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Abstract—Owing to the non-overlapping spectrum, Light fi-
delity (LiFi) and WiFi technologies can coexist and form a hetero-
geneous LiFi WiFi network (HLWN). The performance of HLWN
significantly depends upon the load balancing strategies. Since
load balancing of HLWN is a non-convex mixed-integer nonlinear
programming (MINLP) optimization problem, it is mathemati-
cally intractable, and therefore, the conventional optimization
methods fail to provide an optimal global solution. Although an
optimal solution can be obtained using the exhaustive search
method, it would be computationally complex. Therefore, in this
paper, a reinforcement learning (RL) based algorithm is explored
for solving the load balancing problem for the downlink HLWN
at reasonably low complexity and near optimal performance.
We have proposed three different reward functions for RL;
the first and second reward functions work toward maximizing
average network throughput and user satisfaction, respectively.
The third reward function is designed to maximize the long-term
system throughput and ensure at least 50% user’s satisfaction
for all users. In order to study the effects of link aggregation
on system performance, this work considers two different types
of receiver schemes, namely, single access point (SAP) and link
aggregation (LA) scheme. While the SAP allows the user to
receive data only from a single AP, the LA scheme allows the
user to receive data simultaneously from both LiFi and WiFi
AP. This paper also includes effect of random orientation of
the receiver device and handover overhead. Further, concepts of
domain knowledge have been included in this work to reduce
the computational complexity of the algorithm. The proposed
system performance is compared with the two benchmarks:
received signal strength (RSS) and exhaustive search based on
the computational complexity, average system throughput, and
user satisfaction. It is shown that the proposed RL scheme
outperforms the RSS scheme in average system throughput and
user satisfaction. The RL scheme with an appropriate reward
function provides a matching performance to the exhaustive
search at reasonably low complexity.

Index Terms—Heterogeneous LiFi WiFi network (HLWN),
Light Fidelity (LiFi), Load balancing (LB), Link aggregation,
Reinforcement Learning (RL), mixed-integer nonlinear program-
ming (MINLP), Reward Shaping.

I. INTRODUCTION

Due to Covid 19 pandemic, a 20% increase in the network
traffic has been observed in the telecommunication industry as
compared to pre-pandemic era [1]. With the on-going situation,
this network traffic is further likely to increase and to support
this growing future data requirement, many researchers are
investigating the visible light communication (VLC) for the
indoor environment. In VLC, information is transmitted using
light emitting diodes (LEDs), by modulating the intensity
of light. At the receiver, a photodetector (PD) converts the
received optical signal into equivalent electrical signal. VLC

offers inherent security, cheaper installation, immunity against
electromagnetic interference, and huge spectrum in unlicensed
band. Furthermore, unlike radio frequency (RF) counterparts,
VLC does not cause health hazards and it provides high spatial
reuse [2, 3]. Light fidelity (LiFi) is the wireless networking
extension of the point-to-point VLC, which is capable of
supporting a fully networked, bidirectional, and high-speed
wireless communication. The universal availability of LEDs,
license-free deployment and data rate of Gbps order, makes
LiFi an attractive and inexpensive choice for indoor com-
munications [4]. However, since light-wave cannot penetrate
through opaque objects, LiFi suffers from a major drawback
of blockage. Hence, the LiFi user’s throughput fluctuates
spatially, this results into various coverage holes in an indoor
LiFi environment. LiFi can support high data rates when the
receiver is in direct line-of-sight (LoS), but as soon as the
LoS connection is lost, the data rate drops significantly; in
comparison, WiFi can support moderate data rates with more
ubiquitous coverage.
LiFi and WiFi technologies can coexist together and comple-
ment each other because of their non overlapping spectrum.
In [5], it has been shown that a hybrid LiFi WiFi network
(HLWN) provides higher system throughput as compared to
standalone LiFi or WiFi networks. An appropriately designed
HLWN can support higher data rate, better user satisfaction,
outage performance, and lower handover rates [2].
For HLWN, load balancing (LB) is challenging as LiFi’s
and WiFi’s coverage areas overlap with each other and WiFi
covers larger area but has lower capacity; this increases the
complexity of access point (AP) selection process. If the
conventional received signal strategy (RSS) is applied for AP
assignment in HLWN, WiFi AP will be susceptible to over-
load, and the system would not be able to ensure the required
quality of service (QoS). A central control unit is required for
efficient load balancing in HLWN [2]. The problem of load
balancing in HLWN is a mixed-integer nonlinear programming
(MINLP) problem. Furthermore, it must be noted that the
problem of throughput maximization in HLWN is neither
concave nor convex in binary connection variable [6, 7],
therefore, the conventional optimization algorithms fail to
find a global optimum for this problem. Hence, researchers
have started exploring machine learning based solution for
the aforementioned problem. The next subsection discusses
the relevant literature related to LB in HLWNs.
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A. Related Work

Various methods have been applied to solve the problem of
LB in HLWNs, they can be broadly classified into following
categories: optimization [6], machine learning [7–11] and
fuzzy logic [12]. Limited studies have explored the application
of machine learning for solving the LB problem in HLWN.
In [7], the authors have proposed a deep Q-network learning
based algorithm to solve the joint optimization problem of
bandwidth, power and user association in HLWNs. They have
also incorporated the concept of idle APs and transfer learning
in their work. However, in their work they have focused
on the data rate maximization and ignored user satisfaction,
which is an equally important metric for a network perfor-
mance. Additionally, they have not considered the effect of
handover overheads and carrier-sense multiple access with
collision avoidance (CSMA/CA) medium access of WiFi, in
their work. In [8], authors utilized the context information of
asymmetric uplink and downlink performance requirements
of traffic for making the decision of network selection. This
work considered instantaneous uplink and downlink through-
put as their reward function. In [9], authors presented multi-
armed bandit based AP selection strategies for HLWN, they
modified decision probability distribution based upon two
different algorithms: exponential weights for exploration and
exploitation and exponentially weighted algorithm with linear
programming. In our previous work [10], we have applied
reinforcement learning (RL) for AP assignment in HLWN
and reported promising results, but we assumed a simplistic
system model. We assumed time-division multiple access, and
assumed that a user can connect to single AP, i.e. it can
either connect to WiFi AP or LiFi AP at a time. Furthermore,
we did not considered the effect of receiver orientation or
handover overhead in our previous system model. However, in
current work the effect of link aggregation and different reward
functions is studied. Further, concept of domain knowledge
has been exploited to reduce the complexity of the proposed
system. Additionally, in current paper, we have considered
a more realistic framework for modeling the HLWN with
CSMA/CA and handover overhead.

All of the above mentioned works are based on the assump-
tion that a user is allowed to connected to a single AP at a time,
limited literature covers the aggregation of LiFi WiFi links in
a HLWN [11, 13–16]. In [11], authors proposed the concept
of responsive and anticipatory association, the associations
were established based on users geo-locations and queue
backlog states. Their objective was to find the optimal trade-
off between the average system queue backlog and the average
per-user throughput. In [13, 14], authors have implemented
channel aggregation for HLWN, and demonstrated proof-of-
concept by using state-of-the-art LiFi and WiFi frontends.
Both of these works focused on practical demonstration and
employed AP assignment based on the received signal strength
and ignored the effect of AP overloading. In [15], authors have
proposed an online two-timescale power allocation algorithm
for users with multi-homing capability that allows the users to
aggregate the resources from both RF and LiFi APs. However,
they have not considered the effect of interference between
LiFi APs. Further, they implemented Q-learning based meth-
ods and compared their results only with stand-alone LiFi and

WiFi AP, whereas in the current work policy-gradient based
method has been implemented. In [16], the authors utilized
Lyapunov optimization function for determining the optimal
scheduling based on queue lengths for achieving the desired
throughput. The authors have practically validated the perfor-
mance of proposed protocol by implementing it on a real-life
prototype. Their focus was on queue length-based scheduling
algorithm to achieve optimal throughput. On the other hand,
the current proposed work focuses on optimal AP assignment
for a higher average network throughput while ensuring a par-
ticular user satisfaction. There are various research gaps in the
above-mentioned works. Firstly, these works did not compare
their results with two benchmarks RSS and exhaustive search
method which has been done in the current work. Secondly,
the current work also compares the performance of the system
without and with link aggregation which was missing in most
of the previous studies. Thirdly, the current work considers
a more realistic scenario with effect of handover overhead,
interference between neighbouring LiFi APs, user mobility and
receiver device orientation. Additionally, in the current work,
three different reward functions for different objectives have
been explored, whereas most of the existing research works
have explored only single reward function. Finally, in order to
reduce the complexity of RL algorithm the concept of domain
knowledge has been exploited in the current work.

B. Motivation and Main Contributions

Motivated by earlier works to study link aggregation ef-
fect on HLWN performance, two different types of receiver,
namely, single AP (SAP) and link aggregation (LA) receiver,
are considered in this work. The SAP receiver will allow users
to receive data from either a LiFi or WiFi AP, whereas the
LA receiver will allow users to receive data simultaneously
from both LiFi and WiFi APs. For LA user, it is assumed that
the physical and medium access layer of WiFi receiver and
LiFi receiver will work independently [14]. Furthermore, in
literature, it has been proven that load balancing of HLWN is
non-convex MINLP problem [6, 7] which is mathematically
intractable, thus, the conventional optimization algorithms can
not find the global optimum solution for this kind of problem.
Therefore, to overcome this limitation of the conventional
optimization algorithm, we have proposed a centralized RL
algorithm to perform LB in a HLWN. The RL algorithm de-
termines its actions based on online-learning from the HLWN
environment. Moreover, the effect of different reward functions
on the proposed algorithm’s performance is also studied in this
work. The concepts of domain knowledge have been exploited
to reduce the algorithm’s computational complexity. It has
been shown that RL based LB in a HLWN with an appropriate
reward function provides significantly improved performance.

The main contributions of this paper are summarized as
follows:
• Two different types of receivers, namely SAP and LA,

have been considered to study the effect of link aggre-
gation on the performance of HLWNs. A user equipped
with a SAP receiver device can receive data from a single
AP at a time, whereas a LA receiver equipped user can
receive data simultaneously from both LiFi and WiFi
APs.
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• We have proposed a centralized RL based algorithm for
dynamic LB in HLWN, and to prove the generalization
of the proposed RL algorithm: three different reward
functions have been considered, as explained in III-3 and
their effect have been investigated on the average sum
throughput and user satisfaction.

• A more realistic framework with orientation-based ran-
dom waypoint (ORWP) mobility model, CSMA/CA-
based multi-user access, and handover overhead has been
considered in this work.

• Furthermore, the concepts of domain knowledge have
been utilized to reduce the observation and action space,
which reduces the RL algorithm complexity.

• The proposed RL scheme is compared against the RSS
and exhaustive search method, explained in section III-A.
The results are presented in terms of computational
complexity, average network throughput, and user satis-
faction.

The rest of the paper is organized as follow: Section II
describes the system model and Section III introduces the
proposed RL based LB method. The performance evaluation
and discussion are presented in Section IV, and the paper is
concluded in Section V.

II. SYSTEM MODEL

In this paper, a typical office room of 5 × 5 × 3 m3 with
multi-user HLWN is considered, as shown in Fig. 1. The
coverage area of WiFi AP is assumed to be around 10 m,
whereas the coverage area of each LiFi AP is limited to few
meters. A central controller (CC) unit is required for efficient
utilization of the HLWN [2]. In this work, it is assumed that
a CC is connected to both WiFi and LiFi APs through an
error-free feedback link and it is responsible for making the
load balancing decisions. Furthermore, in order to study the
effect of link aggregation, two different types of receiver are
considered in this work, (1) SAP scheme which allows each
user to receive data from a single AP, and (2) LA scheme
which allows user to receive data simultaneously from both
LiFi and WiFi AP. It is important to note that, although
LA receiver, allows the user to simultaneously receive data
from both LiFi and WiFi AP, but the CC can still decide to
connect a LA user to only a LiFi/WiFi AP in order to avoid
unnecessary overloading on a particular AP. Furthermore, the
users are assumed to be accessing the high definition (HD)
videos from the internet, hence their require data rates are
modeled as a Poisson process with the parameter value of 70
Mbps. Moreover, in order to have a more realistic framework,
the ORWP mobility model and CSMA/CA [17] based multi-
user access have been considered in this work.

In the HLWN, the set of users is denoted by U = {µ|µ ∈
[1, Nu]}. The set of LiFi APs is denoted by LAP = {α|α ∈
[1, NAP-LiFi]} and WiFi AP is denoted as W. The complete
AP set is given by AP = {W,LAP}. The total number
of APs and users present in the system are represented by
NAP = NAP-LiFi +NAP-WiFi and Nu, respectively. The LA user
is capable of receiving data from both LiFi and WiFi AP si-
multaneously, therefore, let α1 ∈ {0,W} and α2 ∈ {0,LAP}
indicate the LA users connection with WiFi and LiFi AP
respectively. The value α1 = 0 means the user is not connected

5 m

5 m

3 m

: WiFi AP

: LiFi AP

: Users

Controller

: User connected to LiFi AP

: User connected to WiFi AP

: Users route

Fig. 1: Schematic diagram of a HLWN.

to the WiFi AP, similarly, α2 = 0 denotes the user is not
connected to any LiFi AP.

A. LiFi Channel Model

The signal-to-noise ratio (SNR) for the user µ connected to
LiFi AP α is represented as SNRµ,α, and can be expressed
as:

SNRµ,α =
(HLiFi(µ,α)PoptRPD)2

NLiFiBLiFi
, (1)

where HLiFi(µ,α) is the channel gain between AP α and user
µ, RPD indicates photo receiver responsivity , Popt represents
transmitted optical power, NLiFi is the LiFi noise power
spectral density (PSD), BLiFi indicates the LiFi AP bandwidth.
The optical channel gain has two components: LoS and non
LoS (NLoS) i.e., HLiFi = HLoS + HNLoS. The LoS channel
gain is defined as [10]:

HLoS =
(m+ 1)APD

2πd2
cos(φ)gfgc(ψ) cos(ψ), (2)

where m represents the Lambertian order of LED gf and gc
defines gain of the optical and concentrator, APD indicates PD
physical area, and d is the distance between LiFi AP and user.
The ψ is the PD field of view (FOV). The NLoS channel gain
is given by [10]:

HNLoS =
ρAPDe

j2πf∆T

Aroom(1− ρ)(1 + j ffc )
, (3)

where ρ denote walls reflectivity, Aroom indicates room area,
∆T is the delay between the LoS and diffused signals, and fc
represents cut-off frequency.

As all LiFi APs operate on the same frequency, they cause
interference among each other. It is important to note that the
interference term depends upon the actively transmitting AP
that can be obtained by using the binary association variable
gµ,α, which is defined as:

gµ,α =

{
1, user µ is connected to AP α

0, user µ is not connected to AP α
(4)

The AP β and AP α interfere with each other, if and only if
both gµ,α and gµ′,β are set to 1, i.e. both the APs are transmit-
ting to some users at the same time. In order to model this, we
have defined a variable I(gµ,β) = (1−

∏
µ′∈U\{µ} (1− gµ′,β))
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TABLE I: LiFi channel parameters

Channel Parameter Symbol Value
Height difference between the
user and AP

h 2 m

PD’s Area APD 1 cm2

Optical filter’s gain gf 1
Half intensity radiation angle θ1/2 60◦

PD’s FOV Ψ 60◦

Responsivity RPD 0.53 A/W
Reflection coefficient ρ 0.8
LiFi AP’s optical power Popt 3 Watt
LiFi AP’s bandwidth BLiFi 40 MHz
LiFi noise PSD NLiFi 10−21 A2/Hz

TABLE II: WiFi channel parameters

Channel Parameter Symbol Value
Breakpoint distance dBP 5 m
Shadowing loss XSF 3 dB
Central carrier frequency fc 2.4 GHz
WiFi AP’s transmit Power PWiFi 20 dBm
WiFi AP’s bandwidth BWiFi 20 MHz
WiFi noise PSD NWiFi -174 dBm/Hz

and defined the signal-to-interference-noise ratio (SINR) be-
tween user µ and LiFi AP α as:

SINRµ,α =
(HLiFi(µ,α)PoptRPD)2

NLiFiBLiFi+
∑
β∈AP\{α} I(gµ,β)(HLiFi(µ,β)PoptRPD)2

(5)
where HLiFi(µ,β) is the channel gain between interfering LiFi
APs β and the user µ and AP\{α} represents a set that
includes all elements of set AP excluding element α. The
lower bound on achievable data rate of the user µ connected
to LiFi AP α can be calculated using [10]:

drµ,α =
BLiFi

2
log2

(
1 +

(
6

πe

)
SINRµ,α

)
. (6)

The simulation parameters used for LiFi channel are summa-
rized in Table I, which is same as [10, 12].

B. WiFi Channel Model
The SNR for user µ connected to WiFi AP α1 is given by:

SNRµ,α1
(f) =

|Gµ,α1 |2(f)PT

NWiFiBWiFi
, (7)

where G(µ, α1)(f) represents WiFi channel gain, PT indicates
transmitted power, NWiFi denotes PSD of noise in WiFi, and
BWiFi is the bandwidth of WiFi AP. The WiFi channel gain,
G(µ, α1)(f) is given by [10]:

Gµ,α1
(f) =

√
10
−L(d)

10 hr, (8)

where f indicates the carrier frequency, hr represents the
small-scale fading gain which follows independent identical
Rayleigh distribution with 2.46 dB average power. The L(d)
denotes the large-scale fading loss and it is given as [10]:

L(d) =

{
LFS(d) +XSF, d < dBP

LFS(dBP) + 35 log( d
dBP

) +XSF, d ≥ dBP
, (9)

where, d represents distance between user µ and WiFi AP
α1, LFS denotes the free space loss, dBP indicates breakpoint

distance and XSF refers to the shadowing loss. The free
space loss can be calculated by LFS(d) = 20 log10(d) +
20 log10 (f) − 147.5 (dB). As the system model consist of
single WiFi AP, there will be no interference for WiFi users
The achievable data rate between WiFi AP α1 and user µ ,
can be calculated using:

drµ,α1 = BWiFi log2(1 + SNRµ,α1). (10)

The WiFi channel parameters used in simulation are stated
in Table II, which is same as [10, 12].

C. Orientation based Random Waypoint Mobility Model
Generally, most studies consider random way point (RWP)

model for mobility. In RWP, a user pick a random destination
and travels at a constant speed towards that destination. Once
the user arrives at the destination, the user selects a new
destination and starts moving in that direction at a constant
speed and this process continues. However, in case of LiFi
users, the receiver device orientation plays a crucial role.
Therefore, in this work we have considered Orientation based
RWP (ORWP) model which was initially proposed in [18]
and developed in [19] and [20]. In fact, the ORWP considers
the orientation of receiver device while the users move. A
correlated Gaussian random process should be generated for
the polar angle during the movement of users. The parameters
of the ORWP model are chosen from [18]. The ORWP
mobility model has been used for the first time in the hybrid
LiFi and WiFi networks in [21] to assess the performance
of the hybrid system more realisticly and support dynamic
load balancing for mobile users. In this study, we considered
pause time in the simulation of ORWP which is ignored in
[21]. Users may tend to stop for a while at each destination
and then continue their movement. We assume pause time
at each destination follow an exponential distribution with a
mean value of 10 seconds [20].

D. Handover
During a network handover, an overhead occurs that causes

a drop in the average data rate of the user involved in
the handover. In order to model this reduction in data rate,
handover efficiency was introduced in [6] which is defined
as the fraction of overhead time to actual transmission time.
However, it is important to note that the exact handover
efficiency can not be calculated [21]. Therefore, an average
handover efficiency is used to estimate the negative effect of
handover on users’ data rate.
In a HLWN environment, two types of handover exists,
namely, vertical and horizontal handover. When a SAP user
moves from LiFi AP to WiFi AP or vice-versa, it is termed as
vertical handover (VHO) and when a user moves from LiFi
AP to another LiFi AP, it is termed as horizontal handover
(HHO). Assuming that user µ was previously served by AP
αt−1 and is now being served by AP αt. For SAP user, the
estimated handover efficiency can be modelled as:

ηSAP(t) =


1, αt = αt−1 ∀ αt, αt−1 ∈ AP
η0,HHO, αt 6= αt−1 ∀ αt, αt−1 ∈ LAP
η0,VHO, otherwise.

.

where, η0,HHO and η0,VHO denote average handover effi-
ciency for HHO and VHO, respectively. Typically, the HHO
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require a lower amount of overhead and they occur faster in
comparison to the VHO. The reason is that the HHO happen
among the same domain using the same wireless technology
whereas VHO fall among different technologies, which in
this work is between LiFi and WiFi. Thus, a higher value of
η0,HHO =0.9 is chosen in comparison to the η0,VHO = 0.6 [21].
However, it may please be noted that the choice of these values
does not affect the generality of our proposed algorithm.

On the other hand, a LA user can either connect to both LiFi
and WiFi AP, or connect to only one of them, therefore, the
modelling of VHO will be different from SAP. In this paper,
VHO for LA user is modelled as handover from both LiFi
and WiFi connection to either LiFi or WiFi and vice-versa.
Therefore, the estimated handover efficiency for LA user, can
be modelled as:

ηLA(t) =


1, αt1 = αt−1

1 and αt2 = αt−1
2 .

η0,HHO, αt1 = αt−1
1 and αt2 6= αt−1

2 .

η0,VHO, otherwise

∀ α1 ∈W, α2 ∈ LAP.

III. PROPOSED REINFORCEMENT-LEARNING LOAD
BALANCING METHODS

RL is a promising machine learning approach, an RL agent
is capable of providing an optimal solution (policy) without the
exact knowledge of the underlying mathematical model. RL
agents directly learns its policy based on the interaction with
the environment, the communication happens between agent
and environment in terms of action and reward. The ultimate
goal of RL agent is to determine a stochastic policy, which
maps states to a probability distribution over actions, in order
to maximize the cumulative reward [10]. Fig. 2, shows the
application of RL for LB in HLWN. RL works based on three
vectors, namely, state, action, and reward. The state vector
defines the present status of the hybrid LiFi WiFi environment.
The action vector defines the action of AP assignment taken
by the RL agent, after observing the present status of the
environment. The reward vector defines the reward received
by the system after an action is taken by the system. Let S
and A represent the state and action space, respectively. At a
given time step t ≥ 0, an agent will be in state st ∈ S, it
will take an action at ∈ A, and will receives a corresponding
instant reward rt = r(st, at) ∈ R and transits to a next
state st+1. The CC trains the learning algorithm in order to
obtain its policy πθ(at|st) for AP association. This process
is repeated and with each iteration, the system keeps moving
toward the actions that provides maximum cumulative reward.
At the end of the training process the optimal policy π∗(a|s; θ)
is obtained, this policy can be used in the real time in order to
predict appropriate AP assignment, calculate reward and next
state, as explained in algorithm 1.

In this work, the state, action and reward are formulated as
follows:

1) State Space S: The state vector S defines the current
status of the hybrid LiFi WiFi environment, it provides nec-
essary information to the agent to make its decision. In this
work, as we are training the agent to determine the optimal AP
assignment strategy, therefore we need to take into account the
SNR between the user and various APs, which is defined by (1)
and (7). Furthermore, as we are dealing with HLWN which

Action (at)

Reward (rt)

RL Agent
Policy π*(at|st) 

(Central Controller)

EnvironmentState (st)
SNR

AP Load

(st+1)

(rt+1)

Fig. 2: RL for a HLWN.

is susceptible to AP overloading, we need to provide the
information regarding load on a particular AP to the RL agent.
Therefore, S is the set of continuous states, which includes:
• SNR between users and APs represented by a matrix S
• Current load on each AP i.e., number of users connected

to a particular AP represented by LAP. The dimensions
of LAP is [NAP]

The dimensions of S depends upon the number of APs con-
sidered, conventionally the SNR matrix is considered between
all the users and all the APs resulting into S dimension of
[Nu×NAP]. However, based upon our domain knowledge, we
have observed that in a standalone LiFi network, usually 2 APs
on average provides a SNR difference of 10 dB. Therefore,
instead of including the information about all the APs, it
would be more efficient to transmit the SNR information
between the user and two highest SNR providing APs to the
controller. Therefore, by using this simple domain knowledge
(DK) the dimension of the observation space can be reduced
from [NAP +Nu ×NAP] to [NAP +Nu × (2 + 1)].

2) Action Space A: In this work, A is a finite set of multi-
discrete actions. As we are considering the LA receivers,
which allows the users to connect to both LiFi and WiFi
AP at the same time. However, sometimes the simultaneous
connection might not contribute towards a higher reward,
this could happen due to AP overloading. In such cases,
the controller can decide to transmit the information to LA
user via single link only, therefore, converting LA into SAP
receiver. Hence, the action space must have discrete values to
indicate the standalone connection with LiFi or WiFi AP and
simultaneous connection to both LiFi and WiFi AP as well.
The action space for a particular user µ in our setup, can be
defined as A = {0, 1, 2, 3, 4, 5, 6, 7, 8}, where,
• at = 0 indicates the user is connected to WiFi AP,
• at = 1, 2, 3, 4 indicates that the user is connected to LiFi

AP 1,2,3, or 4 respectively
• at = 5, 6, 7, 8 indicates that user is connected to both

WiFi AP and LiFi AP 1, 2, 3 or 4 respectively.

Algorithm 1 RL based LB algorithm for HLWN

Input: Current state of HLWN, st and optimal policy π∗θ(a|s)
Output: Reward rt+1 and state st+1

1: Use π∗θ(at|st) for given st, in order to predict at
2: Update the AP assignment in the environment based on
at.

3: Based on new AP assignment calculate reward rt+1 and
new state st+1.

4: return rt+1 and st+1
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However, as we already discussed that two highest SNR APs
are usually sufficient to serve the user demands. Therefore, by
using this DK, we can reduce the action space. We can store
the IDs of highest SNR providing APs at the user and can
reduce the action space to A = {0, 1, 2, 3, 4}, where
• at = 0 indicates the user is connected to WiFi AP,
• at = 1, 2 indicates that the user is connected to highest

or second highest SNR LiFi AP respectively
• at = 3, 4 indicates that user is connected to both WiFi AP

and highest or second highest SNR LiFi AP respectively.
Inclusion of this simple DK, reduces both the action and ob-
servation space, which reduces the computational complexity
and improve the convergence of the RL algorithm.

3) Reward: In this work, we have used three different
reward functions (R1, R2, R3) for three different objectives:
• R1 : This reward is designed to maximize the long-term

average network throughput. In case of SAP user, the
immediate reward rt, is given as:

rt =

∑
µ∈U

∑
α∈AP(tµ,α)

Nu
, (11)

where, tµ,α is defined as:

tµ,α =


ηSAPgµ,αdrµ,αkµ,α, for SAP user.
ηLA(gµ,α1drµ,α1kµ,α1

+ gµ,α2
drµ,α2

kµ,α2
), for LA user.

(12)
where, kµ,α represents the time slot allocation between

AP α and user µ, which is given as:

kµ,α =
1∑

µ′ gµ′,α
, s.t. µ′ ∈ U

It may be noted that the value of kµ,α, depends only on
the total number of users connected to AP α.

• R2: This reward is designed to maximize the average
long-term user satisfaction and the immediate reward rt
is defined as:

rt =

∑
µ∈U

∑
α∈AP USµ,α × C1

Nu
, (13)

where, C1 scaling factor is included in order to avoid
problem of local convergence and USµ,α is defined as:

USµ,α =


ηSAPgµ,αdrµ,αkµ,α

Rµ
, for SAP user

1
Rµ
ηLA(gµ,α1drµ,α1kµ,α1

+ gµ,α2
drµ,α2

kµ,α2
), for LA user

(14)
where, Rµ is the required data rate of user µ.

• R3 : It is important to note that reward R2 tries to
maximize the average user satisfaction, which means even
if a user is achieving very low user satisfaction and others
are achieving high user satisfaction, the resultant average
will be high. Therefore, the reward R2 is incapable of
ensuring the required QoS for every user. The reward
R3 is designed to maximize the long term average
network throughput while ensuring 50% user satisfaction
(USµ,α = 0.5) for each user. A negative reward with
appropriate scaling has been used to ensure 50% user
satisfaction. The immediate reward rt, is defined as:

rt =

∑
µ∈U

∑
α∈APQµ,α

Nu
, (15)

where, Qµ,α is defined as:

Qµ,α =

{
−C2 × (1− USµ,α), USµ,α ≤ 0.5.

C1 × USµ,α, otherwise.
(16)

where, USµ,α depends upon the receiver type and is
defined by (14). Additionally, C1 and C2 scaling factors
are included to avoid the problem of local convergence.
Furthermore, value of C2 > C1 ensures that the condition
of USµ,α ≤ 0.5 is highly discouraged.
The values C1 and C2 have been found intuitively by
searching the space for values greater than 1. It was found
that for C1 = 100, the policy was able to converge to a
global solution and beyond 100 there was no change in
the system performance. Additionally, a higher value of
C2 means the agent will try more aggressively to avoid
USµ,α ≤ 0.5 but this would penalise the average network
throughput performance because there exists a trade-
off between the average network throughput and user
satisfaction. Therefore, C2 = 1000 was set to provide
a balanced performance in terms of the average network
throughput and user satisfaction.

4) RL training Algorithm: The objective of the training
process is to optimize the policy parameters θ in order to
find the optimal policy, π∗ which maximize the expected
discounted return η(π).

π∗ = argmax
π

(η(π)),

η(π) = Es0,a0,...
[ ∞∑
t=0

γtr(st, at)

]
,

where γ ∈ (0, 1) indicates the discount factor.
In this work, we have used a multi-layer perceptron (MLP)

with parameters θ for the policy network and represented the
policy as πθ(a|s). For training of the policy network, we
have used Trust Region Policy Optimization (TRPO) algorithm
[22], which is a model-free policy gradient algorithm. TRPO
supports good training stability [23] and guarantees monotonic
improvement under certain assumptions [22]. TRPO enforces
a Kullback Leibler (KL) divergence constraint on the size of
update between the old and new policy at each iteration. The
objective function for TRPO based policy optimization can be
written as [22]:

maximize
θ

Es∼ρθold ,a∼q
[
πθ(a|s)
q(a|s)

Qθold(s, a)

]
, (17)

subject to Es∼ρθold
[
DKL(πθold(.|s)||πθ(.|s))

]
≤ δ.

where, Qθold is the state-action value function for policy πθold ,
q(s|a) denotes the sampling distribution and δ is a tunable
parameter. The state-action value function for a policy π, is
represented by Qπ and is defined as:

Qπ(st, at) = Est+1,at+1,...

[ ∞∑
l=0

γtr(st+l, at+l)

]
. (18)

The complete procedure of RL agent training based on
TRPO is explained in [22]. In the next section, we will discuss
about the training and convergence of the RL algorithm.
Training performance and convergence of RL: TRPO stabilizes
the learning by imposing trust region constraints on the
policy updation. TRPO being a model-free algorithm requires
relatively lower hyper-parameter tuning, but its suffer with
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Fig. 3: Training performance and convergence of RL for
different reward functions without (blue) and with (orange)
DK.

high sample complexity [10]. In literature, various methods
have been proposed to reduce the sample complexity of TRPO
[24, 25]; in this work we have tried to reduce the complexity
of TRPO by utilizing the DK which enables us to reduce the
action and observation space. Therefore, reduces the overall
complexity of the proposed system. The training performance
of RL algorithm for three different reward functions with and
without knowledge transfer is shown in Fig. 3. It can be
observed that for all the reward functions the RL algorithm
converges. From Fig. 3, it is clear that the RL agent converges
to larger rewards when SNR from all the LiFi APs is consid-
ered, which is represented by blue colour curve. However,
when only 2 best LiFi APs are considered the RL converges

to a smaller average reward value indicated by orange colour
curves. When R1 is considered the difference in average
reward with and without DK is significant, however, for R2

reward both with and without DK converges to same values,
as shown in Fig. 3 (b). Similarly, for R3 reward both with and
without DK converges to same value. It must be noted that
only Fig. 3(c) has a negative value of average reward, this is
due to the design of R3 given in (15).

A. Other Load Balancing Methods
• Received Signal Strength (RSS) [12]: For a HLWN

due to different physical receivers and bandwidth of LiFi
and WiFi, the noise component observed at receiver is
not uniform. Therefore, received signal strength does
not fully represent the quality of channel. Hence, SNR
must be used as the decision metric for RSS method in
HLWN [10]. The objective function of the RSS method
for a given user µ is defined as:

max
α

SNRµ,α s.t α ∈ AP. (19)

where, AP is the set of APs including one WiFi and
four LiFi APs and SNRµ,α represents the SNR values
between µ user and α AP, which can be calculated by
Eq. (7) and Eq. (1) for WiFi and LiFi APs, respectively.
For SAP receiver, there will be single value of α given
by (19). For LA receiver, the user will connect to two
APs simultaneously, therefore, there will be α1 and
α2, corresponding to highest SNR WiFi and LiFi AP,
respectively. As there is only one WiFi AP present in
the considered scenario, therefore α1 = 1, indicating that
user is always connected to WiFi AP. Another variable
α2, will give the value corresponding to highest SNR LiFi
AP, which is defined as:

α2 = max
α2

SNRµ,α2
s.t α2 ∈ LAP. (20)

• Exhaustive search: Exhaustive search also known as
brute force search guarantees the best performance at the
cost of high complexity. In line with the objective of the
proposed RL scheme, the SAP users’ objective function
for exhaustive search with different rewards rt is defined
as:

max
gµ,αkµ,α

∑
µ∈U

∑
α∈AP

(rt),

s.t.
∑
µ∈U

(gµ,αkµ,α) = 1∀α ∈ AP,∑
α∈AP

gµ,α = 1∀µ ∈ U,

gµ,α ∈ {0, 1}, kµ,α ∈ [0, 1],∀µ ∈ U,∀α ∈ AP.

(21)

where, rt is defined according to (11), (13), and (15)
based on the corresponding rewards function. The first
constraint ensures that the sum of time allocation of all
users associated to one AP is 1 and the second constraint
states that each user can get connected to only one AP
at a time. Similarly, for LA receiver, user can connect to
both AP’s simultaneously, therefore, let α1 ∈ {0,W} and
α2 ∈ {0,LAP} indicate the users connection with WiFi
and LiFi APs respectively. For LA receiver, the objective
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function for exhaustive search in line with proposed RL
algorithm with different rewards rt is defined as:

max
gµ,αkµ,α

∑
µ∈U

∑
α∈AP

(rt),

s.t.
∑
µ∈U

(gµ,αkµ,α) = 1∀α ∈ AP,∑
α1∈W

gµ,α1
≤ 1 ∀µ ∈ U,∑

α2∈LAP
gµ,α2

≤ 1 ∀µ ∈ U,

gµ,α ∈ {0, 1}, kµ,α ∈ [0, 1],

∀µ ∈ U,∀α ∈ AP,∀α1 ∈W,∀α2 ∈ LAP.

(22)

The first constraint is same as that of SAP user objec-
tive function. The second and third constraint states the
condition that each user can get connected to maximum
one WiFi and one LiFi AP at a time. The exhaustive
search has been considered in order to provide the upper
bound performance at the cost of higher complexity. The
exhaustive search implementation has been made possible
for this problem because of the room dimension, which
restricts the number of users and APs, therefore limits
the computational complexity to a reasonable value [10].

IV. PERFORMANCE EVALUATION AND DISCUSSION

We have considered a typical 5 × 5 × 3 m3 indoor space,
with one WiFi and four LiFi APs, as shown in Fig. 1. It is
assumed that the WiFi AP fully covers the room, whereas, the
four LiFi APs partially covers the room. The focus of this work
is to understand the effectiveness of RL based LB in HLWN,
therefore, a simple scenario with four LiFi APs [10, 26]
has been considered in this study. The proposed work is
scalable to a larger room with more number of APs and users.
Furthermore, two different types of receiver, i.e., SAP and
LA schemes have been implemented in simulation. The effect
of scheduling and reordering overhead is out of the scope of
this paper, as that require the protocol design, which has been
addressed in [16]. Moreover, in order to study the effect of dif-
ferent reward functions on system performance, three different
rewards for optimising various system metrics, as explained
in III-3 have been considered in this work. The simulation
setup is coded in python 3.7 and MATLAB 2018. An Open AI
Gym environment has been built from scratch for the HLWN.
We have used stable-baseline GitHub repository [27] for RL
algorithm (TRPO) and implemented ORWP [20]. The results
reported are average over 200 episodes, and the values of
system parameters are chosen in accordance with previously
published works [10, 12, 21] and summarized in Table III.

The performance of the proposed RL with LA (RL-LA)
method has been compared against exhaustive search with
LA (Exh-LA), exhaustive search with SAP (Exh-SAP), RSS
with LA (RSS-LA) and RSS with SAP (RSS-SAP), based
on computational complexity, average network throughput
and user satisfaction. Furthermore, this section also compares
performance of RL-LA with DK (RL-LA-DK) against the
Exh-LA with DK (EX-LA-DK), Exh-SAP with DK (Exh-
SAP-DK), RSS-LA with DK (RSS-LA-DK) and RSS-SAP
with DK (RSS-SAP-DK). The details regarding performance
metrics are explained in next section.

TABLE III: System parameters

System Parameter Value
Room dimension 5 × 5 × 3 m3

Number of APs 4 LiFi + 1 WiFi
WiFi AP location (2.5 m, 2.5 m)
LiFi AP locations (±1.25 m,±1.25 m)
User distribution Uniform
User speed 1 m/s
User receiver LA, SAP
Requested data rate, Rµ Poisson with 70 Mbps
Gym environment LiFi WiFi network
policy MLP, 2 layers of 64
max KL divergence, δ 0.01
Discount factor, γ 0.9
Episode length, E 1000

A. Performance Metrics

In this work, the performance comparison is based on
complexity, average network throughput and user satisfaction.
• The average network throughput (T) is calculated as:

T =

∑
µ∈U

∑
α∈AP(tµ,α)

Nu
, (23)

where tµ,α represents the data rate of each user µ from
the AP α, and can be calculated using (12)

• The users satisfaction Sµ,α is defined as the ratio of data
rate achieved by the user to the data rate required by that
user, it can be expressed as:

Sµ,α = min{1, USµ,α}, (24)

where USµ,α is defined by (14). The user satisfaction
ranges from 0 to 1, Sµ,α = 1 implies that the user has
achieved the requested data rate.

B. Complexity Analysis

As RL-LA requires training and its convergence depen-
dence on the state action space, and the RL algorithm. The
training complexity of RL-LA cannot be directly compared
with exhaustive search and RSS as these methods do not have
a training phase. Therefore, in this paper, the training and
convergence of RL is addressed separately in section III-4
and in this section, only run-time complexity of all methods
is considered. In order to calculate complexity of RL-LA, it
is important to note that the RLs’ real time complexity in test
phase is nothing but the complexity incurred in the forward
pass of the trained policy network which in this work, is
a MLP with 2 hidden layers. Let’s assume, the number of
neurons in each layer to be L1 and L2, respectively. The
input and output layers will be defined based on the dimen-
sions of observation and action space which are explained in
section III. Therefore, the complexity of RL-LA is given by
O((NAPNu +NAP)L1 + (L1L2) + (L2Nu)).

The RSS-SAP method simply selects the AP with highest
SNR value out of total APs (NAP). Therefore, its complexity is
O(NAPNu) [12]. In RRS-LA method, user is always connected
to WiFi AP and selects the highest SNR LiFi AP, therefore,
its complexity is O(NAP-LiFiNu). The exhaustive search is
computationally more expensive, since it looks for all possible
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Fig. 4: Computational complexity of different schemes.
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Fig. 5: Reduced computational complexity with DK.

connections between users and APs, therefore, the complexity
of Exh-SAP is O((NAP)Nu). In case of Exh-LA, the complex-
ity further increases to O((NAP-WiFi + 2NAP-LiFi)

Nu).
The complexity of various schemes with four LiFi and one

WiFi AP, is illustrated in Fig. 4. It is clear that LA receiver has
higher complexity as compared to SAP receiver. The applica-
tion of DK can reduce the complexity of RL-LA and Exh-LA
to O(((NAP-WiFi+2)Nu+(NAP-WiFi+2))L1+(L1L2)+(L2Nu))
and O((NAP-WiFi + 4)Nu), respectively. It is to be noted that
RL run-time complexity can be reduced using neural network
pruning [28] which is beyond the scope of this paper. The
effect of DK on the computational complexity for Exh-LA-
DK and RL-LA-DK is shown in Fig. 5.

C. Effect of Different Reward Functions
In this section the effect of different reward functions on

average network throughput and user satisfaction has been
presented.The average network throughput for different reward
functions is summarized in Table IV. It can be observed that
the performance of RSS-LA and RSS-SAP remains unchanged
for different reward functions, this is due to the fact that
for RSS-LA and RSS-SAP, the decision of AP assignment
depends alone on the received signal strength and does not
take into account the other factors. For all rewards, Exh-
LA performs best followed by RL-LA in terms of average
network throughput. The advantage of link aggregation can be
clearly observed from Table IV. The RSS-LA provides an im-
provement of around 57 Mbps over RSS-SAP, similarly, Exh-
LA provides an improvement of around 30 Mbps over Exh-
SAP. The largest average network throughput of 235 Mbps

TABLE IV: Average network throughput (Mbps)

Reward RSS-SAP Exh-SAP RSS-LA Exh-LA RL-LA
R1 40.66 190.83 97.60 235.81 220.90
R2 40.45 158.81 97.52 197.10 189.50
R3 40.86 174.81 97.80 218.90 215.90

is achieved by Exh-LA for reward R1, followed by RL-LA
which is able to achieve 220 Mbps for reward R1. The value
of average network throughput in Exh-LA,RL-LA and Exh-
SAP reduces for reward R2, as R2 focuses on maximization
of average user satisfaction alone. The reward function R3

provides a more balanced approach that ensures 50% user
satisfaction and also tries to maximize the throughput. For
reward R3, the average network throughput improves over
R2, for Exh-LA, RL-LA and Exh-SAP. It is observed from
Fig. 6 (a), that none of the schemes are able to ensure full
user satisfaction for reward R1, this is due to the fact that the
reward R1, is designed specifically to maximize the average
network throughput. Therefore, we can see that a system with
high average data rate does not guarantee a high QoS for users.
The RSS-SAP receiver performs worst as it simply select one
highest SNR AP for association. However, when a LA receiver
is used, which allows the user to receive simultaneously from
highest SNR LiFi and WiFi AP, the performance of RSS-LA
improves significantly. As the reward function is focused on
improvement of average network throughput, the performance
of RL and exhaustive search with SAP and LA receiver suffers
in-terms of user satisfaction. For the second reward function
R2, the results are shown in Fig. 6 (b). It can be seen that the
performance of RSS-SAP and RSS-LA remains unchanged,
as they are independent of the reward function. The reward
function R2 is specifically designed to maximize the average
user satisfaction. For Exh-LA, there is significant improvement
as it is able to provide full user satisfaction to all the users.
Similar trend is observed for RL-LA, which is able to ensure
full user satisfaction for 90% of the users and is able to ensure
96% user satisfaction for all users. There is also improvement
in Exh-SAP, for reward function R2, but this improvement is
limited due to receiver restriction of single AP connection.
The user satisfaction performance for R3 reward function is
shown in Fig. 6 (c). The results for RSS-SAP and RSS-LA
remains unchanged. However, there is significant improvement
in Exh-SAP. The reward R3 ensures that all the users must
achieve a user satisfaction of more than 50% and same can be
observed from the Fig. 6 (c). For R3 reward, RL-LA is able to
provide full 98% user satisfaction to all the users. As Exh-LA,
was already able to achieve full user satisfaction, therefore, no
changes were observed in its performance.

D. Effect of Domain Knowledge
In this section, we present the results of domain knowledge

transfer on various schemes with different reward functions.
From the VLC domain knowledge, we understand that SNR
information from two highest SNR LiFi APs is sufficient for
making a decision of AP assignment, inclusion of this simple
DK improves the convergence and reduces the computational
complexity of proposed schemes. The Exh-LA-DK provides
an improvement of around 40 Mbps over Exh-SAP-DK. The
trend of average network throughput for various schemes with
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Fig. 6: User satisfaction assessment for different reward func-
tions.

different rewards remains same as it is without the application
of DK. However, in order to clearly understand the effect of
DK, the values of Table V are compared with corresponding
values from Table IV. It can be clearly observed that if only
two highest SNR LiFi APs considered for decision making
the average network throughput for Exh-LA-DK, RL-LA-DK
and Exh-SAP-DK reduces as compared to when all the LiFi
APs are considered. However, it is interesting to note that by
the application of this simple DK reduces the gap between
RL-LA-DK and Exh-LA-DK performance.

The user satisfaction for various schemes with DK, under
different reward functions is illustrated in Fig. 7. As the reward
R1 focuses on maximization of average network throughput,
the user satisfaction performance suffers, as shown in Fig. 7(a).

TABLE V: Average network throughput (Mbps) with DK.

Reward RSS-SAP-DK Exh-SAP-DK
R1 40.78 178.08
R2 40.15 143.76
R3 40.56 159.10

Reward RSS-LA-DK Exh-LA-DK RL-LA-DK
R1 97.94 216.78 205.68
R2 97.17 180.97 173.20
R3 97.78 203.44 199.45

(a) Reward R1

(b) Reward R2

(c) Reward R3

Fig. 7: User Satisfaction performance for different rewards
with DK.

For reward R2, the user satisfaction performance for Exh-
LA-DK, RL-LA-DK and Exh-SAP-DK improves significantly.
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From Fig. 7(b), it can be observed that Exh-LA-DK is able to
provide full user satisfaction to around 95% of the users for re-
ward R2 as compared to 80% in case of reward R1. Similarly,
RL-LA-DK with R2, is able to provide full user satisfaction to
90% of users as compared to 85% users when reward R1 was
used. The Exh-SAP-DK also observe 10% improvement in the
number users achieving full user satisfaction for reward R2 as
compared to R1. The user satisfaction performance of various
schemes for reward R3 with DK is shown in Fig. 7(c). It can
be observed that reward R3 provides best user satisfaction
performance from individual users point of view. Even after
application of DK and reduction of exploration space to only
two highest SNR LiFi APs, Exh-LA-DK is able to provide
full user satisfaction to 97% and RL-LA-DK is able to support
around 96% of the users. The Exh-SAP-DK can ensure full
user satisfaction to around 95% of the users. The application
of reduced exploration space has a direct effect on the system
performance which can be directly seen from Fig. 7. However,
for reward R3, a good user satisfaction and average network
throughput can be achieved even while considering only two
highest SNR LiFi APs. The application of DK reduces the
system complexity significantly and its effect would be more
prominent for a high density network deployment.

V. CONCLUSIONS

In this paper, RL based dynamic LB scheme for HLWNs
is considered and three different rewards R1,R2, and R3 have
been investigated. For reward R1, RL-LA is able to provide
106% improvement in average network throughput as com-
pared to RSS-LA, but the user satisfaction was compromised.
When reward R2 is considered, RL-LA ensures full user
satisfaction for 90% of the users and 96% user satisfaction
for all users but the average network throughput was reduced.
It is observed that RL-LA with reward R3 provides a balanced
system performance with high average network throughput
(215.90 Mbps) and good user satisfaction (98%). Furthermore,
we have also investigated the effects of link aggregation re-
ceivers on the system performance and it is observed that Exh-
LA provides a minimum improvement of 23% over Exh-SAP
in terms of average network throughput. Similarly, RSS-LA
provides an improvement of around 57 Mbps over RSS-SAP.
Therefore, we can conclude that LA significantly improves
the system performance at the cost of increased complexity.
The computational complexity for RL and exhaustive search
increases quadratically and exponentially with the number of
users. For the LA receiver scheme, the complexity further
increases, which makes Exh-LA impractical for real-life sce-
narios. To reduce the computational complexity, this paper has
introduced a concept from the domain knowledge transfer. It
was observed that DK can significantly reduces the complexity
at the cost of marginal performance degradation for Exh-LA-
DK and RL-LA-DK. Overall, the RL-LA-DK with reward
R3 provides balanced average network throughput and user
satisfaction performance which closely matches to the Exh-
LA-DK and offers the advantage of low complexity.
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