8,035 research outputs found

    A beginner's guide to belief revision and truth maintenance systems

    Get PDF
    This brief note is intended to familiarize the non-TMS audience with some of the basic ideas surrounding classic TMS's (truth maintenance systems), namely the justification-based TMS and the assumption-based TMS. Topics of further interest include the relation between non-monotonic logics and TMS's, efficiency and search issues, complexity concerns, as well as the variety of TMS systems that have surfaced in the past decade or so. These include probabilistic-based TMS systems, fuzzy TMS systems, tri-valued belief systems, and so on

    Ceteris Paribus Laws

    Get PDF
    Laws of nature take center stage in philosophy of science. Laws are usually believed to stand in a tight conceptual relation to many important key concepts such as causation, explanation, confirmation, determinism, counterfactuals etc. Traditionally, philosophers of science have focused on physical laws, which were taken to be at least true, universal statements that support counterfactual claims. But, although this claim about laws might be true with respect to physics, laws in the special sciences (such as biology, psychology, economics etc.) appear to have—maybe not surprisingly—different features than the laws of physics. Special science laws—for instance, the economic law “Under the condition of perfect competition, an increase of demand of a commodity leads to an increase of price, given that the quantity of the supplied commodity remains constant” and, in biology, Mendel's Laws—are usually taken to “have exceptions”, to be “non-universal” or “to be ceteris paribus laws”. How and whether the laws of physics and the laws of the special sciences differ is one of the crucial questions motivating the debate on ceteris paribus laws. Another major, controversial question concerns the determination of the precise meaning of “ceteris paribus”. Philosophers have attempted to explicate the meaning of ceteris paribus clauses in different ways. The question of meaning is connected to the problem of empirical content, i.e., the question whether ceteris paribus laws have non-trivial and empirically testable content. Since many philosophers have argued that ceteris paribus laws lack empirically testable content, this problem constitutes a major challenge to a theory of ceteris paribus laws

    A Plausibility Semantics for Abstract Argumentation Frameworks

    Get PDF
    We propose and investigate a simple ranking-measure-based extension semantics for abstract argumentation frameworks based on their generic instantiation by default knowledge bases and the ranking construction semantics for default reasoning. In this context, we consider the path from structured to logical to shallow semantic instantiations. The resulting well-justified JZ-extension semantics diverges from more traditional approaches.Comment: Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014). This is an improved and extended version of the author's ECSQARU 2013 pape

    Dimensions of Neural-symbolic Integration - A Structured Survey

    Full text link
    Research on integrated neural-symbolic systems has made significant progress in the recent past. In particular the understanding of ways to deal with symbolic knowledge within connectionist systems (also called artificial neural networks) has reached a critical mass which enables the community to strive for applicable implementations and use cases. Recent work has covered a great variety of logics used in artificial intelligence and provides a multitude of techniques for dealing with them within the context of artificial neural networks. We present a comprehensive survey of the field of neural-symbolic integration, including a new classification of system according to their architectures and abilities.Comment: 28 page

    A Purely Defeasible Argumentation Framework

    Full text link
    Argumentation theory is concerned with the way that intelligent agents discuss whether some statement holds. It is a claim-based theory that is widely used in many areas, such as law, linguistics and computer science. In the past few years, formal argumentation frameworks have been heavily studied and applications have been proposed in fields such as natural language processing, the semantic web and multi-agent systems. Studying argumentation provides results which help in developing tools and applications in these areas. Argumentation is interesting as a logic-based approach to deal with inconsistent information. Arguments are constructed using a process like logical inference, with inconsistencies giving rise to conflicts between arguments. These conflicts can then be handled by well-founded means, giving a consistent set of well-justified arguments and conclusions. Dung\u27s seminal work tells us how to handle the conflicts between arguments. However, it says nothing about the structure of arguments, or how to construct arguments and attack relationships from a knowledge base. ASPIC+ is one of the most widely used systems for structured arguments. However, there are some limitations on ASPIC+ if it is to satisfy widely accepted standards of rationality. Since most of these limitations are due to the use of strict rules, it is worth considering using a purely defeasible subset of ASPIC+. The main contribution of this dissertation is the purely defeasible argumentation framework ASPIC+D. There are three research questions related to this topic which are investigated here: (1) Do we lose anything in removing the strict elements? (2) Do purely defeasible version of theories generate the same results as the original theories? (3) What do we gain by removing the strict elements? I show that using ASPIC+D, it is possible, in a well-defined sense, to capture the same information as using ASPIC+ with strict rules. In particular, I prove that under some reasonable assumptions, it is possible to take a well-defined theory in ASPIC+, that is one with a consistent set of conclusions, and translate it into ASPIC+D such that, under the grounded semantics, we obtain the same set of justified conclusions. I also show that, under some additional assumptions, the same is true under any complete-based semantics. Furthermore, I formally characterize the situations in which translating an ASPIC+ theory that is ill-defined into ASPIC+D will lead to the same sets of justified conclusions. In doing this I deal both with ASPIC+ theories that are not closed under transposition and theories that are axiom inconsistent. At last, I analyze the two systems in the context of the non-monotonic axioms. I show that ASPIC+ and ASPIC+D satisfy exactly same axioms under what I call the “argument construction” interpretation and the “justified conclusions” interpretation under the grounded semantics. Furthermore, because of the lack of strict elements, ASPIC+ satisfies more of the non-monotonic axioms than ASPIC+ in the ``justified conclusions\u27\u27 interpretation under the preferred semantic. This means that ASPIC+ and ASPIC+D may not have the same justified conclusions under the preferred semantics
    • …
    corecore