5 research outputs found

    Deconstructing Approximate Offsets

    Full text link
    We consider the offset-deconstruction problem: Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance \eps in Hausdorff distance, as the Minkowski sum of another polygonal shape P with a disk of fixed radius? If it does, we also seek a preferably simple-looking solution P; then, P's offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give an O(n log n)-time exact decision algorithm that handles any polygonal shape, assuming the real-RAM model of computation. A variant of the algorithm, which we have implemented using CGAL, is based on rational arithmetic and answers the same deconstruction problem up to an uncertainty parameter \delta; its running time additionally depends on \delta. If the input shape is found to be approximable, this algorithm also computes an approximate solution for the problem. It also allows us to solve parameter-optimization problems induced by the offset-deconstruction problem. For convex shapes, the complexity of the exact decision algorithm drops to O(n), which is also the time required to compute a solution P with at most one more vertex than a vertex-minimal one.Comment: 18 pages, 11 figures, previous version accepted at SoCG 2011, submitted to DC

    Map schematization with circular arcs

    Get PDF
    We present an algorithm to compute schematic maps with circular arcs. Our algorithm iteratively replaces two consecutive arcs with a single arc to reduce the complexity of the output map and thus to increase its level of abstraction. Our main contribution is a method for replacing arcs that meet at high-degree vertices. This allows us to greatly reduce the output complexity, even for dense networks. We experimentally evaluate the effectiveness of our algorithm in three scenarios: territorial outlines, road networks, and metro maps. For the latter, we combine our approach with an algorithm to more evenly distribute stations. Our experiments show that our algorithm produces high-quality results for territorial outlines and metro maps. However, the lack of caricature (exaggeration of typical features) makes it less useful for road networks

    Exploring Curved Schematization of Territorial Outlines

    Full text link

    Similarity measures and algorithms for cartographic schematization

    Get PDF

    Cartographic modelling for automated map generation

    Get PDF
    corecore