7 research outputs found

    Separating Cook Completeness from Karp-Levin Completeness Under a Worst-Case Hardness Hypothesis

    Get PDF
    We show that there is a language that is Turing complete for NP but not many-one complete for NP, under a worst-case hardness hypothesis. Our hypothesis asserts the existence of a non-deterministic, double-exponential time machine that runs in time O(2^2^n^c) (for some c > 1) accepting Sigma^* whose accepting computations cannot be computed by bounded-error, probabilistic machines running in time O(2^2^{beta * 2^n^c) (for some beta > 0). This is the first result that separates completeness notions for NP under a worst-case hardness hypothesis

    Nonuniform Reductions and NP-Completeness

    Get PDF
    Nonuniformity is a central concept in computational complexity with powerful connections to circuit complexity and randomness. Nonuniform reductions have been used to study the isomorphism conjecture for NP and completeness for larger complexity classes. We study the power of nonuniform reductions for NP0completeness, obtaining both separations and upper bounds for nonuniform completeness vs uniform complessness in NP. Under various hypotheses, we obtain the following separations: 1. There is a set complete for NP under nonuniform many-one reductions, but not under uniform many-one reductions. This is true even with a single bit of nonuniform advice. 2. There is a set complete for NP under nonuniform many-one reductions with polynomial-size advice, but not under uniform Turing reductions. That is, polynomial nonuniformity is stronger than a polynomial number of queries. 3. For any fixed polynomial p(n), there is a set complete for NP under uniform 2-truth-table reductions, but not under nonuniform many-one reductions that use p(n) advice. That is, giving a uniform reduction a second query makes it more powerful than a nonuniform reduction with fixed polynomial advice. 4. There is a set complete for NP under nonuniform many-one reductions with polynomial ad- vice, but not under nonuniform many-one reductions with logarithmic advice. This hierarchy theorem also holds for other reducibilities, such as truth-table and Turing. We also consider uniform upper bounds on nonuniform completeness. Hirahara (2015) showed that unconditionally every set that is complete for NP under nonuniform truth-table reductions that use logarithmic advice is also uniformly Turing-complete. We show that under a derandomization hypothesis, the same statement for truth-table reductions and truth-table completeness also holds

    Bi-immunity separates strong NP-completeness notions

    Get PDF
    Abstract. We prove that if for some É›> 0, NP contains a set that is DTIME(2 nÉ›)-bi-immune, then NP contains a set that is 2-Turing complete for NP (hence 3-truth-table complete) but not 1-truth-table complete for NP. Thus this hypothesis implies a strong separation of completeness notions for NP. Lutz and Mayordomo [LM96] and Ambos-Spies and Bentzien [ASB00] previously obtained the same consequence using strong hypotheses involving resource-bounded measure and/or category theory. Our hypothesis is weaker and involves no assumptions about stochastic properties of NP.

    Autoreducibility of NP-Complete Sets

    Get PDF
    We study the polynomial-time autoreducibility of NP-complete sets and obtain separations under strong hypotheses for NP. Assuming there is a p-generic set in NP, we show the following: - For every k≥2k \geq 2, there is a kk-T-complete set for NP that is kk-T autoreducible, but is not kk-tt autoreducible or (k−1)(k-1)-T autoreducible. - For every k≥3k \geq 3, there is a kk-tt-complete set for NP that is kk-tt autoreducible, but is not (k−1)(k-1)-tt autoreducible or (k−2)(k-2)-T autoreducible. - There is a tt-complete set for NP that is tt-autoreducible, but is not btt-autoreducible. Under the stronger assumption that there is a p-generic set in NP ∩\cap coNP, we show: - For every k≥2k \geq 2, there is a kk-tt-complete set for NP that is kk-tt autoreducible, but is not (k−1)(k-1)-T autoreducible. Our proofs are based on constructions from separating NP-completeness notions. For example, the construction of a 2-T-complete set for NP that is not 2-tt-complete also separates 2-T-autoreducibility from 2-tt-autoreducibility

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    corecore