and a stable (or inhibitor) subsystem, and the sufficient condition of sufficiently rapid inhibitor diffusion relative to the activator subsystem are established in three theorems which form the core of our results. Given the possibility that the unstable (activator) subsystem involves several species (dimensions), we present a classification of the analytically deduced Turing bifurcations into p (1 h p h (n m 1)) different classes. For n = 3 dimensions we illustrate numerically that two types of steady Turing pattern arise in one spatial dimension in a generic reaction-diffusion system. The results confirm the validity of an earlier conjecture [12] and they also characterise the class of so-called strongly stable matrices for which only necessary conditions have been known before [23, 24]. One of the main consequences of the present work is that biological morphogens, which have so far been expected to be single chemical species [1-9], may instead be composed of two or more interacting species forming an unstable subsystem

    Instabilities and Patterns in Coupled Reaction-Diffusion Layers

    Full text link
    We study instabilities and pattern formation in reaction-diffusion layers that are diffusively coupled. For two-layer systems of identical two-component reactions, we analyze the stability of homogeneous steady states by exploiting the block symmetric structure of the linear problem. There are eight possible primary bifurcation scenarios, including a Turing-Turing bifurcation that involves two disparate length scales whose ratio may be tuned via the inter-layer coupling. For systems of nn-component layers and non-identical layers, the linear problem's block form allows approximate decomposition into lower-dimensional linear problems if the coupling is sufficiently weak. As an example, we apply these results to a two-layer Brusselator system. The competing length scales engineered within the linear problem are readily apparent in numerical simulations of the full system. Selecting a 2\sqrt{2}:1 length scale ratio produces an unusual steady square pattern.Comment: 13 pages, 5 figures, accepted for publication in Phys. Rev.

    Bifurcation Analysis of Reaction Diffusion Systems on Arbitrary Surfaces

    Full text link
    In this paper we present computational techniques to investigate the solutions of two-component, nonlinear reaction-diffusion (RD) systems on arbitrary surfaces. We build on standard techniques for linear and nonlinear analysis of RD systems, and extend them to operate on large-scale meshes for arbitrary surfaces. In particular, we use spectral techniques for a linear stability analysis to characterize and directly compose patterns emerging from homogeneities. We develop an implementation using surface finite element methods and a numerical eigenanalysis of the Laplace-Beltrami operator on surface meshes. In addition, we describe a technique to explore solutions of the nonlinear RD equations using numerical continuation. Here, we present a multiresolution approach that allows us to trace solution branches of the nonlinear equations efficiently even for large-scale meshes. Finally, we demonstrate the working of our framework for two RD systems with applications in biological pattern formation: a Brusselator model that has been used to model pattern development on growing plant tips, and a chemotactic model for the formation of skin pigmentation patterns. While these models have been used previously on simple geometries, our framework allows us to study the impact of arbitrary geometries on emerging patterns.Comment: This paper was submitted at the Journal of Mathematical Biology, Springer on 07th July 2015, in its current form (barring image references on the last page and cosmetic changes owning to rebuild for arXiv). The complete body of work presented here was included and defended as a part of my PhD thesis in Nov 2015 at the University of Ber
    • …
    corecore