
152 Int. J. Grid and Utility Computing, Vol. 7, No. 2, 2016  

Copyright © 2016 Inderscience Enterprises Ltd. 

A comparison of techniques to detect similarities in 
cloud virtual machines 

Claudia Canali* and Riccardo Lancellotti 
Department of Engineering “Enzo Ferrari”, 
University of Modena and Reggio Emilia, 
Modena, Italy 
Email: claudia.canali@unimore.it 
Email: riccardo.lancellotti@unimore.it 
*Corresponding author 

Abstract: Scalability in monitoring and management of cloud data centres may be improved 
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1 Introduction 

Cloud computing will play a major role in the future  
internet of services, enabling on-demand provisioning of 
applications and computing infrastructures. The capability 
of cloud computing systems to cope with the increasing 
resource demand in the next few years will be critical for 
the future development of the emerging digital society 
(Moreno-Vozmediano et al., 2013). 

Among the existing cloud service models, this paper 
focuses on Infrastructure as a Service (IaaS) systems, where 

different customer applications are hosted in virtualised 
environments: typically, a customer application is structured 
in multiple software components (e.g. the tiers of a multi-
tier web application, or web services to be composed) (Dai 
et al., 2014), and each component runs on a separate virtual 
machine (VM). The growing popularity of IaaS cloud 
systems has led to constantly increasing size and complexity  
of the IaaS data centres, that are facing novel challenges for 
the scalability of resource monitoring and managing tasks. 
Moreover, it is worth to note that from the point of view of 
IaaS cloud providers the VMs are usually considered as 
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black boxes with independent behaviours: this means that 
data need to be collected with fine granularity about each 
single VM of the data centre, thus exacerbating the 
scalability issues concerning the monitoring task. A similar 
scalability problem occurs when the provider strives to 
place VMs on the infrastructure minimising the number of 
physical servers, owing to the computational cost of the 
underlying optimisation problem. 

Recent solutions proposed in literature (Canali and 
Lancellotti, 2014d; Canali and Lancellotti, 2014c) show that 
scalability issues related to resource monitoring in IaaS cloud 
systems can be addressed by automatically clustering VMs 
showing a similar behaviour in terms of resource usage. The 
knowledge of similar VMs clusters allows the monitoring 
system to collect data with fine granularity only on a subset of 
representative VMs for each cluster, achieving a significant 
reduction in the amount of globally collected data. However, 
existing solutions for automatic VMs clustering present 
important drawbacks: indeed, they may be very accurate, at the 
price of high computational costs (Canali and Lancellotti, 
2014c), or able to provide very fast results with limited 
accuracy (Canali and Lancellotti, 2014d). Moreover, the 
performance of most solutions may change significantly 
depending on specific parameters or pre-processing steps that, 
if not correctly tuned, may result in poor performance. 

The main contribution of this paper is twofold. First,  
we present a non-parametric clustering technique, namely 
KL-based, that exploits Mixture of Gaussians (MoGs) to 
model VM behaviour and the Kullback–Leibler divergence 
to measure the similarity between VMs, with the goal to 
provide fast and accurate VM classification without relying 
on any specific parameter. Second, we compare several 
existing solutions for VM clustering, such as ensemble-
based (Canali and Lancellotti, 2014c), correlation-based, 
and PCA-based (Canali and Lancellotti, 2014d) techniques, 
with the new KL-based proposal to provide an insight on the 
pros and cons of each technique. 

A preliminary version of KL-based clustering was 
proposed in Canali and Lancellotti (2014b), but the present 
study extends the previous work in several ways. First, we 
apply the clustering to a wider range of workloads and to 
shorter time series (up to 6 hours) to achieve a deeper 
understanding of the clustering performance over different 
scenarios. Second, we analyse in detail the issues of 
clustering based on short time series in a dynamic scenario, 
that is when newly acquired VMs can enter the system any 
time. Third, we discuss the potential benefits for the 
monitoring system in terms of reduction of collected data. 
We carry out an experimental evaluation based on two 
different scenarios: a private cloud data centre hosting a 
multi-tier web application and a synthetic web benchmark 
deployed on a commercial cloud infrastructure. Experimental 
results assess the limitations of existing solutions and 
evaluate our proposal. We demonstrate that the KL-based 
technique achieves a clustering with an accuracy comparable 
with the best existing solutions, but with a computational 
requirements significantly lower and without need to tune 
any algorithm parameter. 

The rest of this paper is organised as follows. Section 2 
describes the reference scenario for the application of VM 

clustering. Section 3 presents the proposed KL-based 
technique and Section 4 describes the existing approaches. 
Section 5 provides the experimental evaluation of clustering 
techniques applied to different scenarios. Section 6 
discusses the related work, while Section 7 concludes the 
paper with some final remarks. 

2 Reference scenario 

Let us introduce the scenario of an IaaS cloud data  
centre that exploits a VM clustering solution to improve  
its monitoring and management scalability (Canali and 
Lancellotti, 2014c; Canali and Lancellotti, 2014d). This will 
be the reference scenario for our proposal. 

Figure 1 represents an IaaS cloud system that relies on a 
two-level management strategy (Gong and Gu, 2010). The 
first level focuses on local management and is carried out 
on each host node (that is the physical server where VMs 
run). The goal of local management is to detect in real-time 
overload conditions leveraging the resource measurements 
of the VMs hosted on the node and relying on live VM 
migration in case of overload (Wood et al., 2007). The 
second level, namely global management, is carried out on a 
management node. Global management executes periodically 
a global consolidation to place VMs on as few host nodes  
as possible to reduce the infrastructure costs and avoid 
expensive resource over-provisioning (Ardagna et al., 2012). 
Since consolidation strategies in IaaS cloud infrastructures 
usually consider each VM as a stand-alone object with 
independent resource usage patterns, detailed information 
has to be collected with high sampling frequency (typically 
one sample every 5 minutes [Ardagna et al., 2012; Setzer  
and Stage, 2010] or even less) about each VM. This fine-
grained sampling may determine scalability issues for the 
monitoring system. Furthermore, as the server consolidation 
must consider every VM of the data centre, solving 
optimisation problems for the global management task may 
pose scalability problems as well. 

Figure 1 Cloud system using VM clustering 
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Clustering has the potential to improve the scalability of 
monitoring and management processes by automatically 
grouping together VMs showing similar behaviours in  
terms of resource usage (Canali and Lancellotti, 2014c; 
Canali and Lancellotti, 2014d). The goal of clustering is the 
identification of VMs that host the same software component 
of the same customer application. 

To improve monitoring scalability we select a few 
representative VMs for each identified class as soon as the 
clustering is done. We choose to select at least three 
representatives owing to the possibility that a selected 
representative unexpectedly changes its behaviour with respect 
to its class: quorum-based techniques can be exploited to cope 
with byzantine failures of representative VMs (Castro and 
Liskov, 1999). At this point, only the representative VMs of 
each class are monitored with high sampling frequency to 
collect information for the periodic consolidation task, while 
the resource usage of the other VMs of the same class is 
assumed to follow the representatives behaviour. On the other 
hand, the non-representative VMs of each class are monitored 
with coarse-grained granularity to identify behavioural drifts 
that could determine a change of class. Moreover, sudden 
changes leading to server overload are handled by the local 
management through live VM migration. 

The clustering technique may also improve the scalability 
of the global management operations. The critical step of 
server consolidation is the solution of a multidimensional 
bin-packing problem, where each VM must be assigned to a 
host node without exceeding the node capacity in terms of 
available resources. This problem is typically solved using 
heuristics and simplifications (such as considering only one 
resource such as the CPU [Setzer and Stage, 2010]). We 
argue that, by knowing that VMs belong to classes, we can 
switch to a cluster-based consolidation that solves a much 
smaller optimisation problem (with the possibility to use 
more complex and accurate algorithms). Then, the VM 
allocation solution may be replicated as a building block  
to create the server consolidation solution for the whole  
data centre. 

Figure 1 shows how the previously introduced components 
interact. Collection of data about resource usage of the 
hosted VMs is performed by the monitoring system (hosted 
on each node). Such data are then sent to the local 
management system (arrow 1), which is responsible for 
triggering live VM migration in case of host overload 
(Wood et al., 2007). A second function of the monitoring 
system is to process and send data to the VM clustering 
system (1), which automatically builds a VM behaviour 
model and groups similar VMs applying one of the 
techniques proposed in Canali and Lancellotti (2014c, 
2014d). The identified VM classes and the representatives 
of each class are then communicated to the global 
management (3a) and to the monitoring system (3b). This 
result is used by the monitoring system to differentiate the 
sampling frequency between representative and non-
representative VMs. The data collected with different 
granularity are sent to the global management system (4)  
 

which is responsible for two tasks. First, the global 
management executes periodically the cluster-based 
consolidation strategy, exploiting the resource usage of the 
representative VMs to characterise the behaviour of every 
VM of the same class and possibly taking also into account 
information about the partition of VMs into clusters. The 
local manager receives the global consolidation decisions (5) 
and applies them. Second, the global management system 
checks for behavioural drifts of non-representative VMs, 
that must be re-classified. 

It is worth to note that, unlike server consolidation, VM 
monitoring and clustering are not necessarily periodic 
operations. A new VM can enter the system at any time, and 
when it happens fine-grained monitoring starts for that VM 
to build a representation of its behaviour. As soon as the 
data to build the VM behaviour model are available, the 
clustering function is invoked. Clustering uses both already 
available VM behaviour models (collected in previous 
periods for the existing VMs) and the fresh data for the new 
VM. In a similar way, VMs that change their behaviour, as 
well as VMs causing overload of physical servers detected 
by local management, are marked as unclassified VMs and 
are monitored again with high sampling frequency to be  
re-clustered. 

From the description of the reference scenario, we 
understand how the application of an automatic clustering 
technique may improve the scalability of cloud monitoring 
and management. However, the existing clustering solutions 
(Canali and Lancellotti, 2014c; Canali and Lancellotti, 
2014d) present drawbacks related to the computational cost, 
the stability of the accuracy results and the dependence on 
specific parameter values. In the next section, we present a 
novel VM clustering technique that provides high accuracy 
with limited computational requirements, and does not 
depend on any parameter. This new technique will then be 
compared with the existing available solutions to understand 
which solution is the most appropriate for the different 
possible scenarios of cloud data centres. 

3 KL-based clustering technique 

Let us now describe in detail the KL-based technique for 
automatic VMs clustering. We provide an overview of the 
structure of the proposed technique by identifying three 
conceptual steps that are common to every solution for VM 
clustering. This approach allows us to provide a common 
background for comparing our proposal with the existing 
alternatives, that will be described in Section 4. The proposed 
KL-based technique, as well as the existing clustering 
alternatives, includes the following three main steps:  

1 Extraction of a quantitative model for describing the 
VM behaviour.  

2 Definition of a distance representing the similarities 
among the VMs.  

3 Clustering based on the proposed distance to identify 
classes of similar VMs. 
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3.1 VM behaviour quantitative model 

The description of the VM behaviour is obtained by modelling 
the usage of the VM resources through a linear combination of 
multiple Gaussian distributions, that we call a MoG. To 
formalise our model, we consider a set of N VMs, and for each 
VM  1,n N  a set of M metrics, where each metric 

 1,m M  represents the usage of a VM resource. 

Let  1 2, , ,n n n
MX X X  be a set of time series, where n

mX  

is the vector consisting of the samples of the resource usage 
represented by the metric m of VM n. The probability 

density function  n
mp X  of each time series can be 

considered as the description of the behaviour of metric m 
on VM n. We approximate the probability density using the 
previously introduced MoG: 
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where n
mG  is the number of Gaussian distributions used to 

model the probability distribution of samples for metric m on 
VM n, and ,

n
m i , ,

n
m i , ,

n
m i  are the weight, mean value and 

standard deviation of the specific component of the MoG. 
The approximation of the probability distribution 

through a MoG is carried out using the mclust package 
provided by the R statistical analysis software (Fraley et al., 
2013). The package performs a clustering of the data 
samples to automatically identify the number of modes in 
the probability density function and then iteratively adjusts 
the parameters of each Gaussian component in order to 
obtain a close fitting of the probability density function with 
the MoG. It is worth to note that no parameters are involved 
in this process. 

3.2 Definition of a distance 

The second step of the technique consists in introducing a 
distance to define similarities among VMs starting from the 
representation of their behaviour. To define the VM 
distance we exploit the Kullback–Leibler (KL) divergence, 
which measures the similarity between two probability 
distributions, possibly modelled as MoG (Kullback, 1997). 
The KL divergence between two MoG, mog1 and mog2, is 
defined as:  
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However, an analytical solution in a closed form of such 
equation is not always possible, and numeric approximation 
of the integrals is computationally expensive. For two 
Gaussian distributions g1 and g2, the KL divergence can be 
defined with the following closed analytical form:  
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where 1, 2, 1, and 2 are the mean values and the 
standard deviation of the two distributions g1 and g2 
(Hershey and Olsen, 2007). 

For MoGs, we can use an approximation, namely 
variational divergence (Hershey and Olsen, 2007), that 
extends equation (1). The KL divergence for two Mixtures 
of Gaussian distributions mog1 and mog2 is thus defined as: 
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Finally, the distance between two VMs n1 and n2 is the sum 
of squares of the KL divergence between the MoGs 
representing the VM behaviour for each metric:  
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3.3 Clustering 

The last step of the technique returns the final clustering 
solution. The distance previously defined is computed for 
each couple of VMs, obtaining a distance matrix D. Then, 
the distance matrix is fed into a clustering algorithm to 
obtain the final solutions. 

It is worth to note that to cluster together elements of a 
set starting from a distance matrix, traditional algorithms 
such as K-means or Kernel K-means (Jain, 2010) are not 
viable options because they expect as input a set of 
coordinates for each element to cluster. For this reason, we 
exploit the widely adopted spectral clustering algorithm, 
which is explicitly designed to manage as input a similarity 
matrix or a matrix-based representation of graphs (Ng et al., 
2001). The output of the clustering step is a vector C, where 
the n-th element cn is the ID of the cluster to which VM n is 
assigned. 

Once the clustering is complete, we need to select for 
each class some representative VMs that will be monitored 
with fine granularity. To this purpose, it is worth to note that 
the output of the K-means internal phase of spectral 
clustering provides as additional output the coordinates of 
the centroids for each identified class. In this case, the 
representative VMs can be selected as the VMs closest to 
the centroids. 

4 Existing approaches 

In this section, we present three existing solutions to 
implement the steps for a VM clustering technique outlined 
in Section 3. 

4.1 Ensemble-based 

The ensemble-based technique, presented in Canali and 
Lancellotti (2014c), uses the probability density of the 
utilisation of VM resources to model the VM behaviour, 
like the KL-based approach. But, differently from the 
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proposed technique, the behavioural model of a VM 
consists in a set of normalised histograms, one for each 
considered metric of the VM. 

Next, the ensemble-based approach uses the 
Bhattacharrya distance (Bhattacharyya, 1943), which 
provides the distance between two different histograms, to 
compute a per-metric distance between every couple of 
VMs. The use of this distance for VM clustering has been 
proposed for the first time in a preliminary paper (Canali 
and Lancellotti, 2013). 

Then a set of per-metric clustering solutions are 
obtained from the distance matrices obtained applying the 
per-metric distance definition. To this aim, we rely on the 
same spectral clustering algorithm already described for the 
proposed KL-based clustering technique. To merge the 
separate clustering solutions, we exploit a further clustering 
step where the input is a co-occurrence matrix determined 
through ensemble techniques. Specifically, the co-occurrence 
matrix contains, for each couple of VMs (n1, n2), the number 
of times that the VMs are clustered together throughout the 
whole set of per-metric clustering solutions. The last 
clustering step exploits again the spectral algorithm to 
obtain the final clustering solution. 

4.2 Correlation-based 

The correlation-based technique (Canali and Lancellotti, 
2014d) describes the behaviour of a VM using the 
correlation between the time series of different metrics  
of the same VM. From the correlation between each couple 
of metrics (m1, m2) we obtain a vector of length 

 1
=

2

M M
L

 
, that is the feature vector characterising the 

VM. The output of the first step of the technique is a set of 
N feature vectors (one for each VM) that define a L-
dimensional vector space. The vector space uses an 
Euclidean distance to compute the distance between two 
feature vectors. 

Finally, the set of N feature vectors describing the VMs 
is used as an input for the clustering algorithm. Specifically, 
we use the K-means algorithm (Jain, 2010) for clustering. 

4.3 PCA-based 

The PCA-based technique (Canali and Lancellotti, 2014d) is 
an evolution of the previously described correlation-based 
solution that improves the quality of the clustering results. 

This technique exploits the correlation values between 
each couple of time series referring to the M considered 
metrics of the same VM like the previous correlation-based 
solution. The correlation values are assembled into a M  M 
square matrix; then, we compute the eigenvectors of this 
correlation matrix. In other words, we apply a Principal 
Component Analysis (PCA) over the time series of each 
VM. Using the well-known rule of the scree plot visual 
analysis (Abdi and Williams, 2010), we identify the number 
P of components that are significant to reconstruct the VM 
behaviour (in our experiments P = 1, as in Canali and 

Lancellotti [2014d]). As each component is associated to an 
eigenvector of the correlation matrix, we build a feature 
vector to describe the VMs behaviour using only the P 
eigenvectors associated to the highest eigenvalues. 

As for the correlation-based approach, the feature vector 
of length P M defines a feature vector space with an 
Euclidean distance. Clustering is then carried out with the 
K-means algorithm. 

5 Experimental evaluation 

In this section, we evaluate the proposed methodology and 
compare it with existing approaches for VMs clustering. 
Specifically, we point out pros and cons of each technique, 
with particular attention to critical elements such as stability 
of the results, parameter dependence and computational 
cost. To this purpose, we apply the clustering techniques to 
two case studies that are described below. The experimental 
evaluation initially discusses the parameters that may  
affect the performance of each solution. We provide an 
experimental comparison of the clustering accuracy of the 
different techniques, then we pass to analyse the issues of 
clustering on short time series (less than 24 hours) in 
dynamic scenarios. Next, we analyse the sensitivity of the 
performance to the number of considered metrics. Finally, 
we compare the execution times of the different clustering 
approaches and discuss the potential benefits in terms of 
reduction of monitored data. 

5.1 Case studies 

To compare the performance of different clustering 
techniques we consider two case studies: the Enterprise data 
set coming from a real data centre, and the EC2 Amazon 
case study based on a synthetic data set. 

The Enterprise case study is based on a web e-health 
application for the automated management of lab exams, 
which is hosted on a private enterprise data centre. The 
application is deployed on 110 VMs according to a multi-
tier architecture. The VMs are divided between the two 
software components of the web application: web servers 
and back-end servers (that are DBMS). This case study 
represents a real web application hosted on a distributed 
data centre, with resource usages showings the typical daily 
patterns that characterise web traffic. We collect data about 
the resource usage of every VM for different periods of 
time, ranging from 5 days to 6 hours, with a sampling 
frequency of 5 minutes. 

The EC2 Amazon case study is based on a virtualised 
test-bed running an e-commerce application: the application 
is built on the RUBiS benchmark and deployed over the 
Amazon Elastic Computing infrastructure (micro instances 
of VMs). The benchmark is hosted on a set of 36 VMs, with 
12 VMs dedicated to web servers, 12 to DBMS and 12 VMs 
running a set of emulated browsers. As the considered 
application is supporting a synthetic workload, the patterns 
of client requests are stable over time. For this reason, we 



 A comparison of techniques to detect similarities 157 

collect samples with a frequency of 5 minutes for 12 hours: 
longer time series would not provide additional information 
from a statistical point of view in this steady state scenario. 

In both the case studies, for each VM we consider  
ten metrics describing the usage of different resources 
related to CPU, memory, disk, and network. The complete 
list of the metrics is provided in Table 1 along with a short 
description. 

Table 1 Virtual machine resources 

Metric Description 

X1 SysCallRate Rate of system calls [req/sec] 

X2 CPUSys System CPU utilisation [%] 

X3 CPUUser CPU utilisation (user mode) [%] 

X4 CtxSwitch Rate of context switches [Cs/s] 

X5 Memory Physical memory utilisation [%] 

X6 BlockOut Rate of blocks written to storage [Blk/s] 

X7 PgOutRate Rate of memory pages swap-out [pages/sec] 

X8 OutPktRate Rate of network outgoing packets [pkts/sec] 

X9 InPktRate Rate of network incoming packets [pkts/sec] 

X10 AliveProc Number of alive processes 

The final goal of VM clustering applied to these case studies 
is to correctly classify the VMs running different software 
components: web server and DBMS for the Enterprise 
scenario, and web servers, BDMS and emulated browsers 
for the EC2 Amazon case study. As a performance indicator 
to evaluate the performance of VM clustering, we consider a 
widely used measure, namely purity (Amigó et al., 2009) 
that expresses the fraction of correctly classified VMs. The 
clustering purity is obtained by comparing the clustering 
solution C with the vector C*, which represents the ground 
truth. Purity is thus defined as: 

  : = , 1,
=

n n nc c c n N
Purity

C

  
 

where   : = , 1,n n nc c c n N    is the number of VMs 

correctly clustered and =C N  is the number of VMs. 

5.2 Comparison of clustering approaches 

We now compare the different clustering techniques applied 
to our case studies. In particular, we consider the proposed 
KL-based methodology and three existing approaches: 
ensemble-based (Canali and Lancellotti, 2014c), PCA-based 
and correlation-based (Canali and Lancellotti, 2014d). 

A first comparison is related to the parameters affecting 
the performance of the different techniques. The ensemble-
based solution relies on normalised histograms to represent 
VM behaviour. A parameter involved in this approach is the 
number of bins used to compute the histograms. Multiple 
rules are available to determine this number, and results in 
literature show that the selected rule can affect the quality of 
the clustering performance (Canali and Lancellotti, 2014c). 

On the other hand, the PCA-based solution is characterised by 
the number of principal components to feed into the 
clustering step, as mentioned in Section 4. Again, results in 
literature demonstrate that the number of considered 
components may affect the clustering performance (Canali 
and Lancellotti, 2014d). Finally, the correlation-based 
solution is not dependent on any parameter, like the proposed 
KL-based technique (Canali and Lancellotti, 2014d). 

The second comparison is based on a quantitative 
evaluation of the achieved clustering performance. The 
clustering purity achieved by the different clustering 
techniques in the Enterprise scenario is shown in Figure 2 as 
a function of the time series length, which ranges from 5 
days to 6 hours. We see from Figure 2 that the performance 
of the correlation-based approach significantly decreases for 
time series shorter than 3 days. On the other hand, the 
results of the other three techniques remains quite stable  
for every time series length, with a slight decrease of 
achieved purity for time series shorter than 1 day. The best 
performance is achieved by the ensemble-based approach. 
The proposed KL-based technique shows a good stability 
for different time series lengths, while achieving performance 
only slightly worse with respect to the ensemble-based 
approach, with differences in clustering purity ranging from 
3% to 3.5%. 

Figure 2 Clustering purity in the Enterprise scenario 

 

We now proceed to evaluate the performance of the 
clustering techniques when applied to the EC2 Amazon case 
study. The results are shown in Table 2. 

Table 2 Clustering purity for EC2 Amazon case study 

Clustering technique 

KL Ensemble PCA Correlation 

0.917 0.926 0.909 0.815 

The clustering purity basically confirms the results of the 
Enterprise scenario. The correlation-based technique 
achieves the lowest purity, while the other three alternatives 
show very similar results, with the ensemble-based 
technique achieving a slightly better performance. We also 
observe that the EC2 Amazon scenario provides a clustering 
purity that is generally higher if compared to the Enterprise 
case study, even if the overall data collection time is limited 
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to 12 hours. This result is motivated by the use of a 
synthetic workload for the EC2 Amazon case study, which 
is characterised by regular access patterns that increase the 
accuracy of the clustering algorithms. 

5.3 Short time series in dynamic scenario 

Using short time series (below 24 hours) to cluster similar 
VMs may present some issues if we consider a dynamic 
scenario where newly acquired VMs may frequently enter 
the system. A typical example is represented in Figure 3 (a). 
The graph shows the CPU utilisation of a web server 
(Enterprise case study) over a period of about 78 hours: the 
resource usage is characterised by the daily patterns that are 
typical of a web application. Let us assume that during the 
first 6 hours (period M1) the monitoring system collects the 
resource usage time series for each VM in the system with 
fine granularity, that is one sample every 5 minutes. We also 
assume that at time t = 36 hours new VMs enter the system, 
and fine-grained monitoring starts to collect their resource 
usage for the next 6 hours (period M2). At time t = 42 hours 
the clustering function is invoked and operates on VM 
behaviour models built on time series collected during M1 
for the VMs that were initially in the system and during M2 
for the newly entered VMs. 

The problem that may be caused by working on short 
time series collected in different periods of time is evidenced 
in Figure 3 (b) that shows the probability density functions 
(that is used to model the VM behaviour in the KL-based 
technique) for two VMs VM1 and VM2 monitored during 
periods M1 and M2, respectively. We observe that the two 
behaviour descriptions are completely different, with a mode 
in the probability distribution close to 25% for VM1 and  
to 65% for VM2, hence the resulting Kullback–Leibler 
divergence of the two distributions is likely to be high. It is 
important to note that the differences in the behaviour of the 
VMs are not related to a difference in the software component 
run on them (both VMs are web servers) but to the different 
monitoring periods. In this experiment we evaluate whether 
this difference may hinder the capability of the clustering 
technique to identify similar VMs. 

To emulate the described dynamic scenario, we consider 
the 110 VMs of the Enterprise case study, and we apply the 
clustering techniques to resource usage time series collected 
during the period M1 for 85 VMs, and during period M2 for 
the remaining 25 VMs. Table 3 shows the achieved purity 
for the dynamic scenario, and compares it with the results 
obtained for a static scenario where all the 110 VMs are 
monitored during period M1. 

Table 3 Clustering purity in static and dynamic scenarios 

Clustering Scenario 

Technique Static Dynamic 

KL-based 0.778 0.721 

Ensemble-based 0.802 0.743 

PCA-based 0.755 0.751 

Correlation-based 0.615 0.609 

We observe that the clustering purity tends to decrease for 
all the techniques passing from the static to the dynamic 
scenario, but with a significant difference: the performance 
deterioration is more evident for KL-based and ensemble-
based techniques (up to 6%), while the PCA-based and 
correlation-based approaches achieve more stable results, 
with a purity decrease below 1%. The motivation can be 
found in the different mechanism used to model the VM 
behaviour. The approaches using the probability density 
function of the resource usage, like KL-based and 
ensemble-based techniques, suffer from the issue shown in 
Figure 3 (b) and tend to be less effective in identifying VM 
similarities. On the other hand, the PCA-based and 
Ccrrelation-based techniques model the VM behaviour 
based on the correlation between the time series of different 
metrics of the same VM: such correlation remains quite 
stable even in presence of workload daily fluctuation, thus 
explaining the smaller decrease of clustering purity in the 
dynamic scenario. It is worth to recall that this effect only 
applies when short time series (below 24 hours) are used to 
model the VM behaviour, otherwise the presence of 
complete daily patterns does not affect the clustering 
performance. 

Figure 3 Clustering issue for short time series in  
dynamic scenario 

 

(a) Metric collection periods 

  

 (b) Probability density function 
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5.4 Sensitivity to number of metrics 

Another element that may affect the performance of the VM 
clustering is the number of metrics used to determine the 
VM behaviour model. Using a high number of metrics may 
be counter-productive because non-significant data are 
likely to be fed into the final clustering step, with effects 
comparable to noise that degrades the clustering performance. 
In this experiment, we evaluate the sensitivity to the number 
of metrics on the clustering techniques by considering a 
reduced set of metrics, which is limited to four metrics 
mostly used in data centre management strategies (Ardagna 
et al., 2012; Hu et al., 2012; Gong and Gu, 2010): CPU  
and memory utilisation, input and output packet rate. It is 
worth to note that an automatic mechanism to select metrics 
for VM clustering purposes has been proposed in a 
preliminary study by the authors (Canali and Lancellotti, 
2013): the selection, which is based on the analysis of 
autocorrelation and coefficients of variation of the time 
series, confirms the presence of the above-mentioned metrics 
in the selected set. 

Figure 4 Clustering purity for different sets of metrics 

 

Figure 4 shows the purity of the clustering approaches in the 
Enterprise and EC2 Amazon scenarios (time series of 1 day 
and 12 hours, respectively) for the entire set of ten metrics 
and for the reduced set of four selected metrics. We observe 
that the number of metrics has very different impacts on the 
performance of the considered approaches, and the effect  
is similar in both the case studies. The KL-based and 
ensemble-based techniques achieve quite stable results over 
the different set of metrics, with a purity slightly improved 
in the case of few representative metrics. On the other hand, 
the performance of the PCA-based and correlation-based 
approaches drastically decreases in case of few metrics. For 
the latter approaches, indeed, the reduction of metrics 
causes an excessive decrease in the dimension of the feature 
vector space used to describe the VMs behaviour. 
Differently, both KL-based and ensemble-based techniques 
exploit a distance matrix that does not change dimension 
with the metric reduction, maintaining the capability to 
achieve accurate clustering. This result demonstrates that 
the KL-based and ensemble-based techniques may achieve  

good clustering performance which is not affected by the 
presence of metric selection, thus outperforming their PCA-
based and correlation-based counterparts. 

5.5 Execution time of clustering techniques 

The global execution time required for VM clustering 
consists of three different contributions, corresponding to 
the main steps of the methodology defined in Section 3: 
first, the time to extract the quantitative model of VMs 
behaviour; second, the time to compute the VMs distance; 
third, the time to perform the clustering step. In this 
experiment, we evaluate the execution times of each step of 
the methodology on a machine equipped with an Intel Xeon, 
2GHz CPU. Table 4 shows the execution times of the three 
contributions for the considered clustering techniques. 

Table 4 Times [s] for clustering techniques 

Clustering Step 

Technique Model Distance Clustering 

KL-based 5.82 390.27 11.61 

Ensemble-based 1.32 1417.42 69.72 

PCA-based 0.11 n/a 5.21 

Correlation-based 0.06 n/a 8.21 

It is worth to note that the extraction of the quantitative 
behavioural model has to be performed separately for every 
considered VM, and can be parallelised on distributed nodes. 
On the other hand, the second and third contributions 
represent a centralised task that cannot be parallelised. Hence, 
for a fair comparison we measure the time for extracting the 
behavioural model of a single VM (second column of the 
table), while the other contributions (third and fourth 
columns) are measured by considering the corresponding step 
computed on all the 110 VMs of the data set. 

We observe that the PCA-based and the correlation-
based approaches show lower execution times than the other 
techniques for every considered step. With regard to the 
ensemble-based approach, we note that the execution times 
are particularly high in the case of the second and third 
contributions, owing to the expensive computation of the 
Bhattacharyya distance and to multiple clustering steps. On 
the other hand, the proposed KL-based technique requires 
longer time than the ensemble-based approach for the VM 
model computation, but is much faster on the other steps. 
Since the model computation corresponds to the only step of 
the methodology that can be parallelised on multiple nodes, 
we believe that the KL-based technique is a preferable 
choice to apply clustering in large data centres, while the 
ensemble-based approach is better suited for smaller-sized 
infrastructures due to the high costs of the centralised steps. 

5.6 Benefits for monitoring scalability 

We now evaluate the reduction in terms of collected data 
that is achievable by integrating a clustering technique in a 
cloud monitoring system. For this experiment, we consider 
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the Enterprise case study where the multi-tier web 
application is deployed on 110 VMs, divided between web 
servers and DBMS. If no clustering technique is applied,  
it is necessary to monitor every VM at fine-grained 
granularity to accomplish periodic consolidation tasks. 

Assuming that the monitoring system considers K  
resources for each VM, which are collected with a frequency of 
one sample every 5 minutes, we have to manage a volume 

of data 288 K  samples per day per VM. Considering 110 

VMs, the total amount of data is in the order of 43.2 10 K   
samples per day. If we apply a clustering technique in the 
same scenario, the proposed methodology automatically 
identifies two sets of similar VMs (web servers and DBMS) 
and monitors at the granularity of 5 minutes only a few 
representative VMs per class, while the remaining VMs can 
be monitored with a coarse-grained granularity, for example 
of one sample every few hours. Assuming to select three 
representatives for each of the two VM classes the amount 

of data to collect after clustering is reduced to 217.2 10 K   
samples per day for the class representatives; for the 
remaining 104 VMs, assuming to collect one sample of the 

K  metrics every 6 hours for VM, the data collected are in 

the order of 24.2 10 K   samples per day. Hence, we 
observe that our proposal may reduce the amount of data 
collected for periodic consolidation by nearly a factor of 15, 

from 43.2 10 K   to 221.4 10 K  . 

5.7 Summary of clustering comparison 

Table 5 summarises the characteristics of the clustering 
approaches. For each technique, we evidence with bold font 
the elements that represent potential drawbacks for the 
applicability and the performance achievable in a real cloud 
environment. 

Table 5 Comparison of clustering approaches 

Clustering  
approach 

Parameters 
No. of  

metrics 
Execution 

time 

KL-based None Low Medium 

Ensemble-based # bins Low High 

PCA-based # components High Low 

Correlation-based None High Low 

From the table we note that the KL-based technique is not 
sensitive to any parameter. Moreover, its stable performance 
with respect to the number of considered metrics allows us 
to reduce the amount of monitored resources to describe the 
VM behaviour. For these reasons and for its computational 
cost, this approach may be preferable with respect to the 
other alternatives. On the other hand, the ensemble-based 
approach achieves slightly better performance than the 
proposed technique, but it is sensitive to the choice of  
the bin number for histograms computation and requires  
multiple clustering steps that cause higher execution times.  
 
 

Hence, we can conclude that the KL-based approach is 
applicable to a wide range of scenarios, while the ensemble-
based technique may be a preferable solution for cases 
where the number of VMs is limited and the workload is 
stable to allow a tuning of the metric histogram bin numbers. 

Our analysis also points out an unexpected result 
concerning VM clustering based on short monitoring 
periods of few hours in a dynamic scenario. As discussed in 
Section 5.3, in this case the performance of KL-based and 
ensemble-based techniques may be deteriorated if the 
workload presents daily patterns or fluctuations. On the 
other hand, PCA-based clustering achieves more stable 
results, but this technique is sensitive to the number of 
principal components and requires a high number of metrics. 
A recent effort to investigate the problem of clustering VMs in 
dynamic scenarios relying on short monitoring periods has 
been done in Canali and Lancellotti (2014a), but it remains 
on open issue that needs further investigation. 

6 Related work 

Scalability issues concerning resource monitoring and 
management in cloud systems have received a lot of attention 
by academic and commercial communities in the last few 
years, but only recent studies have explored solutions based 
on automatic clustering that take advantage from similarities 
between VMs sharing a common behaviour. 

The study in Zhang et al. (2011) proposes a method to 
automatically identify similarities between VMs in cloud 
systems that is based only on storage resources, with the 
goal to perform storage consolidation strategies. The study 
in Jayaram et al. (2011) investigates similarities in VM 
images used in public cloud environments, focusing on the 
static images of cloud VMs to provide insights for de-
duplication and image-level cache management. These 
studies apply clustering to a very limited set of resources for 
specific purposes, while our approach considers several 
resources to model the general VMs behaviour, and leverage 
similarities to improve scalability of cloud monitoring and 
management. 

Recent studies (Canali and Lancellotti, 2014c; Canali 
and Lancellotti, 2014d) propose clustering techniques that 
group together cloud VMs with similar behaviour on the 
basis of their resource usage. The technique proposed in 
Canali and Lancellotti (2014c) achieves very accurate VM 
clustering, but at the price of high computational costs. On 
the hand, in Canali and Lancellotti (2014d) much faster 
solutions were presented, but less accurate. Furthermore, all 
the techniques require some specific parameter that, if not 
correctly tuned, may result in poor performance. The 
proposed KL-based clustering overcomes the limitations of 
the previous approaches, being a non-parametric technique 
that does not need any specific tuning. A preliminary 
version of the KL-based clustering was originally presented 
in Canali and Lancellotti (2014b). This study clearly 
extends the scope of the previous work for several reasons.  
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We consider two different workloads with varying demands  
and shorter time series (up to 6 hours) to model the VMs 
behaviour: this analysis allows us to give useful insights 
with respect to the performance of different clustering 
techniques in presence of specific conditions and workloads 
patterns. Moreover, we evaluate the reduction in terms of 
monitored data that are achievable by integrating the 
clustering technique into the cloud monitoring system. 

The benefits of the proposed VM clustering techniques 
have been specifically evaluated in the context of cloud 
monitoring, intending to improve the scalability of the data 
collection process. A survey on monitoring solutions and 
available platforms may be found in Aceto et al. (2013). In 
literature current approaches typically address monitoring 
scalability issues by propagating the collected data to the 
management process only after aggregation and filtering, in 
order to reduce their volume. Most of the proposed solutions 
adopt a subsystem to propagate data or rely on agents, 
which are responsible for performing data collection, 
filtering and aggregation (Mehrotra et al., 2011; Shao and 
Wang, 2011; Azmandian et al., 2011; Kertesz et al., 2013; 
Andreolini et al., 2011). Different aggregation strategies 
have been proposed: extraction of high-level performance 
metrics by mean of machine learning algorithms (Shao and 
Wang, 2011); extraction of predicted parameters by combining 
metrics from different layers (hardware, OS, application and 
user) and by applying Kalman filters (Mehrotra et al., 
2011); linear combination of OS-layer metrics (Azmandian 
et al., 2011); and extraction of high-level statistics from OS 
and application layers (Kertesz et al., 2013; Andreolini  
et al., 2011). 

Several open source platforms have also been proposed 
to monitor cloud systems. Among the most popular 
solutions, some examples deserving a mention are: Nagios, 
a well-known open source monitoring platform that has 
been extended to support the monitoring of cloud 
infrastructures both in terms of virtual instances and storage 
services (Katsaros et al., 2011), and DARGOS, a distributed 
monitoring architecture using a push/pull approach to 
disseminate information (Povedano-Molina et al., 2013). All 
these solutions share a common limitation that is considering 
each monitored object (being it a VM or a host) independent 
from the others, thus failing to take advantage from VMs 
similarities. Furthermore, it is worth to note that the 
proposed clustering technique may be integrated in any 
existing cloud monitoring solution as an additional step that 
selects the granularity of the data collection for different 
sets of VMs. 

7 Conclusions 

Previous studies in literature show that the automatic VMs 
clustering may improve the scalability of the monitoring 
process in large data centres. However, existing solutions 
are affected by some trade-offs regarding the computational  
 

costs, the accuracy of the results and the dependence on 
specific technique parameters. We propose a novel approach 
that exploits MoGs and Kullback–Leibler divergence to 
measure the similarity between VMs. The proposed KL-
based approach is applied to two case studies and compared 
with the existing techniques. A wide range of experiments 
shows that the KL-based technique may guarantee results 
that are comparable with the best performing alternative and 
are stable thanks to its non-parametric approach. Moreover, 
the limited computational cost makes the proposed approach 
the preferable alternative in case of large cloud data centres. 
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