724 research outputs found

    Vehicle-Rear: A New Dataset to Explore Feature Fusion for Vehicle Identification Using Convolutional Neural Networks

    Full text link
    This work addresses the problem of vehicle identification through non-overlapping cameras. As our main contribution, we introduce a novel dataset for vehicle identification, called Vehicle-Rear, that contains more than three hours of high-resolution videos, with accurate information about the make, model, color and year of nearly 3,000 vehicles, in addition to the position and identification of their license plates. To explore our dataset we design a two-stream CNN that simultaneously uses two of the most distinctive and persistent features available: the vehicle's appearance and its license plate. This is an attempt to tackle a major problem: false alarms caused by vehicles with similar designs or by very close license plate identifiers. In the first network stream, shape similarities are identified by a Siamese CNN that uses a pair of low-resolution vehicle patches recorded by two different cameras. In the second stream, we use a CNN for OCR to extract textual information, confidence scores, and string similarities from a pair of high-resolution license plate patches. Then, features from both streams are merged by a sequence of fully connected layers for decision. In our experiments, we compared the two-stream network against several well-known CNN architectures using single or multiple vehicle features. The architectures, trained models, and dataset are publicly available at https://github.com/icarofua/vehicle-rear

    Multimodal Machine Learning for Automated ICD Coding

    Full text link
    This study presents a multimodal machine learning model to predict ICD-10 diagnostic codes. We developed separate machine learning models that can handle data from different modalities, including unstructured text, semi-structured text and structured tabular data. We further employed an ensemble method to integrate all modality-specific models to generate ICD-10 codes. Key evidence was also extracted to make our prediction more convincing and explainable. We used the Medical Information Mart for Intensive Care III (MIMIC -III) dataset to validate our approach. For ICD code prediction, our best-performing model (micro-F1 = 0.7633, micro-AUC = 0.9541) significantly outperforms other baseline models including TF-IDF (micro-F1 = 0.6721, micro-AUC = 0.7879) and Text-CNN model (micro-F1 = 0.6569, micro-AUC = 0.9235). For interpretability, our approach achieves a Jaccard Similarity Coefficient (JSC) of 0.1806 on text data and 0.3105 on tabular data, where well-trained physicians achieve 0.2780 and 0.5002 respectively.Comment: Machine Learning for Healthcare 201

    Attention Mechanism for Recognition in Computer Vision

    Get PDF
    It has been proven that humans do not focus their attention on an entire scene at once when they perform a recognition task. Instead, they pay attention to the most important parts of the scene to extract the most discriminative information. Inspired by this observation, in this dissertation, the importance of attention mechanism in recognition tasks in computer vision is studied by designing novel attention-based models. In specific, four scenarios are investigated that represent the most important aspects of attention mechanism.First, an attention-based model is designed to reduce the visual features\u27 dimensionality by selectively processing only a small subset of the data. We study this aspect of the attention mechanism in a framework based on object recognition in distributed camera networks. Second, an attention-based image retrieval system (i.e., person re-identification) is proposed which learns to focus on the most discriminative regions of the person\u27s image and process those regions with higher computation power using a deep convolutional neural network. Furthermore, we show how visualizing the attention maps can make deep neural networks more interpretable. In other words, by visualizing the attention maps we can observe the regions of the input image where the neural network relies on, in order to make a decision. Third, a model for estimating the importance of the objects in a scene based on a given task is proposed. More specifically, the proposed model estimates the importance of the road users that a driver (or an autonomous vehicle) should pay attention to in a driving scenario in order to have safe navigation. In this scenario, the attention estimation is the final output of the model. Fourth, an attention-based module and a new loss function in a meta-learning based few-shot learning system is proposed in order to incorporate the context of the task into the feature representations of the samples and increasing the few-shot recognition accuracy.In this dissertation, we showed that attention can be multi-facet and studied the attention mechanism from the perspectives of feature selection, reducing the computational cost, interpretable deep learning models, task-driven importance estimation, and context incorporation. Through the study of four scenarios, we further advanced the field of where \u27\u27attention is all you need\u27\u27

    Edge-Computing Deep Learning-Based Computer Vision Systems

    Get PDF
    Computer vision has become ubiquitous in today\u27s society, with applications ranging from medical imaging to visual diagnostics to aerial monitoring to self-driving vehicles and many more. Common to many of these applications are visual perception systems which consist of classification, localization, detection, and segmentation components, just to name a few. Recently, the development of deep neural networks (DNN) have led to great advancements in pushing state-of-the-art performance in each of these areas. Unlike traditional computer vision algorithms, DNNs have the ability to generalize features previously hand-crafted by engineers specific to the application; this assumption models the human visual system\u27s ability to generalize its surroundings. Moreover, convolutional neural networks (CNN) have been shown to not only match, but exceed performance of traditional computer vision algorithms as the filters of the network are able to learn important features present in the data. In this research we aim to develop numerous applications including visual warehouse diagnostics and shipping yard managements systems, aerial monitoring and tracking from the perspective of the drone, perception system model for an autonomous vehicle, and vehicle re-identification for surveillance and security. The deep learning models developed for each application attempt to match or exceed state-of-the-art performance in both accuracy and inference time; however, this is typically a trade-off when designing a network where one or the other can be maximized. We investigate numerous object-detection architectures including Faster R-CNN, SSD, YOLO, and a few other variations in an attempt to determine the best architecture for each application. We constrain performance metrics to only investigate inference times rather than training times as none of the optimizations performed in this research have any effect on training time. Further, we will also investigate re-identification of vehicles as a separate application add-on to the object-detection pipeline. Re-identification will allow for a more robust representation of the data while leveraging techniques for security and surveillance. We also investigate comparisons between architectures that could possibly lead to the development of new architectures with the ability to not only perform inference relatively quickly (or in close-to real-time), but also match the state-of-the-art in accuracy performance. New architecture development, however, depends on the application and its requirements; some applications need to run on edge-computing (EC) devices, while others have slightly larger inference windows which allow for cloud computing with powerful accelerators

    One-shot lip-based biometric authentication: extending behavioral features with authentication phrase information

    Full text link
    Lip-based biometric authentication (LBBA) is an authentication method based on a person's lip movements during speech in the form of video data captured by a camera sensor. LBBA can utilize both physical and behavioral characteristics of lip movements without requiring any additional sensory equipment apart from an RGB camera. State-of-the-art (SOTA) approaches use one-shot learning to train deep siamese neural networks which produce an embedding vector out of these features. Embeddings are further used to compute the similarity between an enrolled user and a user being authenticated. A flaw of these approaches is that they model behavioral features as style-of-speech without relation to what is being said. This makes the system vulnerable to video replay attacks of the client speaking any phrase. To solve this problem we propose a one-shot approach which models behavioral features to discriminate against what is being said in addition to style-of-speech. We achieve this by customizing the GRID dataset to obtain required triplets and training a siamese neural network based on 3D convolutions and recurrent neural network layers. A custom triplet loss for batch-wise hard-negative mining is proposed. Obtained results using an open-set protocol are 3.2% FAR and 3.8% FRR on the test set of the customized GRID dataset. Additional analysis of the results was done to quantify the influence and discriminatory power of behavioral and physical features for LBBA.Comment: 28 pages, 10 figures, 7 table

    Breaking Down the Barriers To Operator Workload Estimation: Advancing Algorithmic Handling of Temporal Non-Stationarity and Cross-Participant Differences for EEG Analysis Using Deep Learning

    Get PDF
    This research focuses on two barriers to using EEG data for workload assessment: day-to-day variability, and cross- participant applicability. Several signal processing techniques and deep learning approaches are evaluated in multi-task environments. These methods account for temporal, spatial, and frequential data dependencies. Variance of frequency- domain power distributions for cross-day workload classification is statistically significant. Skewness and kurtosis are not significant in an environment absent workload transitions, but are salient with transitions present. LSTMs improve day- to-day feature stationarity, decreasing error by 59% compared to previous best results. A multi-path convolutional recurrent model using bi-directional, residual recurrent layers significantly increases predictive accuracy and decreases cross-participant variance. Deep learning regression approaches are applied to a multi-task environment with workload transitions. Accounting for temporal dependence significantly reduces error and increases correlation compared to baselines. Visualization techniques for LSTM feature saliency are developed to understand EEG analysis model biases

    Re-Identification in Urban Scenarios: A Review of Tools and Methods

    Get PDF
    With the widespread use of surveillance image cameras and enhanced awareness of public security, objects, and persons Re-Identification (ReID), the task of recognizing objects in non-overlapping camera networks has attracted particular attention in computer vision and pattern recognition communities. Given an image or video of an object-of-interest (query), object identification aims to identify the object from images or video feed taken from different cameras. After many years of great effort, object ReID remains a notably challenging task. The main reason is that an object's appearance may dramatically change across camera views due to significant variations in illumination, poses or viewpoints, or even cluttered backgrounds. With the advent of Deep Neural Networks (DNN), there have been many proposals for different network architectures achieving high-performance levels. With the aim of identifying the most promising methods for ReID for future robust implementations, a review study is presented, mainly focusing on the person and multi-object ReID and auxiliary methods for image enhancement. Such methods are crucial for robust object ReID, while highlighting limitations of the identified methods. This is a very active field, evidenced by the dates of the publications found. However, most works use data from very different datasets and genres, which presents an obstacle to wide generalized DNN model training and usage. Although the model's performance has achieved satisfactory results on particular datasets, a particular trend was observed in the use of 3D Convolutional Neural Networks (CNN), attention mechanisms to capture object-relevant features, and generative adversarial training to overcome data limitations. However, there is still room for improvement, namely in using images from urban scenarios among anonymized images to comply with public privacy legislation. The main challenges that remain in the ReID field, and prospects for future research directions towards ReID in dense urban scenarios, are also discussed

    Deep Feature Learning and Adaptation for Computer Vision

    Get PDF
    We are living in times when a revolution of deep learning is taking place. In general, deep learning models have a backbone that extracts features from the input data followed by task-specific layers, e.g. for classification. This dissertation proposes various deep feature extraction and adaptation methods to improve task-specific learning, such as visual re-identification, tracking, and domain adaptation. The vehicle re-identification (VRID) task requires identifying a given vehicle among a set of vehicles under variations in viewpoint, illumination, partial occlusion, and background clutter. We propose a novel local graph aggregation module for feature extraction to improve VRID performance. We also utilize a class-balanced loss to compensate for the unbalanced class distribution in the training dataset. Overall, our framework achieves state-of-the-art (SOTA) performance in multiple VRID benchmarks. We further extend our VRID method for visual object tracking under occlusion conditions. We motivate visual object tracking from aerial platforms by conducting a benchmarking of tracking methods on aerial datasets. Our study reveals that the current techniques have limited capabilities to re-identify objects when fully occluded or out of view. The Siamese network based trackers perform well compared to others in overall tracking performance. We utilize our VRID work in visual object tracking and propose Siam-ReID, a novel tracking method using a Siamese network and VRID technique. In another approach, we propose SiamGauss, a novel Siamese network with a Gaussian Head for improved confuser suppression and real time performance. Our approach achieves SOTA performance on aerial visual object tracking datasets. A related area of research is developing deep learning based domain adaptation techniques. We propose continual unsupervised domain adaptation, a novel paradigm for domain adaptation in data constrained environments. We show that existing works fail to generalize when the target domain data are acquired in small batches. We propose to use a buffer to store samples that are previously seen by the network and a novel loss function to improve the performance of continual domain adaptation. We further extend our continual unsupervised domain adaptation research for gradually varying domains. Our method outperforms several SOTA methods even though they have the entire domain data available during adaptation
    corecore