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Abstract. This paper presents a novel method for denoising MR im
ages that relies on an optimal estimation, combining a likelihood model 
with an adaptive image prior. The method models images as random 
fields and exploits the properties of independent Rician noise to learn 
the higher-order statistics of image neighborhoods from corrupted input 
data. It uses these statistics as priors within a Bayesian denoising frame
work. This paper presents an information-theoretic method for charac
terizing neighborhood structure using nonparametric density estimation.
The formulation generalizes easily to simultaneous denoising of multi
modal MRI, exploiting the relationships between modalities to further 
enhance performance. The method, relying on the information content of 
input data for noise estimation and setting important parameters, does 
not require significant parameter tuning. Qualitative and quantitative 
results on real, simulated, and multimodal data, including comparisons 
with other approaches, demonstrate the effectiveness of the method.

1 Introduction
Over the last several decades, magnetic resonance (M R ) imaging technology has 
benefited from a variety o f technological developments resulting in increased reso
lution, signal to noise ratio (SNR ), and acquisition speed. However, fundamental 
trade-offs between resolution, speed, and SNR combined with scientific, clinical, 
and financial pressures to obtain more data more quickly, result in images that 
still exhibit significant levels of noise. In particular, the need for shorter acquisi
tion times, such as in dynamic imaging, often undermines the ability to obtain 
images having both high resolution and high SNR. Furthermore, the efficacy 
of higher-level, post processing of M R  images, including tissue classification and 
organ segmentation, that assume specific models of tissue intensity (e.g. homoge
neous) , are sometimes impaired by even moderate noise levels. Hence, denoising 
M R  images remains an important problem. From a multitude of statistical and 
variational denoising formulations proposed, no particular one appears as a clear 
winner in all relevant aspects, including the reduction of randomness and inten
sity bias, structure and edge preservation, generality, reliability, automation, and 
computational cost. The paper proposes a method for denoising M R  magnitude 
data modeling images as random fields, but unlike statistical methods in liter
ature, it  does not rely on a specific, ad-hoc image prior. Instead, it estimates



the higher-order signal statistics from the neighborhood statistics o f the noisy 
input data by deconvolving the latter with the noise statistics. It then uses these 
statistics as priors within an optimal Bayesian denoising framework.

2 R elated  W ork
A  multitude o f variational/nonlinear PDE-based methods have been developed 
for a wide variety o f images and applications [15,14], with some o f these hav
ing applications to magnetic resonance imaging (M R I) [8,11, 7]. However, such 
methods impose certain kinds o f models on local image structure, and these mod
els are often too simple to capture the complexity o f anatomical M R  images. Also 
they do not take into account the bias introduced by Rician noise. Furthermore, 
they usually involve manual tuning o f critical free parameters that control the 
conditions under which the models prefer one sort o f structure over another; this 
has been an impediment to the widespread adoption of these techniques.

The wavelet literature addresses image denoising extensively [16]. Healy et 
a l [9] were among the first to apply soft-thresholding based wavelet techniques 
for denoising M R  images. Hilton et al. [10] applied a threshold-based scheme 
for functional M R I data. Nowak [13], operating on the square magnitude M R 
image, includes a Rician noise model in the threshold-based wavelet denoising 
scheme and thereby corrects for the bias introduced by the noise.

Several statistically based image processing algorithms rely on information 
theory such as the mean-shift algorithm [3]. It is a mode seeking process that 
operates only on image intensities (scalar/vector valued) and does not account 
for the neighborhood structure. As such it has been used for image segmenta
tion, but not for reconstruction. Some M R  nonuniformity correction methods are 
based on the quantification o f information content in M R  images [19,12]. They 
follow from the observation that nonuniformities increase the entropy o f the ID  
gray scale probability density functions (PD Fs). However, entropy measures on 
first-order image statistics are insufficient for denoising; thus this paper extends 
the information theoretic strategy to higher-order PDFs.

Another class o f statistical methods are based on Markov random fields [24, 
22]. The proposed method also exploits the Markov property o f the images, but 
rather than imposing an ad-hoc image model, it estimates the relevant condi
tional PDFs from the input data. We show that incorporating spatial informa
tion, via neighborhood statistics, is effective for M R I denoising and that the 
process can be bootstrapped from the image data, making a very general algo
rithm with less tuning of critical free parameters.

Previous work in estimation theory has addressed the use of optimal image 
estimation using neighborhood probabilities [21]. That work focuses on discrete 
functions and relies on inverting the channel transition matrix (noise model) to 
give a closed form estimate for source statistics. The proposed method addresses 
continuous-valued signals, which is essential for medical imaging applications, 
and thus entails deconvolving nonparametric approximations to PDFs via en
tropy reduction. It also addresses the effect o f noise in the neighborhoods that



are used to condition the estimate, hence making it more effective for reducing 
additive/multiplicative noise, which is important in medical image processing.

The method in this paper builds on our previous work in [1]. That work lays 
down the foundations for unsupervised learning of higher-order image statistics 
and proposes entropy reduction as a denoising heuristic for independent additive 
zero-mean Gaussian noise for single gray scale images. This paper uses entropy 
reduction coupled with the Rician noise model as a means to recover higher-order 
image statistics from noisy input data. It exploits such statistics for optimal 
Bayesian denoising of M R  images, with a method for computing the expectation 
of the posterior. It also addresses the question of how to utilize multimodal data 
within this optimal framework.

3 N eighborhood S tatistics for M R I D enoising
This section begins with an overview of the random-field image model and then 
describes the formulation that uses a p rio ri information o f higher-order (neigh
borhood) statistics within an optimal Bayesian estimation framework. The next 
section (Section 4) describes a way of bootstrapping this process by generating 
such priors from the noisy data itself.

3.1 Random Field Image M odel

A  random field/process [5] is a family of random variables X (f2 ;T ) ,  for some 
index set T . where, for each fixed T  =  t, the random variable X (f2 ; t )  is defined 
on the sample space Q. I f  we let T  be a set o f points defined on a discrete 
Cartesian grid and fix Q  =  uj, we have a realization o f the random field called 
the digital image, X ( oj,T ) .  In this case {< }tgT  is the set of pixels in the image. 
For 2-dimensional images t is a two-vector. We use a shorthand to denote random 
variables X (f2 ; t )  by X ( t ) .  We denote a specific realization X (u i; t )  (the digital 
image), as a deterministic function x (t ).

I f  we associate with T  a family of pixel neighborhoods N  =  such
that N t C T , t £ N t, and u £ N t if and only if t € N u, then N  is called a 
neighborhood system for the set T  and points in N t are called neighbors of t. 
We define a random vector Y ( t )  =  {X (t ) } t£ N t > denoting its realization by y (t), 
corresponding to the set of intensities at the neighbors o f pixel t. We denote 
the noiseless image by X (o j, T )  and its associated set of neighborhood intensities 
by Y(ui,T).  Correspondingly, for the observed noisy image, we use X (o j ,T )  and 
Y (o j, T ) .  For the formulation in this paper, we assume the noiseless image to be 
generated from a stationary ergodic process (in practice this assumption can be 
relaxed, somewhat). For notational simplicity, we use the short hand for random 
variables X ( t )  as X  and their realizations x ( t )  as x, dropping the index t.

3.2 Bayesian Estimation with Higher-Order Statistical Priors

The proposed strategy relies on several pieces of technology that interact to 
provide accurate, practical models of image statistics. For clarity the discussion



Fig. 1. Insets of (a) the noiseless image, (b) the noisy image (SNR 1‘2db). (c) one of the 
two images forming the higher-order prior, and (d) the denoised image (SNR 23db).

begins at a high level allowing for certain available models and estimates; succes
sive sections discuss how each o f these pieces is developed from the input data. 
Our goal is to estimate the true intensity x  from the observed noisy intensity x  by 
exploiting the neighborhood intensities. We begin with the simplest case where 
we know the uncorrupted neighborhood intensities y. We consider Bayesian es
timation with the prior P (X \ Y  =  y) and the likelihood P (X  =  ;r:|X). Assuming 
again, for simplicity, that we know the prior, Bayes rule gives the posterior as

P (X \ X  =  x, Y  =  y) =  y P ( X  =  x \ X )P (X \ Y  =  y) (1)

where r/ =  P (X  =  x\Y =  y) is a normalization factor. For a squared error loss 
function the optimal estimate is the posterior mean x  =  E [X \ X  =  x ,Y  =  y\.

In practice, two problems undermine this strategy. The first concerns obtain
ing the conditional PDFs that give the priors for an image. We propose to model 
these nonparametrically using Pa.rzen windowing with samples of image neigh
borhoods, as described in subsequent sections. These samples can come from 
either a suitable database of high SNR images (e.g. different images of the same 
modality and anatomy) or from the noisy input image itself, using a bootstrap
ping process described in Section 4. The second problem is that, even if we know 
the priors, we know only y for the input data (not y). To address this issue, we 
start with y as an approximation for y and iterate on the posterior estimates to 
a fixed point where the posterior estimate for each pixel is consistent with the 
prior given by the estimates o f its neighbors. Thus, as the iterations proceed, the 
noise in the pixel intensities reduces and the neighborhoods give progressively 
better estimates o f the prior. The proposed algorithm is therefore:

1. The input image I  comprises a set of intensities {;r:}fgr  and neighborhoods 
{y}t(zT- These values form the initial values (J° =  I )  of a sequence of images 
J°, J1, J2, ... , with corresponding intensities ;c°, x l , x 1, . . .  and neighborhoods

r . r . r ......
2. Compute the likelihood PD F P (X  =  i| X ), as described in Section 3.4.
3. For each pixel in the current image Jm, estimate the higher-order prior 

P (X \ Y  =  ym), as described in Section 3.3.
4. Construct a new image Jm+1 with intensities x m+l as the posterior mean 

x m+1 =  E [X \ X  =  x, Y  =  ym].



5. I f  || Tm+1 — Tm || >  S (small threshold), go to Step 3, otherwise Tm+1 is the 
output.

Figure 1 shows a demonstration o f this concept on simulated M R I data from 
the BrainWeb [2] project. We corrupt a T1 image with Rician noise and use two 
other similar, but not identical, images as priors. We use 9 x 9  neighborhoods. 
Figure 1 (c) is one o f the two images representing the nonparametric prior model 
(Parzen windows, 500 local random samples for each t ),  and Figure 1(d) is the 
output image. This example shows the power of the prior— the denoised image 
exhibits structures that are barely visible in the noisy version. The coming sec
tions describe the underlying technology in this estimation process, and give an 
algorithm for generating data-driven prior models without an example.

3.3 M odeling the Prior: Nonparametric Density Estimation

Bayesian estimation using higher-order statistics entails the estimation of higher- 
order conditional PDFs. Despite theoretical arguments suggesting that density 
estimation beyond a few dimensions is impractical, the empirical evidence from 
the statistics literature is more optimistic [17,1]. The results in this paper confirm 
that observation. Moreover, stationarity implies that the random vector (X , Y )  
exhibits identical marginal PDFs, leading to more accurate density estimates 
[17]. In addition, the neighborhoods in natural images have a lower-dimensional 
topology in the high-dimensional feature space [4] that aids in density estimation.

We use the Parzen-window nonparametric density estimation technique [6] 
with an n-dimensional Gaussian kernel G n(z,^/n), where n is the neighborhood 
size. Having no a priori information on the structure o f the PDFs, we choose an 
isotropic Gaussian, i.e. H/n= crp In, where I n is the n x n identity matrix. Using 
optimal values o f the Parzen-window parameters is critical for success, and that 
can be difficult in such high-dimensional spaces; we have developed a method 
for automatically choosing this parameter, as described Section 4.3.

For a stationary ergodic process, the estimated prior is

P(X\Y =  it )  =  Gn &  ~  V r .^ )G i (3 j. f f i)
( ' J%) H t ^ A i G n i V i - V M  U

where the set A i is a small subset of T , chosen at random for each ti, and Xj 
and ijj are shorthand for x ( t j )  and y ( t j ) respectively. This results in a stochastic 
approximation for the conditional PDFs and the corresponding posteriors.

3.4 Approximating the Rician Likelihood

The Rician PD F  o f the M R I intensities does not lend itself to analytical, closed- 
form representations o f quantities, such as the likelihood and the posterior ex
pectation, which we need for each iteration o f this algorithm. In practice we have 
found that the shape of the PD F  is less important than having good estimates 
of variance and bias. Therefore, we develop a method of approximating Rician



Fig. 2. Gaussians (solid lilies) approximating likelihood functions (non-solid lines) for 
different observed signal magnitudes (underlying noise =  N (0,100)).

noise (via the likelihood) by additive Gaussian noise with a signal-dependent 
mean and variance. For the underlying independent noise Ar(0,o-2), and o  esti
mated using the method described by Nowak [13], the likelihood is

/  \  ^ rr* rr*
P  ( X  =  ;7:|X =  ;£:J =  —  e x p ( - ^ _ ) 7 o ( ^ )  (3)

where T0(-) is the zero-order modified Bessel function o f the first kind. For a 
discrete set of observed signal magnitudes x, we fit a Gaussian to the likelihoods 
via a Levenberg-Marquardt optimization scheme. Tn this way, we create (in a 
preprocessing step) a lookup table mapping x to the parameters of the Gaussian 
approximation, and interpolate the parameters between sample points as needed 
in subsequent likelihood calculations. At high SNR. the means are close to x  while 
at low SNR. the means are substantially lower. Figure 2 shows the likelihood 
PDFs and the approximated Gaussians for various observed signal magnitudes.

3.5 Com puting the Posterior M ean

Equations 1 and 2, and the Gaussian approximated likelihood, give the posterior

n / v i v  - 1 T ,t;€A , G n(5i -  V j^ n )G -i(X j,a % )
P (X \ X  =  x,\  = V i )  =  - ----— ^ ------- r  , .  ~  '------- G i (x L ,a L ), (4)

'i  Z ^ t j t A i  U j :  ^ n )

where o 2P  is the Parzen-window kernel variance, and x L and a\ are the mean and 
variance of the Gaussian approximation to the likelihood (from the lookup table). 
The posterior mean is given by a sum of expectations of Gaussian products:

f ~ .  . 1 2 t : e A ,  G n i f j i  -  y j , & n ) R i j h f i j
h [ X \ X  =  x, Y  =  tji\ - '

E t;e .4, G n (iji Uj 1 ^  ij

r , exp (-r i.0 (C'.y -  B'fj/4)) Sf l i i j

V M &P +  5 i)  ' 2 :

4 _  ,, ..xj ap  +  * i ° l .
U os.2 =.2 - %i ~2 I =.2 - t3 ~2 i =.2 ’l o P o L o P  +  o L Op +  o L

where we exploit the property that the Gaussian is its own conjugate.



4 B ootstrap pin g N eighborhood S tatistics from N oisy  
Input D ata

So far we discussed denoising with higher-order statistical priors. In the absence 
of noiseless/high-SNR example images, we must estimate these from the noisy 
input image. I f  we wish to construct an approximation to the prior (neighborhood 
statistics) from the input data, we must address the affects o f noise on this PDF. 
We approximate Rician noise as (nonstationary) additive Gaussian. Hence the 
proposed method derives from the effects of additive Gaussian noise on PDFs. 
Additive noise in the signal corresponds to a convolution o f the PDFs o f the 
signal and noise. Therefore, for probability densities, noise reduction corresponds 
to deconvolving the PD F  of the input data by the PD F  of the noise.

4.1 Estimating Neighborhood Statistics

Rician noise affects the conditional PDFs in two ways: (a) it introduces a bias 
(shift), and (b ) it increases its entropy h (X \ Y  =  y) [18]. Hence, we propose en
tropy reduction coupled with bias correction in an attempt to recover the PDFs. 
O f course, entropy reduction might also partly eliminate the normal variability 
in the image. However, we are motivated by the observation that noiseless images 
tend to have very low entropies relative to their noisy versions. Thus, entropy 
reduction first affects the noise substantially more than the image statistics. We 
propose bias correction by shifting intensities x  towards their likelihood mean 
E [X  =  x\X). For the case of zero noise these two values coincide, thereby elimi
nating the need for any correction. Otherwise, we move x  towards its likelihood 
mean with a force proportional to the difference. Thus, to restore the conditional 
PDFs of the input, we minimize the functional

The first term in the functional sharpens the conditional PDFs, and the second 
term aids in bias correction. We use an iterative gradient-descent optimization 
scheme with finite forward differences. The PD F  restoration proceeds as follows:

1. The input image I  comprises a set of intensities { x } 1£t .  These values form 
the initial values of a sequence of images 7°, I 1 , 1 2, —

2. Using the current image I m. construct a new image Tm+1 with intensities 

x m+1 =  x m -  A idh/dxm -  A2 ( x m -  E [X  =  x m \X] ) .

3. I f  the estimated noise level (as per the method in [13]) in Tm+1 is zero, then 
stop. Otherwise, go to Step 2.

We call the final image generated by this process as the PDF-restored  image. 
This image forms the example image, from which samples are taken to model 
the prior conditional probabilities in Equation 2. In practice, the results are 
somewhat insensitive to the values of Ai and A2, and we choose A i . as described 
in Section 5. related to a mean-shift update.

2
(6)



4.2 Entropy M inim ization via Gradient Descent

Entropy is the expectation o f negative log-probability, and therefore we can 
approximate it with the sample mean [20]. For a stationary ergodic process, we 
approximate the entropy of the conditional PD F  as

h (X \Y  =  y-i) w\ E lo?IT
t i € T

£ i

\Ai\P(Y  =  in)
(7)

where w-i =  (x-i,y-i), A-i is a small subset of T , chosen at random; as done in 
Section 3.3 for computing the prior. A  variety of practical issues associated with 
this strategy, are discussed in Section 4.3. The gradient descent for w-i is

G n+i(w i

Li£A, t-k^Ai G n + l(w
.r„ I ---- f n U W* -  Wi )  (8)W  k ,  W n + 1 )

where dw-i/dx-i projects the n+ 1  dimensional vector w-i onto the dimension asso
ciated with the element x-i. In previous work [1 ] we have shown that, a timestep 
of \T\cr2p  corresponds to a mean-shift procedure on the conditional PDFs; that 
is, each data value moves to the weighted average of the sample data.

4.3 Implementation Issues

This section discusses several practical issues that are crucial for the effectiveness 
of the entropy reduction and prior estimation on image neighborhoods. A  more 
detailed discussion on these issues is given in [1 ].

Parzen-window kernel width: Parzen-window density estimates, using finitely 
many samples, are greatly sensitive to the value of the Gaussian kernel dp  [6]. 
The particular choice o f ap  is related to the sample size \Ai\ in the stochastic 
approximation. We automatically compute an optimal ap, that minimizes the 
average entropy o f all conditional PDFs in the image, via a Newton-Raphson 
optimization scheme. Our experiments show that for sufficiently large \Ai\ addi
tional samples do not significantly affect the estimates o f entropy and ap, and 
thus | Ai| can also be generated automatically from the input data.

Stationarity and local sampling strategies: In practice, image statistics are 
not homogeneous, and statistics for most images are more accurately modeled 
as piecewise stationary ergodic. Thus the set A-i o f samples used to evaluate 
entropy and process pixel t-t should consist o f pixels that are spatially near ti. To 
achieve this, we choose a unique set of samples for each pixel ti at random from 
a Gaussian distribution on the image coordinates, centered at ti with standard 
deviation 30. Thus, the set A i comprises pixels biased to be more near t j. This 
strategy gives consistently better results than uniform sampling, and we have 
found that the it performs well for virtually any choice of the standard deviation 
that encompasses more than several hundred pixels. For this sampling strategy,
| Ai| is automatically computed to be 500 for all examples in the paper.



N eighborhood shape and size: Larger neighborhoods generally yield better 
results but take longer to compute. Typically 9 x 9  neighborhoods suffice, and 
we use them for the results in this paper. To obtain rotational invariance we use 
a metric in the feature space (neighborhood mask) that controls the influence of 
each neighborhood pixel by making distances in this space less sensitive to neigh
borhood rotations. Likewise image boundaries are handled through anisotropic 
metrics that do not distort the neighborhood statistics of the image.

Com putation: The computational complexity of the proposed method is sig
nificant: 0(\T\\Ai\ED) where I) is the image dimension and E  is the extent of 
the neighborhood along a dimension. This is exponential in E. and our current 
results are limited to 2D images. The literature suggests some potential improve
ments (e.g. [23]). However, the purpose of this paper is to introduce the theory 
and methodology algorithmic improvements are the subject of future work.

5 E xperim en ts  and Resu lts

We show results using (a) real T1 noisy data, as well as (b ) simulated M R  
data (181x217 pixels) obtained via BrainWeb [2] for unimodal and multimodal 
denoising. We simulate Rician noise by adding zero-mean Gaussian noise to the 
real and imaginary parts of the simulated M R  data and taking the magnitude. 
For entropy minimization in the functional 6, the time step Ai =  |T|<t j (=  mean- 
shift update) can lead to oscillations, because of interactions of neighborhoods

Fig. 3. (a) Noiseless T1 image, (b) Noisy image (gray matter SNR 12db, normalized 
squared error 1.0). (c) PDF-restored image (13 iterations) (as described in Section 4.1). 
(d) Denoised image (5 iterations, gray matter SNR 23db, normalized squared error 
0.16). (e)-(h) show zoomed insets of images (a)-(d).



Fig. 4. Multimodal denoising. (a)-(c) Noisy T l, T2, PD images (signal intensity 
range 0:100, underlying noise Ar(0,400)) (d) Zoomed inset of noisy T l  image. 
(e ),(f) Zoomed insets of PDF-restored (as described in Section 4.1) and denoised T l  
images. (g),(h) Zoomed insets of PDF-restored and denoised T2 images.

from one iteration to  the next. We have found th a t a tim e step of Ai =  0.2|T|<t2 
alleviates this effect. We fix A2 =  0.2. We compute SNR. as 2Q\og{x/a) where x  is 
the signal m agnitude and the (estim ated) underlying noise PD F is N ( 0, a2). Each 
iteration on these da ta  sets takes about 2 m inutes on a Pentium-TV machine.

M ultimodal denoising entails a simultaneous denoising of T l ,  T2, and PD 
images in a coupled m anner, treating the combination of images as an image of 
vectors with the PD Fs in the combined probability space. Although this paper 
shows results with multimodal images th a t are well aligned, we have evidence 
th a t the denoising is fairly robust to  minor m isregistration errors. The results 
show th a t incorporating more information in the denoising framework, via im
ages of multiple modalities, produces consistently better results.

Figure 3 shows a denoising example using T l da ta  (SNR. 12db) for the gray 
m atter. W ith a normalized sum of squared pixel errors for the noisy image as 
1.0, the denoised image has a squared error of 0.16. In general, the PD F-restored 
image (as described in Section 4.1) appears more sm ooth th an  the denoised image 
and may have less error. However the restoration of the neighborhood PDFs 
can produce some loss of structure, and the subsequent Bayesian estimation, 
which retains a fidelity to  the input data, helps retain some of those details. We 
can see this behavior in the regions corresponding to  the cerebro spinal fluid. 
This is even more clear in the next denoising example in Figure 4. W ith the 
same underlying noise PD F the normalized squared errors for the T2 and PD



Fig. 5. (a) Real noisy image, (b) PDF-restored image (as described in Section 4.1). 
(c) Denoised image, (d )-(f) are zoomed insets of (a)-(c).

modalities are 0.3 and 0.19, respectively. Performing m ultim odal denoising with 
T I. T2, and PD da ta  gives improved normalized squared errors of 0.10, 0.29, 
and 0.16, respectively.

Figure 4 shows T I. T2 and PD images (signal intensity range 0:100) with the 
underlying noise PD F as JV(0,400). The SNR is 6db for the gray m atter. Here, 
with a normalized squared error for the noisy image as 1.0. the squared error for 
the T I. T2. and PD denoised images are 0.08, 0.32. and 0.09 respectively. The 
squared error for T I  is significantly be tte r than  results in [13] for an equivalent 
gray m atter SNR. M ultimodal denoising. using T I, T2 and PD all together, gives 
normalized squared errors as 0.06, 0.17 and 0.07, respectively. Figure 5 shows 
results using real T I  noisy MRI data.
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