1,454 research outputs found

    Spectral analysis for nonstationary audio

    Full text link
    A new approach for the analysis of nonstationary signals is proposed, with a focus on audio applications. Following earlier contributions, nonstationarity is modeled via stationarity-breaking operators acting on Gaussian stationary random signals. The focus is on time warping and amplitude modulation, and an approximate maximum-likelihood approach based on suitable approximations in the wavelet transform domain is developed. This paper provides theoretical analysis of the approximations, and introduces JEFAS, a corresponding estimation algorithm. The latter is tested and validated on synthetic as well as real audio signal.Comment: IEEE/ACM Transactions on Audio, Speech and Language Processing, Institute of Electrical and Electronics Engineers, In pres

    Nonparametric neighborhood statistics for MRI denoising

    Get PDF
    technical reportThis paper presents a novel method for denoising MR images that relies on an optimal estimation, combining a likelihood model with an adaptive image prior. The method models images as random fields and exploits the properties of independent Rician noise to learn the higher-order statistics of image neighborhoods from corrupted input data. It uses these statistics as priors within a Bayesian denoising framework. This paper presents an information-theoretic method for characterizing neighborhood structure using nonparametric density estimation. The formulation generalizes easily to simultaneous denoising of multimodal MRI, exploiting the relationships between modalities to further enhance performance. The method, relying on the information content of input data for noise estimation and setting important parameters, does not require significant parameter tuning. Qualitative and quantitative results on real, simulated, and multimodal data, including comparisons with other approaches, demonstrate the effectiveness of the method

    Regularized adaptive long autoregressive spectral analysis

    Full text link
    This paper is devoted to adaptive long autoregressive spectral analysis when (i) very few data are available, (ii) information does exist beforehand concerning the spectral smoothness and time continuity of the analyzed signals. The contribution is founded on two papers by Kitagawa and Gersch. The first one deals with spectral smoothness, in the regularization framework, while the second one is devoted to time continuity, in the Kalman formalism. The present paper proposes an original synthesis of the two contributions: a new regularized criterion is introduced that takes both information into account. The criterion is efficiently optimized by a Kalman smoother. One of the major features of the method is that it is entirely unsupervised: the problem of automatically adjusting the hyperparameters that balance data-based versus prior-based information is solved by maximum likelihood. The improvement is quantified in the field of meteorological radar

    Medium run redux: technical change, factor shares and frictions in the euro area

    Get PDF
    We develop a framework for analyzing “medium-run” departures from balanced growth, and apply it to the economies of continental Europe. A time-varying factor-augmenting production function (mimicking “directed” technical change) with a below-unitary substitution elasticity coupled with supporting short-run factor demands (and price setting) is shown to account for the observed dynamics of factor incomes shares, capital deepening and the capital-output ratio. Based on careful data accounting, we also identify a rising mark-up, which we ascribe to the rise of Services. The balanced growth path emerges as a special (and testable) case of our framework, as do existing strands of medium-run debates. JEL Classification: C22, E23, E25, O30, O51adjustment costs, Effective Labor Hours, Elasticity of Substitution, euro area, Factor-Augmenting Technical Progress, Income Distribution, Medium Run, productivity

    A novel method of combining blood oxygenation and blood flow sensitive magnetic resonance imaging techniques to measure the cerebral blood flow and oxygen metabolism responses to an unknown neural stimulus.

    Get PDF
    Simultaneous implementation of magnetic resonance imaging methods for Arterial Spin Labeling (ASL) and Blood Oxygenation Level Dependent (BOLD) imaging makes it possible to quantitatively measure the changes in cerebral blood flow (CBF) and cerebral oxygen metabolism (CMRO(2)) that occur in response to neural stimuli. To date, however, the range of neural stimuli amenable to quantitative analysis is limited to those that may be presented in a simple block or event related design such that measurements may be repeated and averaged to improve precision. Here we examined the feasibility of using the relationship between cerebral blood flow and the BOLD signal to improve dynamic estimates of blood flow fluctuations as well as to estimate metabolic-hemodynamic coupling under conditions where a stimulus pattern is unknown. We found that by combining the information contained in simultaneously acquired BOLD and ASL signals through a method we term BOLD Constrained Perfusion (BCP) estimation, we could significantly improve the precision of our estimates of the hemodynamic response to a visual stimulus and, under the conditions of a calibrated BOLD experiment, accurately determine the ratio of the oxygen metabolic response to the hemodynamic response. Importantly we were able to accomplish this without utilizing a priori knowledge of the temporal nature of the neural stimulus, suggesting that BOLD Constrained Perfusion estimation may make it feasible to quantitatively study the cerebral metabolic and hemodynamic responses to more natural stimuli that cannot be easily repeated or averaged

    HiRes deconvolution of Spitzer infrared images

    Get PDF
    Spitzer provides unprecedented sensitivity in the infrared (IR), but the spatial resolution is limited by a relatively small aperture (0.85 m) of the primary mirror. In order to maximize the scientific return it is desirable to use processing techniques which make the optimal use of the spatial information in the observations. We have developed a deconvolution technique for Spitzer images. The algorithm, "HiRes" and its implementation has been discussed by Backus et al. in 2005. Here we present examples of Spitzer IR images from the Infrared Array Camera (IRAC) and MIPS, reprocessed using this technique. Examples of HiRes processing include a variety of objects from point sources to complex extended regions. The examples include comparison of Spitzer deconvolved images with high-resolution Keck and Hubble Space Telescope images. HiRes deconvolution improves the visualization of spatial morphology by enhancing resolution (to sub-arcsecond levels in the IRAC bands) and removing the contaminating sidelobes from bright sources. The results thereby represent a significant improvement over previously-published Spitzer images. The benefits of HiRes include (a) sub-arcsec resolution (~0".6-0".8 for IRAC channels); (b) the ability to detect sources below the diffraction-limited confusion level; (c) the ability to separate blended sources, and thereby provide guidance to point-source extraction procedures; (d) an improved ability to show the spatial morphology of resolved sources. We suggest that it is a useful technique to identify features which are interesting enough for follow-up deeper analysis

    Persistence models and marketing strategy.

    Get PDF
    Marketing; Persistence; Models; Model; Strategy;
    corecore