139 research outputs found

    Articulatory Copy Synthesis Based on the Speech Synthesizer VocalTractLab

    Get PDF
    Articulatory copy synthesis (ACS), a subarea of speech inversion, refers to the reproduction of natural utterances and involves both the physiological articulatory processes and their corresponding acoustic results. This thesis proposes two novel methods for the ACS of human speech using the articulatory speech synthesizer VocalTractLab (VTL) to address or mitigate the existing problems of speech inversion, such as non-unique mapping, acoustic variation among different speakers, and the time-consuming nature of the process. The first method involved finding appropriate VTL gestural scores for given natural utterances using a genetic algorithm. It consisted of two steps: gestural score initialization and optimization. In the first step, gestural scores were initialized using the given acoustic signals with speech recognition, grapheme-to-phoneme (G2P), and a VTL rule-based method for converting phoneme sequences to gestural scores. In the second step, the initial gestural scores were optimized by a genetic algorithm via an analysis-by-synthesis (ABS) procedure that sought to minimize the cosine distance between the acoustic features of the synthetic and natural utterances. The articulatory parameters were also regularized during the optimization process to restrict them to reasonable values. The second method was based on long short-term memory (LSTM) and convolutional neural networks, which were responsible for capturing the temporal dependence and the spatial structure of the acoustic features, respectively. The neural network regression models were trained, which used acoustic features as inputs and produced articulatory trajectories as outputs. In addition, to cover as much of the articulatory and acoustic space as possible, the training samples were augmented by manipulating the phonation type, speaking effort, and the vocal tract length of the synthetic utterances. Furthermore, two regularization methods were proposed: one based on the smoothness loss of articulatory trajectories and another based on the acoustic loss between original and predicted acoustic features. The best-performing genetic algorithms and convolutional LSTM systems (evaluated in terms of the difference between the estimated and reference VTL articulatory parameters) obtained average correlation coefficients of 0.985 and 0.983 for speaker-dependent utterances, respectively, and their reproduced speech achieved recognition accuracies of 86.25% and 64.69% for speaker-independent utterances of German words, respectively. When applied to German sentence utterances, as well as English and Mandarin Chinese word utterances, the neural network based ACS systems achieved recognition accuracies of 73.88%, 52.92%, and 52.41%, respectively. The results showed that both of these methods not only reproduced the articulatory processes but also reproduced the acoustic signals of reference utterances. Moreover, the regularization methods led to more physiologically plausible articulatory processes and made the estimated articulatory trajectories be more articulatorily preferred by VTL, thus reproducing more natural and intelligible speech. This study also found that the convolutional layers, when used in conjunction with batch normalization layers, automatically learned more distinctive features from log power spectrograms. Furthermore, the neural network based ACS systems trained using German data could be generalized to the utterances of other languages

    Deepfake detection and low-resource language speech recognition using deep learning

    Get PDF
    While deep learning algorithms have made significant progress in automatic speech recognition and natural language processing, they require a significant amount of labelled training data to perform effectively. As such, these applications have not been extended to languages that have only limited amount of data available, such as extinct or endangered languages. Another problem caused by the rise of deep learning is that individuals with malicious intents have been able to leverage these algorithms to create fake contents that can pose serious harm to security and public safety. In this work, we explore the solutions to both of these problems. First, we investigate different data augmentation methods and acoustic architecture designs to improve automatic speech recognition performance on low-resource languages. Data augmentation for audio often involves changing the characteristic of the audio without modifying the ground truth. For example, different background noise can be added to an utterance while maintaining the content of the speech. We also explored how different acoustic model paradigms and complexity affect performance on low-resource languages. These methods are evaluated on Seneca, an endangered language spoken by a Native American tribe, and Iban, a low-resource language spoken in Malaysia and Brunei. Secondly, we explore methods to determine speaker identification and audio spoofing detection. A spoofing attack involves using either a text-to-speech voice conversion application to generate audio that mimic the identity of a target speaker. These methods are evaluated on the ASVSpoof 2019 Logical Access dataset containing audio generated using various methods of voice conversion and text-to-speech synthesis

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 4th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2005, held 29-31 October 2005, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    Proceedings of the 6th International Workshop on Folk Music Analysis, 15-17 June, 2016

    Get PDF
    The Folk Music Analysis Workshop brings together computational music analysis and ethnomusicology. Both symbolic and audio representations of music are considered, with a broad range of scientific approaches being applied (signal processing, graph theory, deep learning). The workshop features a range of interesting talks from international researchers in areas such as Indian classical music, Iranian singing, Ottoman-Turkish Makam music scores, Flamenco singing, Irish traditional music, Georgian traditional music and Dutch folk songs. Invited guest speakers were Anja Volk, Utrecht University and Peter Browne, Technological University Dublin

    Singing voice resynthesis using concatenative-based techniques

    Get PDF
    Tese de Doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 201

    Electroacoustical simulation of listening room acoustics for project ARCHIMEDES

    Get PDF
    • …
    corecore