136 research outputs found

    Bidimensionality and Geometric Graphs

    Full text link
    In this paper we use several of the key ideas from Bidimensionality to give a new generic approach to design EPTASs and subexponential time parameterized algorithms for problems on classes of graphs which are not minor closed, but instead exhibit a geometric structure. In particular we present EPTASs and subexponential time parameterized algorithms for Feedback Vertex Set, Vertex Cover, Connected Vertex Cover, Diamond Hitting Set, on map graphs and unit disk graphs, and for Cycle Packing and Minimum-Vertex Feedback Edge Set on unit disk graphs. Our results are based on the recent decomposition theorems proved by Fomin et al [SODA 2011], and our algorithms work directly on the input graph. Thus it is not necessary to compute the geometric representations of the input graph. To the best of our knowledge, these results are previously unknown, with the exception of the EPTAS and a subexponential time parameterized algorithm on unit disk graphs for Vertex Cover, which were obtained by Marx [ESA 2005] and Alber and Fiala [J. Algorithms 2004], respectively. We proceed to show that our approach can not be extended in its full generality to more general classes of geometric graphs, such as intersection graphs of unit balls in R^d, d >= 3. Specifically we prove that Feedback Vertex Set on unit-ball graphs in R^3 neither admits PTASs unless P=NP, nor subexponential time algorithms unless the Exponential Time Hypothesis fails. Additionally, we show that the decomposition theorems which our approach is based on fail for disk graphs and that therefore any extension of our results to disk graphs would require new algorithmic ideas. On the other hand, we prove that our EPTASs and subexponential time algorithms for Vertex Cover and Connected Vertex Cover carry over both to disk graphs and to unit-ball graphs in R^d for every fixed d

    Bidimensionality of Geometric Intersection Graphs

    Full text link
    Let B be a finite collection of geometric (not necessarily convex) bodies in the plane. Clearly, this class of geometric objects naturally generalizes the class of disks, lines, ellipsoids, and even convex polygons. We consider geometric intersection graphs GB where each body of the collection B is represented by a vertex, and two vertices of GB are adjacent if the intersection of the corresponding bodies is non-empty. For such graph classes and under natural restrictions on their maximum degree or subgraph exclusion, we prove that the relation between their treewidth and the maximum size of a grid minor is linear. These combinatorial results vastly extend the applicability of all the meta-algorithmic results of the bidimensionality theory to geometrically defined graph classes

    Optimality program in segment and string graphs

    Full text link
    Planar graphs are known to allow subexponential algorithms running in time 2O(n)2^{O(\sqrt n)} or 2O(nlogn)2^{O(\sqrt n \log n)} for most of the paradigmatic problems, while the brute-force time 2Θ(n)2^{\Theta(n)} is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in 2O(n2/3logn)2^{O(n^{2/3}\log n)} by Fox and Pach [SODA'11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which problems have no such algorithms under the ETH (Exponential Time Hypothesis). Among our results, we show that, quite surprisingly, 3-Coloring can also be solved in time 2O(n2/3logO(1)n)2^{O(n^{2/3}\log^{O(1)}n)} on string graphs while an algorithm running in time 2o(n)2^{o(n)} for 4-Coloring even on axis-parallel segments (of unbounded length) would disprove the ETH. For 4-Coloring of unit segments, we show a weaker ETH lower bound of 2o(n2/3)2^{o(n^{2/3})} which exploits the celebrated Erd\H{o}s-Szekeres theorem. The subexponential running time also carries over to Min Feedback Vertex Set but not to Min Dominating Set and Min Independent Dominating Set.Comment: 19 pages, 15 figure

    Contraction-Bidimensionality of Geometric Intersection Graphs

    Get PDF
    Given a graph G, we define bcg(G) as the minimum k for which G can be contracted to the uniformly triangulated grid Gamma_k. A graph class G has the SQGC property if every graph G in G has treewidth O(bcg(G)c) for some 1 <= c < 2. The SQGC property is important for algorithm design as it defines the applicability horizon of a series of meta-algorithmic results, in the framework of bidimensionality theory, related to fast parameterized algorithms, kernelization, and approximation schemes. These results apply to a wide family of problems, namely problems that are contraction-bidimensional. Our main combinatorial result reveals a general family of graph classes that satisfy the SQGC property and includes bounded-degree string graphs. This considerably extends the applicability of bidimensionality theory for several intersection graph classes of 2-dimensional geometrical objects

    Simple PTAS's for families of graphs excluding a minor

    Full text link
    We show that very simple algorithms based on local search are polynomial-time approximation schemes for Maximum Independent Set, Minimum Vertex Cover and Minimum Dominating Set, when the input graphs have a fixed forbidden minor.Comment: To appear in Discrete Applied Mathematic

    Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs

    Get PDF
    We give algorithms with running time 2^{O({sqrt{k}log{k}})} n^{O(1)} for the following problems. Given an n-vertex unit disk graph G and an integer k, decide whether G contains (i) a path on exactly/at least k vertices, (ii) a cycle on exactly k vertices, (iii) a cycle on at least k vertices, (iv) a feedback vertex set of size at most k, and (v) a set of k pairwise vertex disjoint cycles. For the first three problems, no subexponential time parameterized algorithms were previously known. For the remaining two problems, our algorithms significantly outperform the previously best known parameterized algorithms that run in time 2^{O(k^{0.75}log{k})} n^{O(1)}. Our algorithms are based on a new kind of tree decompositions of unit disk graphs where the separators can have size up to k^{O(1)} and there exists a solution that crosses every separator at most O(sqrt{k}) times. The running times of our algorithms are optimal up to the log{k} factor in the exponent, assuming the Exponential Time Hypothesis

    Subexponential Parameterized Algorithms for Graphs of Polynomial Growth

    Get PDF
    We show that for a number of parameterized problems for which only 2^{O(k)} n^{O(1)} time algorithms are known on general graphs, subexponential parameterized algorithms with running time 2^{O(k^{1-1/(1+d)} log^2 k)} n^{O(1)} are possible for graphs of polynomial growth with growth rate (degree) d, that is, if we assume that every ball of radius r contains only O(r^d) vertices. The algorithms use the technique of low-treewidth pattern covering, introduced by Fomin et al. [FOCS 2016] for planar graphs; here we show how this strategy can be made to work for graphs of polynomial growth. Formally, we prove that, given a graph G of polynomial growth with growth rate d and an integer k, one can in randomized polynomial time find a subset A of V(G) such that on one hand the treewidth of G[A] is O(k^{1-1/(1+d)} log k), and on the other hand for every set X of vertices of size at most k, the probability that X is a subset of A is 2^{-O(k^{1-1/(1+d)} log^2 k)}. Together with standard dynamic programming techniques on graphs of bounded treewidth, this statement gives subexponential parameterized algorithms for a number of subgraph search problems, such as Long Path or Steiner Tree, in graphs of polynomial growth. We complement the algorithm with an almost tight lower bound for Long Path: unless the Exponential Time Hypothesis fails, no parameterized algorithm with running time 2^{k^{1-1/d-epsilon}}n^{O(1)} is possible for any positive epsilon and any integer d >= 3

    Bidimensionality and Kernels

    Get PDF
    Bidimensionality theory was introduced by [E. D. Demaine et al., J. ACM, 52 (2005), pp. 866--893] as a tool to obtain subexponential time parameterized algorithms on H-minor-free graphs. In [E. D. Demaine and M. Hajiaghayi, Bidimensionality: New connections between FPT algorithms and PTASs, in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, Philadelphia, 2005, pp. 590--601] this theory was extended in order to obtain polynomial time approximation schemes (PTASs) for bidimensional problems. In this work, we establish a third meta-algorithmic direction for bidimensionality theory by relating it to the existence of linear kernels for parameterized problems. In particular, we prove that every minor (resp., contraction) bidimensional problem that satisfies a separation property and is expressible in Countable Monadic Second Order Logic (CMSO) admits a linear kernel for classes of graphs that exclude a fixed graph (resp., an apex graph) H as a minor. Our results imply that a multitude of bidimensional problems admit linear kernels on the corresponding graph classes. For most of these problems no polynomial kernels on H-minor-free graphs were known prior to our work.publishedVersio

    Subexponential parameterized algorithms for graphs of polynomial growth

    Get PDF
    We show that for a number of parameterized problems for which only 2O(k)nO(1)2^{O(k)} n^{O(1)} time algorithms are known on general graphs, subexponential parameterized algorithms with running time 2O(k111+δlog2k)nO(1)2^{O(k^{1-\frac{1}{1+\delta}} \log^2 k)} n^{O(1)} are possible for graphs of polynomial growth with growth rate (degree) δ\delta, that is, if we assume that every ball of radius rr contains only O(rδ)O(r^\delta) vertices. The algorithms use the technique of low-treewidth pattern covering, introduced by Fomin et al. [FOCS 2016] for planar graphs; here we show how this strategy can be made to work for graphs with polynomial growth. Formally, we prove that, given a graph GG of polynomial growth with growth rate δ\delta and an integer kk, one can in randomized polynomial time find a subset AV(G)A \subseteq V(G) such that on one hand the treewidth of G[A]G[A] is O(k111+δlogk)O(k^{1-\frac{1}{1+\delta}} \log k), and on the other hand for every set XV(G)X \subseteq V(G) of size at most kk, the probability that XAX \subseteq A is 2O(k111+δlog2k)2^{-O(k^{1-\frac{1}{1+\delta}} \log^2 k)}. Together with standard dynamic programming techniques on graphs of bounded treewidth, this statement gives subexponential parameterized algorithms for a number of subgraph search problems, such as Long Path or Steiner Tree, in graphs of polynomial growth. We complement the algorithm with an almost tight lower bound for Long Path: unless the Exponential Time Hypothesis fails, no parameterized algorithm with running time 2k11δεnO(1)2^{k^{1-\frac{1}{\delta}-\varepsilon}}n^{O(1)} is possible for any ε>0\varepsilon > 0 and an integer δ3\delta \geq 3
    corecore