36 research outputs found

    Bidirectional User Throughput Maximization Based on Feedback Reduction in LiFi Networks

    Get PDF
    Channel adaptive signalling, which is based on feedback, can result in almost any performance metric enhancement. Unlike the radio frequency (RF) channel, the optical wireless communications (OWCs) channel is fairly static. This feature enables a potential improvement of the bidirectional user throughput by reducing the amount of feedback. Light-Fidelity (LiFi) is a subset of OWCs, and it is a bidirectional, high-speed and fully networked wireless communication technology where visible light and infrared are used in downlink and uplink respectively. In this paper, two techniques for reducing the amount of feedback in LiFi cellular networks are proposed, i) Limited-content feedback (LCF) scheme based on reducing the content of feedback information and ii) Limited-frequency feedback (LFF) based on the update interval scheme that lets the receiver to transmit feedback information after some data frames transmission. Furthermore, based on the random waypoint (RWP) mobility model, the optimum update interval which provides maximum bidirectional user equipment (UE) throughput, has been derived. Results show that the proposed schemes can achieve better average overall throughput compared to the benchmark one-bit feedback and full-feedback mechanisms.Comment: 30 pages, 9 figures, submitted to IEEE Transactions on Communication

    Analysis of random orientation and user mobility in LiFi networks

    Get PDF
    Mobile data traffic is anticipated to surpass 49 exabyte per month by 2021. Smartphones, as the main factor of generating this huge data traffic (86%), are expected to require average speed connection of 20 Mbps by 2021. Light-fidelity (LiFi) is a novel bidirectional, high-speed and fully networked optical wireless communication and it is a promising solution to undertake this huge data traffic. However, to support seamless connectivity in LiFi networks, real-time knowledge of channel state information (CSI) from each user is required at the LiFi access point (AP). The CSI availability enables us to achieve optimal resource allocation and throughput maximization but it requires feedback transmitted through the uplink channel. Furthermore, the important aspects of the indoor LiFi channel such as the random orientation of user device, user mobility and link blockage need to be carefully analysed and effective solutions should be developed. In contrast to radio frequency (RF) channels, the LiFi channel is relatively less random. This feature of LiFi channel enables a potential reduction in the amount of feedback required to achieve high throughputs in a dynamic LiFi network. Based on this feature, two techniques for reducing the amount of feedback in LiFi cellular networks are proposed: 1) limited-content feedback scheme based on reducing the content of feedback information and 2) limited-frequency feedback scheme based on the update interval. It is shown that these limited-feedback schemes can provide almost the same downlink performance as full feedback scheme. Furthermore, an optimum update interval which provides maximum bidirectional user equipment (UE) throughput, has been derived. Device orientation and its statistics is an important determinant factor that can affect the users throughput remarkably in LiFi networks. However, device orientation has been ignored in many previous performance studies of LiFi networks due to the lack of a proper statistical model. In this thesis, a novel model for the orientation of user device are proposed based on experimental measurements. The statistics of the device orientation for both sitting and walking activities are presented. Moreover, the statistics of the line-of-sight (LOS) channel gain are calculated. The influence of random device orientation on the received signal-to-noise-ratio (SNR) and bit-error ratio (BER) performance of LiFi systems has been also evaluated. To support the seamless connectivity of future LiFi-enabled devices in the presence of random device orientation, mobility and blockage, efficient handover between APs are required. In this thesis, an orientation-based random waypoint (ORWP) mobility model is proposed to analyze the performance of mobile users considering the effect of random device orientation. Based on this model, an analysis of handover due to random orientation and user mobility is presented. Finally, in order to improve seamless connectivity, a multi-directional receiver (MDR) configuration is proposed. The MDR configuration shows a robust performance in the presence of user mobility, random device orientation and blockage

    Impact of Device Orientation on Error Performance of LiFi Systems

    Get PDF
    Most studies on optical wireless communications (OWCs) have neglected the effect of random orientation in their performance analysis due to the lack of a proper model for the random orientation. Our recent empirical-based research illustrates that the random orientation follows a Laplace distribution for a static user equipment (UE). In this paper, we analyze the device orientation and assess its importance on system performance. The reliability of an OWC channel highly depends on the availability and alignment of line-of-sight (LOS) links. In this study, the effect of receiver orientation including both polar and azimuth angles on the LOS channel gain are analyzed. The probability of establishing a LOS link is investigated and the probability density function (PDF) of signal-to-noise ratio (SNR) for a randomly-oriented device is derived. By means of the PDF of SNR, the bit-error ratio (BER) of DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM) in additive white Gaussian noise (AWGN) channels is evaluated. A closed-form approximation for the BER of UE with random orientation is presented which shows a good match with Monte-Carlo simulation results. Furthermore, the impact of the UE's random motion on the BER performance has been assessed. Finally, the effect of random orientation on the average signal-to-interference-plus-noise ratio (SINR) in a multiple access points (APs) scenario is investigated.Comment: 10 pages, 11 figures, journa

    Multi-Hop Wireless Optical Backhauling for LiFi Attocell Networks: Bandwidth Scheduling and Power Control

    Get PDF
    The backhaul of hundreds of light fidelity (LiFi) base stations (BSs) constitutes a major challenge. Indoor wireless optical backhauling is a novel approach whereby the interconnections between adjacent LiFi BSs are provided by way of directed line-of-sight (LOS) wireless infrared (IR) links. Building on the aforesaid approach, this paper presents the top-down design of a multi-hop wireless backhaul configuration for multi-tier optical attocell networks by proposing the novel idea of super cells. Such cells incorporate multiple clusters of attocells that are connected to the core network via a single gateway based on multi-hop decode-and-forward (DF) relaying. Consequently, new challenges arise for managing the bandwidth and power resources of the bottleneck backhaul. By putting forward user-based bandwidth scheduling (UBS) and cell-based bandwidth scheduling (CBS) policies, the system-level modeling and analysis of the end-to-end multi-user sum rate is elaborated. In addition, optimal bandwidth scheduling under both UBS and CBS policies are formulated as constrained convex optimization problems, which are solved by using the projected subgradient method. Furthermore, the transmission power of the backhaul system is opportunistically reduced by way of an innovative fixed power control (FPC) strategy. The notion of backhaul bottleneck occurrence (BBO) is introduced. An accurate approximate expression of the probability of BBO is derived, and then verified using Monte Carlo simulations. Several insights are provided into the offered gains of the proposed schemes through extensive computer simulations, by studying different aspects of the performance of super cells including the average sum rate, the BBO probability and the backhaul power efficiency (PE).Comment: 36 pages, 21 figures, 1 tabl

    Li-Fi technology-based long-range FSO data transmit system evaluation

    Get PDF
    Visible light is used by a technology known as Light Fidelity to establish wireless internet connections very quickly. This article offers line-of-sight communication between the transmitter and receiver using LED technology. Li-Fi technology is a method that transmits data using LED light, which is faster and more efficient than Wi-Fi. Since it is practically ubiquitous, light can be used for communication as well. A cutting-edge technology called optical communication includes a subset called Li-Fi. By sending out visible light, the Li-Fi device enables wireless intranet communication. An in-depth study and analysis of Li-Fi, a novel technology that transmits data at high speeds over a wide spectrum by using light as a medium of transmission

    Physical Layer Security for Visible Light Communication Systems:A Survey

    Get PDF
    Due to the dramatic increase in high data rate services and in order to meet the demands of the fifth-generation (5G) networks, researchers from both academia and industry are exploring advanced transmission techniques, new network architectures and new frequency spectrum such as the visible light spectra. Visible light communication (VLC) particularly is an emerging technology that has been introduced as a promising solution for 5G and beyond. Although VLC systems are more immune against interference and less susceptible to security vulnerabilities since light does not penetrate through walls, security issues arise naturally in VLC channels due to their open and broadcasting nature, compared to fiber-optic systems. In addition, since VLC is considered to be an enabling technology for 5G, and security is one of the 5G fundamental requirements, security issues should be carefully addressed and resolved in the VLC context. On the other hand, due to the success of physical layer security (PLS) in improving the security of radio-frequency (RF) wireless networks, extending such PLS techniques to VLC systems has been of great interest. Only two survey papers on security in VLC have been published in the literature. However, a comparative and unified survey on PLS for VLC from information theoretic and signal processing point of views is still missing. This paper covers almost all aspects of PLS for VLC, including different channel models, input distributions, network configurations, precoding/signaling strategies, and secrecy capacity and information rates. Furthermore, we propose a number of timely and open research directions for PLS-VLC systems, including the application of measurement-based indoor and outdoor channel models, incorporating user mobility and device orientation into the channel model, and combining VLC and RF systems to realize the potential of such technologies
    corecore