324 research outputs found

    A comparison of techniques to detect similarities in cloud virtual machines

    Get PDF
    Scalability in monitoring and management of cloud data centres may be improved through the clustering of virtual machines (VMs) exhibiting similar behaviour. However, available solutions for automatic VM clustering present some important drawbacks that hinder their applicability to real cloud scenarios. For example, existing solutions show a clear trade-off between the accuracy of the VMs clustering and the computational cost of the automatic process; moreover, their performance shows a strong dependence on specific technique parameters. To overcome these issues, we propose a novel approach for VM clustering that uses Mixture of Gaussians (MoGs) together with the Kullback-Leiber divergence to model similarity between VMs. Furthermore, we provide a thorough experimental evaluation of our proposal and of existing techniques to identify the most suitable solution for different workload scenarios

    Gaussian Mixture Reduction of Tracking Multiple Maneuvering Targets in Clutter

    Get PDF
    The problem of tracking multiple maneuvering targets in clutter naturally leads to a Gaussian mixture representation of the Provability Density Function (PDF) of the target state vector. State-of-the-art Multiple Hypothesis Tracking (MHT) techniques maintain the mean, covariance and probability weight corresponding to each hypothesis, yet they rely on ad hoc merging and pruning rules to control the growth of hypotheses

    Modelling the head and neck region for microwave imaging of cervical lymph nodes

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Radiações em Diagnóstico e Terapia), Universidade de Lisboa, Faculdade de Ciências, 2020O termo “cancro da cabeça e pescoço” refere-se a um qualquer tipo de cancro com início nas células epiteliais das cavidades oral e nasal, seios perinasais, glândulas salivares, faringe e laringe. Estes tumores malignos apresentaram, em 2018, uma incidência mundial de cerca de 887.659 novos casos e taxa de mortalidade superior a 51%. Aproximadamente 80% dos novos casos diagnosticados nesse ano revelaram a proliferação de células cancerígenas dos tumores para outras regiões do corpo através dos vasos sanguíneos e linfáticos das redondezas. De forma a determinar o estado de desenvolvimento do cancro e as terapias a serem seguidas, é fundamental a avaliação dos primeiros gânglios linfáticos que recebem a drenagem do tumor primário – os gânglios sentinela – e que, por isso, apresentam maior probabilidade de se tornarem os primeiros alvos das células tumorais. Gânglios sentinela saudáveis implicam uma menor probabilidade de surgirem metástases, isto é, novos focos tumorais decorrentes da disseminação do cancro para outros órgãos. O procedimento standard que permite o diagnóstico dos gânglios linfáticos cervicais, gânglios que se encontram na região da cabeça e pescoço, e o estadiamento do cancro consiste na remoção cirúrgica destes gânglios e subsequente histopatologia. Para além de ser um procedimento invasivo, a excisão cirúrgica dos gânglios linfáticos representa perigos tanto para a saúde mental e física dos pacientes, como para a sua qualidade de vida. Dores, aparência física deformada (devido a cicatrizes), perda da fala ou da capacidade de deglutição são algumas das repercussões que poderão advir da remoção de gânglios linfáticos da região da cabeça e pescoço. Adicionalmente, o risco de infeção e linfedema – acumulação de linfa nos tecidos intersticiais – aumenta significativamente com a remoção de uma grande quantidade de gânglios linfáticos saudáveis. Também os encargos para os sistemas de saúde são elevados devido à necessidade de monitorização destes pacientes e subsequentes terapias e cuidados associados à morbilidade, como é o caso da drenagem linfática manual e da fisioterapia. O desenvolvimento de novas tecnologias de imagem da cabeça e pescoço requer o uso de modelos realistas que simulem o comportamento e propriedades dos tecidos biológicos. A imagem médica por micro-ondas é uma técnica promissora e não invasiva que utiliza radiação não ionizante, isto é, sinais com frequências na gama das micro-ondas cujo comportamento depende do contraste dielétrico entre os diferentes tecidos atravessados, pelo que é possível identificar regiões ou estruturas de interesse e, consequentemente, complementar o diagnóstico. No entanto, devido às suas características, este tipo de modalidade apenas poderá ser utilizado para a avaliação de regiões anatómicas pouco profundas. Estudos indicam que os gânglios linfáticos com células tumorais possuem propriedades dielétricas distintas dos gânglios linfáticos saudáveis. Por esta razão e juntamente pelo facto da sua localização pouco profunda, consideramos que os gânglios linfáticos da região da cabeça e pescoço constituem um excelente candidato para a utilização de imagem médica por radar na frequência das micro-ondas como ferramenta de diagnóstico. Até à data, não foram efetuados estudos de desenvolvimento de modelos da região da cabeça e pescoço focados em representar realisticamente os gânglios linfáticos cervicais. Por este motivo, este projeto consistiu no desenvolvimento de dois geradores de fantomas tridimensionais da região da cabeça e pescoço – um gerador de fantomas numéricos simples (gerador I) e um gerador de fantomas numéricos mais complexos e anatomicamente realistas, que foi derivado de imagens de ressonância magnética e que inclui as propriedades dielétricas realistas dos tecidos biológicos (gerador II). Ambos os geradores permitem obter fantomas com diferentes níveis de complexidade e assim acompanhar diferentes fases no processo de desenvolvimento de equipamentos médicos de imagiologia por micro-ondas. Todos os fantomas gerados, e principalmente os fantomas anatomicamente realistas, poderão ser mais tarde impressos a três dimensões. O processo de construção do gerador I compreendeu a modelação da região da cabeça e pescoço em concordância com a anatomia humana e distribuição dos principais tecidos, e a criação de uma interface para a personalização dos modelos (por exemplo, a inclusão ou remoção de alguns tecidos é dependente do propósito para o qual cada modelo é gerado). O estudo minucioso desta região levou à inclusão de tecidos ósseos, musculares e adiposos, pele e gânglios linfáticos nos modelos. Apesar destes fantomas serem bastante simples, são essenciais para o início do processo de desenvolvimento de dispositivos de imagem médica por micro-ondas dedicados ao diagnóstico dos gânglios linfáticos cervicais. O processo de construção do gerador II foi fracionado em 3 grandes etapas devido ao seu elevado grau de complexidade. A primeira etapa consistiu na criação de uma pipeline que permitiu o processamento das imagens de ressonância magnética. Esta pipeline incluiu: a normalização dos dados, a subtração do background com recurso a máscaras binárias manualmente construídas, o tratamento das imagens através do uso de filtros lineares (como por exemplo, filtros passa-baixo ideal, Gaussiano e Butterworth) e não-lineares (por exemplo, o filtro mediana), e o uso de algoritmos não supervisionados de machine learning para a segmentação dos vários tecidos biológicos presentes na região cervical, tais como o K-means, Agglomerative Hierarchical Clustering, DBSCAN e BIRCH. Visto que cada algoritmo não supervisionado de machine learning anteriormente referido requer diferentes hiperparâmetros, é necessário proceder a um estudo pormenorizado que permita a compreensão do modo de funcionamento de cada algoritmo individualmente e a sua interação / performance com o tipo de dados tratados neste projeto (isto é, dados de exames de ressonâncias magnéticas) com vista a escolher empiricamente o leque de valores de cada hiperparâmetro que deve ser considerado, e ainda as combinações que devem ser testadas. Após esta fase, segue-se a avaliação da combinação de hiperparâmetros que resulta na melhor segmentação das estruturas anatómicas. Para esta avaliação são consideradas duas metodologias que foram combinadas: a utilização de métricas que permitam avaliar a qualidade do clustering (como por exemplo, o Silhoeutte Coefficient, o índice de Davies-Bouldin e o índice de Calinski-Harabasz) e ainda a inspeção visual. A segunda etapa foi dedicada à introdução manual de algumas estruturas, como a pele e os gânglios linfáticos, que não foram segmentadas pelos algoritmos de machine learning devido à sua fina espessura e pequena dimensão, respetivamente. Finalmente, a última etapa consistiu na atribuição das propriedades dielétricas, para uma frequência pré-definida, aos tecidos biológicos através do Modelo de Cole-Cole de quatro pólos. Tal como no gerador I, foi criada uma interface que permitiu ao utilizador decidir que características pretende incluir no fantoma, tais como: os tecidos a incluir (tecido adiposo, tecido muscular, pele e / ou gânglios linfáticos), relativamente aos gânglios linfáticos o utilizador poderá ainda determinar o seu número, dimensões, localização em níveis e estado clínico (saudável ou metastizado) e finalmente, o valor de frequência para o qual pretende obter as propriedades dielétricas (permitividade relativa e condutividade) de cada tecido biológico. Este projeto resultou no desenvolvimento de um gerador de modelos realistas da região da cabeça e pescoço com foco nos gânglios linfáticos cervicais, que permite a inserção de tecidos biológicos, tais como o tecidos muscular e adiposo, pele e gânglios linfáticos e aos quais atribui as propriedades dielétricas para uma determinada frequência na gama de micro-ondas. Estes modelos computacionais resultantes do gerador II, e que poderão ser mais tarde impressos em 3D, podem vir a ter grande impacto no processo de desenvolvimento de dispositivos médicos de imagem por micro-ondas que visam diagnosticar gânglios linfáticos cervicais, e consequentemente, contribuir para um processo não invasivo de estadiamento do cancro da cabeça e pescoço.Head and neck cancer is a broad term referring to any epithelial malignancies arising in the paranasal sinuses, nasal and oral cavities, salivary glands, pharynx, and larynx. In 2018, approximately 80% of the newly diagnosed head and neck cancer cases resulted in tumour cells spreading to neighbouring lymph and blood vessels. In order to determine cancer staging and decide which follow-up exams and therapy to follow, physicians excise and assess the Lymph Nodes (LNs) closest to the primary site of the head and neck tumour – the sentinel nodes – which are the ones with highest probability of being targeted by cancer cells. The standard procedure to diagnose the Cervical Lymph Nodes (CLNs), i.e. lymph nodes within the head and neck region, and determine the cancer staging frequently involves their surgical removal and subsequent histopathology. Besides being invasive, the removal of the lymph nodes also has negative impact on patients’ quality of life, it can be health threatening, and it is costly to healthcare systems due to the patients’ needs for follow-up treatments/cares. Anatomically realistic phantoms are required to develop novel technologies tailored to image head and neck regions. Medical MicroWave Imaging (MWI) is a promising non-invasive approach which uses non-ionizing radiation to screen shallow body regions, therefore cervical lymph nodes are excellent candidates to this imaging modality. In this project, a three-dimensional (3D) numerical phantom generator (generator I) and a Magnetic Resonance Imaging (MRI)-derived anthropomorphic phantom generator (generator II) of the head and neck region were developed to create phantoms with different levels of complexity and realism, which can be later 3D printed to test medical MWI devices. The process of designing the numerical phantom generator included the modelling of the head and neck regions according to their anatomy and the distribution of their main tissues, and the creation of an interface which allowed the users to personalise the model (e.g. include or remove certain tissues, depending on the purpose of each generated model). To build the anthropomorphic phantom generator, the modelling process included the creation of a pipeline of data processing steps to be applied to MRIs of the head and neck, followed by the development of algorithms to introduce additional tissues to the models, such as skin and lymph nodes, and finally, the assignment of the dielectric properties to the biological tissues. Similarly, this generator allowed users to decide the features they wish to include in the phantoms. This project resulted in the creation of a generator of 3D anatomically realistic head and neck phantoms which allows the inclusion of biological tissues such as skin, muscle tissue, adipose tissue, and LNs, and assigns state-of-the-art dielectric properties to the tissues. These phantoms may have a great impact in the development process of MWI devices aimed at screening and diagnosing CLNs, and consequently, contribute to a non-invasive staging of the head and neck cancer

    IMPROVING EFFICIENCY AND SCALABILITY IN VISUAL SURVEILLANCE APPLICATIONS

    Get PDF
    We present four contributions to visual surveillance: (a) an action recognition method based on the characteristics of human motion in image space; (b) a study of the strengths of five regression techniques for monocular pose estimation that highlights the advantages of kernel PLS; (c) a learning-based method for detecting objects carried by humans requiring minimal annotation; (d) an interactive video segmentation system that reduces supervision by using occlusion and long term spatio-temporal structure information. We propose a representation for human actions that is based solely on motion information and that leverages the characteristics of human movement in the image space. The representation is best suited to visual surveillance settings in which the actions of interest are highly constrained, but also works on more general problems if the actions are ballistic in nature. Our computationally efficient representation achieves good recognition performance on both a commonly used action recognition dataset and on a dataset we collected to simulate a checkout counter. We study discriminative methods for 3D human pose estimation from single images, which build a map from image features to pose. The main difficulty with these methods is the insufficiency of training data due to the high dimensionality of the pose space. However, real datasets can be augmented with data from character animation software, so the scalability of existing approaches becomes important. We argue that Kernel Partial Least Squares approximates Gaussian Process regression robustly, enabling the use of larger datasets, and we show in experiments that kPLS outperforms two state-of-the-art methods based on GP. The high variability in the appearance of carried objects suggests using their relation to the human silhouette to detect them. We adopt a generate-and-test approach that produces candidate regions from protrusion, color contrast and occlusion boundary cues and then filters them with a kernel SVM classifier on context features. Our method exceeds state of the art accuracy and has good generalization capability. We also propose a Multiple Instance Learning framework for the classifier that reduces annotation effort by two orders of magnitude while maintaining comparable accuracy. Finally, we present an interactive video segmentation system that trades off a small amount of segmentation quality for significantly less supervision than necessary in systems in the literature. While applications like video editing could not directly use the output of our system, reasoning about the trajectories of objects in a scene or learning coarse appearance models is still possible. The unsupervised segmentation component at the base of our system effectively employs occlusion boundary cues and achieves competitive results on an unsupervised segmentation dataset. On videos used to evaluate interactive methods, our system requires less interaction time than others, does not rely on appearance information and can extract multiple objects at the same time

    Structures in High-Dimensional Data: Intrinsic Dimension and Cluster Analysis

    Get PDF
    With today's improved measurement and data storing technologies it has become common to collect data in search for hypotheses instead of for testing hypotheses---to do exploratory data analysis. Finding patterns and structures in data is the main goal. This thesis deals with two kinds of structures that can convey relationships between different parts of data in a high-dimensional space: manifolds and clusters. They are in a way opposites of each other: a manifold structure shows that it is plausible to connect two distant points through the manifold, a clustering shows that it is plausible to separate two nearby points by assigning them to different clusters. But clusters and manifolds can also be the same: each cluster can be a manifold of its own.The first paper in this thesis concerns one specific aspect of a manifold structure, namely its dimension, also called the intrinsic dimension of the data. A novel estimator of intrinsic dimension, taking advantage of ``the curse of dimensionality'', is proposed and evaluated. It is shown that it has in general less bias than estimators from the literature and can therefore better distinguish manifolds with different dimensions.The second and third paper in this thesis concern cluster analysis of data generated by flow cytometry---a high-throughput single-cell measurement technology. In this area, clustering is performed routinely by manual assignment of data in two-dimensional plots, to identify cell populations. It is a tedious and subjective task, especially since data often has four, eight, twelve or even more dimensions, and the analysts need to decide which two dimensions to look at together, and in which order.In the second paper of the thesis a new pipeline for automated cell population identification is proposed, which can process multiple flow cytometry samples in parallel using a hierarchical model that shares information between the clusterings of the samples, thus making corresponding clusters in different samples similar while allowing for variation in cluster location and shape.In the third and final paper of the thesis, statistical tests for unimodality are investigated as a tool for quality control of automated cell population identification algorithms. It is shown that the different tests have different interpretations of unimodality and thus accept different kinds of clusters as sufficiently close to unimodal

    Long-term planning of low voltage networks

    Get PDF
    corecore