1,784 research outputs found

    Bias and misleading concepts in an Arnica research study. Comments to improve experimental Homeopathy

    Get PDF
    Basic experimental models in Homeopathy are of major interest because they could get insightful data about the ability of high dilutions to work in a biological system. Due to the extreme difficulty in the highlighting any possible effect and trusting its reliability, methods should be particularly stringent and highly standardized. Confounders, handling process, pre-analytical errors, misleading statistics and misinterpretations may lead to experimental biases. This article tries to elucidate those factors causing bias, taking into account some recent reported evidence in the field

    Probe-level linear model fitting and mixture modeling results in high accuracy detection of differential gene expression

    Get PDF
    BACKGROUND: The identification of differentially expressed genes (DEGs) from Affymetrix GeneChips arrays is currently done by first computing expression levels from the low-level probe intensities, then deriving significance by comparing these expression levels between conditions. The proposed PL-LM (Probe-Level Linear Model) method implements a linear model applied on the probe-level data to directly estimate the treatment effect. A finite mixture of Gaussian components is then used to identify DEGs using the coefficients estimated by the linear model. This approach can readily be applied to experimental design with or without replication. RESULTS: On a wholly defined dataset, the PL-LM method was able to identify 75% of the differentially expressed genes within 10% of false positives. This accuracy was achieved both using the three replicates per conditions available in the dataset and using only one replicate per condition. CONCLUSION: The method achieves, on this dataset, a higher accuracy than the best set of tools identified by the authors of the dataset, and does so using only one replicate per condition

    RNA isolation method for single embryo transcriptome analysis in zebrafish

    Get PDF
    Background: Transcriptome analysis during embryogenesis usually requires pooling of embryos to obtain sufficient RNA. Hence, the measured levels of gene-expression represent the average mRNA levels of pooled samples and the biological variation among individuals is confounded. This can irreversibly reduce the robustness, resolution, or expressiveness of the experiment. Therefore, we developed a robust method to isolate abundant high-quality RNA from individual embryos to perform single embryo transcriptome analyses using zebrafish as a model organism. Available methods for embryonic zebrafish RNA isolation minimally utilize ten embryos. Further downscaling of these methods to one embryo is practically not feasible. Findings: We developed a single embryo RNA extraction method based on sample homogenization in liquid nitrogen, RNA extraction with phenol and column purification. Evaluation of this method showed that: the quality of the RNA was very good with an average RIN value of 8.3-8.9; the yield was always ≥ 200 ng RNA per embryo; the method was applicable to all stages of zebrafish embryogenesis; the success rate was almost 100%; and the extracted RNA performed excellent in microarray experiments in that the technical variation was much lower than the biological variation. Conclusions: Presented is a high-quality, robust RNA isolation method. Obtaining sufficient RNA from single embryos eliminates the necessity of sample pooling and its associated drawbacks. Although our RNA isolation method has been setup for transcriptome analysis in zebrafish, it can also be used for other model systems and other applications like (q)PCR and transcriptome sequencing

    poolMC: Smart pooling of mRNA samples in microarray experiments

    Get PDF
    Background: Typically, pooling of mRNA samples in microarray experiments implies mixing mRNA from several biological-replicate samples before hybridization onto a microarray chip. Here we describe an alternative smart pooling strategy in which different samples, not necessarily biological replicates, are pooled in an information theoretic efficient way. Further, each sample is tested on multiple chips, but always in pools made up of different samples. The end goal is to exploit the compressibility of microarray data to reduce the number of chips used and increase the robustness to noise in measurements. Results: A theoretical framework to perform smart pooling of mRNA samples in microarray experiments was established and the software implementation of the pooling and decoding algorithms was developed in MATLAB. A proof-of-concept smart pooled experiment was performed using validated biological samples on commercially available gene chips. Conclusions: The theoretical developments and experimental demonstration in this paper provide a useful starting point to investigate smart pooling of mRNA samples in microarray experiments. Important conditions for its successful implementation include linearity of measurements, sparsity in data, and large experiment size.

    Comprehensive analysis of correlation coefficients estimated from pooling heterogeneous microarray data

    Get PDF
    Background The synthesis of information across microarray studies has been performed by combining statistical results of individual studies (as in a mosaic), or by combining data from multiple studies into a large pool to be analyzed as a single data set (as in a melting pot of data). Specific issues relating to data heterogeneity across microarray studies, such as differences within and between labs or differences among experimental conditions, could lead to equivocal results in a melting pot approach. Results We applied statistical theory to determine the specific effect of different means and heteroskedasticity across 19 groups of microarray data on the sign and magnitude of gene-to-gene Pearson correlation coefficients obtained from the pool of 19 groups. We quantified the biases of the pooled coefficients and compared them to the biases of correlations estimated by an effect-size model. Mean differences across the 19 groups were the main factor determining the magnitude and sign of the pooled coefficients, which showed largest values of bias as they approached ±1. Only heteroskedasticity across the pool of 19 groups resulted in less efficient estimations of correlations than did a classical meta-analysis approach of combining correlation coefficients. These results were corroborated by simulation studies involving either mean differences or heteroskedasticity across a pool of N \u3e 2 groups. Conclusions The combination of statistical results is best suited for synthesizing the correlation between expression profiles of a gene pair across several microarray studies

    Microarray experiments: Considerations for experimental design

    Get PDF
    Microarrays are useful tools to investigate the expression of thousands of genes rapidly. Some researchers remain reluctant to use the technology, however, largely because of its expense. Careful design of a microarray experiment is key to generating cost-effective results. This article explores issues that researchers face when embarking on a microarray experiment for the first time. These include decisions about which microarray platform is available for the organism of interest, the degree of replication (biological and technical) needed and which design (direct or indirect, loop or balanced block) is suitable

    Technical Variables in High-Throughput miRNA Expression Profiling: Much Work Remains to Be Done

    Get PDF
    MicroRNA (miRNA) gene expression profiling has provided important insights into plant and animal biology. However, there has not been ample published work about pitfalls associated with technical parameters in miRNA gene expression profiling. One source of pertinent information about technical variables in gene expression profiling is the separate and more well-established literature regarding mRNA expression profiling. However, many aspects of miRNA biochemistry are unique. For example, the cellular processing and compartmentation of miRNAs, the differential stability of specific miRNAs, and aspects of global miRNA expression regulation require specific consideration. Additional possible sources of systematic bias in miRNA expression studies include the differential impact of pre-analytical variables, substrate specificity of nucleic acid processing enzymes used in labeling and amplification, and issues regarding new miRNA discovery and annotation. We conclude that greater focus on technical parameters is required to bolster the validity, reliability, and cultural credibility of miRNA gene expression profiling studies

    Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (V. unguiculata L. Walp).

    Get PDF
    Cowpea (V. unguiculata L. Walp) is a climate resilient legume crop important for food security. Cultivated cowpea (V. unguiculata L) generally comprises the bushy, short-podded grain cowpea dominant in Africa and the climbing, long-podded vegetable cowpea popular in Asia. How selection has contributed to the diversification of the two types of cowpea remains largely unknown. In the current study, a novel genotyping assay for over 50 000 SNPs was employed to delineate genomic regions governing pod length. Major, minor and epistatic QTLs were identified through QTL mapping. Seventy-two SNPs associated with pod length were detected by genome-wide association studies (GWAS). Population stratification analysis revealed subdivision among a cowpea germplasm collection consisting of 299 accessions, which is consistent with pod length groups. Genomic scan for selective signals suggested that domestication of vegetable cowpea was accompanied by selection of multiple traits including pod length, while the further improvement process was featured by selection of pod length primarily. Pod growth kinetics assay demonstrated that more durable cell proliferation rather than cell elongation or enlargement was the main reason for longer pods. Transcriptomic analysis suggested the involvement of sugar, gibberellin and nutritional signalling in regulation of pod length. This study establishes the basis for map-based cloning of pod length genes in cowpea and for marker-assisted selection of this trait in breeding programmes
    • …
    corecore