
152 Int. J. Grid and Utility Computing, Vol. 7, No. 2, 2016

Copyright © 2016 Inderscience Enterprises Ltd.

A comparison of techniques to detect similarities in
cloud virtual machines

Claudia Canali* and Riccardo Lancellotti
Department of Engineering “Enzo Ferrari”,
University of Modena and Reggio Emilia,
Modena, Italy
Email: claudia.canali@unimore.it
Email: riccardo.lancellotti@unimore.it
*Corresponding author

Abstract: Scalability in monitoring and management of cloud data centres may be improved
through the clustering of virtual machines (VMs) exhibiting similar behaviour. However,
available solutions for automatic VM clustering present some important drawbacks that hinder
their applicability to real cloud scenarios. For example, existing solutions show a clear trade-off
between the accuracy of the VMs clustering and the computational cost of the automatic process;
moreover, their performance shows a strong dependence on specific technique parameters. To
overcome these issues, we propose a novel approach for VM clustering that uses Mixture of
Gaussians (MoGs) together with the Kullback–Leiber divergence to model similarity between
VMs. Furthermore, we provide a thorough experimental evaluation of our proposal and of
existing techniques to identify the most suitable solution for different workload scenarios.

Keywords: cloud computing; clustering; virtual machines; cloud monitoring; Kullback–Leibler
divergence; mixture of Gaussians.

Reference to this paper should be made as follows: Canali, C. and Lancellotti, R. (2016) ‘A
comparison of techniques to detect similarities in cloud virtual machines’, Int. J. Grid and Utility
Computing, Vol. 7, No. 2, pp.152–162.

Biographical notes: Claudia Canali is Researcher at the Department of Engineering of the
University of Modena and Reggio Emilia since 2008. She received the Laurea degree summa
cum laude in computer engineering from the same university in 2002, and the PhD degree in
information technologies from the University of Parma in 2006. Her research interests include
high performance distributed systems, cloud computing, social networks and wireless systems for
mobile web access. On these topics, she published almost 40 articles on international journals,
conference proceedings and book chapters.

Riccardo Lancellotti is a Researcher at the University of Modena and Reggio Emilia since 2005.
He received the Laurea degree in computer summa cum laude in computer engineering from the
University of Modena and Reggio Emilia in 2001 and the PhD in computer engineering from
the University of Roma ‘Tor Vergata’ in 2003. His research interests include geographically
distributed systems, peer-to-peer systems, social networks and cloud computing. On these topics,
he published more than 50 papers on international journals and conferences.

This paper is a revised and expanded version of a paper entitled ‘Balancing accuracy and
execution time for similar virtual machine identification in IaaS cloud’ presented at the ‘IEEE
Conference on Enabling Technologies: Infrastructures for Collaborative Enterprises (WETICE)’,
Parma, Italy, 23–25 June 2014.

1 Introduction

Cloud computing will play a major role in the future
internet of services, enabling on-demand provisioning of
applications and computing infrastructures. The capability
of cloud computing systems to cope with the increasing
resource demand in the next few years will be critical for
the future development of the emerging digital society
(Moreno-Vozmediano et al., 2013).

Among the existing cloud service models, this paper
focuses on Infrastructure as a Service (IaaS) systems, where

different customer applications are hosted in virtualised
environments: typically, a customer application is structured
in multiple software components (e.g. the tiers of a multi-
tier web application, or web services to be composed) (Dai
et al., 2014), and each component runs on a separate virtual
machine (VM). The growing popularity of IaaS cloud
systems has led to constantly increasing size and complexity
of the IaaS data centres, that are facing novel challenges for
the scalability of resource monitoring and managing tasks.
Moreover, it is worth to note that from the point of view of
IaaS cloud providers the VMs are usually considered as

 A comparison of techniques to detect similarities 153

black boxes with independent behaviours: this means that
data need to be collected with fine granularity about each
single VM of the data centre, thus exacerbating the
scalability issues concerning the monitoring task. A similar
scalability problem occurs when the provider strives to
place VMs on the infrastructure minimising the number of
physical servers, owing to the computational cost of the
underlying optimisation problem.

Recent solutions proposed in literature (Canali and
Lancellotti, 2014d; Canali and Lancellotti, 2014c) show that
scalability issues related to resource monitoring in IaaS cloud
systems can be addressed by automatically clustering VMs
showing a similar behaviour in terms of resource usage. The
knowledge of similar VMs clusters allows the monitoring
system to collect data with fine granularity only on a subset of
representative VMs for each cluster, achieving a significant
reduction in the amount of globally collected data. However,
existing solutions for automatic VMs clustering present
important drawbacks: indeed, they may be very accurate, at the
price of high computational costs (Canali and Lancellotti,
2014c), or able to provide very fast results with limited
accuracy (Canali and Lancellotti, 2014d). Moreover, the
performance of most solutions may change significantly
depending on specific parameters or pre-processing steps that,
if not correctly tuned, may result in poor performance.

The main contribution of this paper is twofold. First,
we present a non-parametric clustering technique, namely
KL-based, that exploits Mixture of Gaussians (MoGs) to
model VM behaviour and the Kullback–Leibler divergence
to measure the similarity between VMs, with the goal to
provide fast and accurate VM classification without relying
on any specific parameter. Second, we compare several
existing solutions for VM clustering, such as ensemble-
based (Canali and Lancellotti, 2014c), correlation-based,
and PCA-based (Canali and Lancellotti, 2014d) techniques,
with the new KL-based proposal to provide an insight on the
pros and cons of each technique.

A preliminary version of KL-based clustering was
proposed in Canali and Lancellotti (2014b), but the present
study extends the previous work in several ways. First, we
apply the clustering to a wider range of workloads and to
shorter time series (up to 6 hours) to achieve a deeper
understanding of the clustering performance over different
scenarios. Second, we analyse in detail the issues of
clustering based on short time series in a dynamic scenario,
that is when newly acquired VMs can enter the system any
time. Third, we discuss the potential benefits for the
monitoring system in terms of reduction of collected data.
We carry out an experimental evaluation based on two
different scenarios: a private cloud data centre hosting a
multi-tier web application and a synthetic web benchmark
deployed on a commercial cloud infrastructure. Experimental
results assess the limitations of existing solutions and
evaluate our proposal. We demonstrate that the KL-based
technique achieves a clustering with an accuracy comparable
with the best existing solutions, but with a computational
requirements significantly lower and without need to tune
any algorithm parameter.

The rest of this paper is organised as follows. Section 2
describes the reference scenario for the application of VM

clustering. Section 3 presents the proposed KL-based
technique and Section 4 describes the existing approaches.
Section 5 provides the experimental evaluation of clustering
techniques applied to different scenarios. Section 6
discusses the related work, while Section 7 concludes the
paper with some final remarks.

2 Reference scenario

Let us introduce the scenario of an IaaS cloud data
centre that exploits a VM clustering solution to improve
its monitoring and management scalability (Canali and
Lancellotti, 2014c; Canali and Lancellotti, 2014d). This will
be the reference scenario for our proposal.

Figure 1 represents an IaaS cloud system that relies on a
two-level management strategy (Gong and Gu, 2010). The
first level focuses on local management and is carried out
on each host node (that is the physical server where VMs
run). The goal of local management is to detect in real-time
overload conditions leveraging the resource measurements
of the VMs hosted on the node and relying on live VM
migration in case of overload (Wood et al., 2007). The
second level, namely global management, is carried out on a
management node. Global management executes periodically
a global consolidation to place VMs on as few host nodes
as possible to reduce the infrastructure costs and avoid
expensive resource over-provisioning (Ardagna et al., 2012).
Since consolidation strategies in IaaS cloud infrastructures
usually consider each VM as a stand-alone object with
independent resource usage patterns, detailed information
has to be collected with high sampling frequency (typically
one sample every 5 minutes [Ardagna et al., 2012; Setzer
and Stage, 2010] or even less) about each VM. This fine-
grained sampling may determine scalability issues for the
monitoring system. Furthermore, as the server consolidation
must consider every VM of the data centre, solving
optimisation problems for the global management task may
pose scalability problems as well.

Figure 1 Cloud system using VM clustering

154 C. Canali and R. Lancellotti

Clustering has the potential to improve the scalability of
monitoring and management processes by automatically
grouping together VMs showing similar behaviours in
terms of resource usage (Canali and Lancellotti, 2014c;
Canali and Lancellotti, 2014d). The goal of clustering is the
identification of VMs that host the same software component
of the same customer application.

To improve monitoring scalability we select a few
representative VMs for each identified class as soon as the
clustering is done. We choose to select at least three
representatives owing to the possibility that a selected
representative unexpectedly changes its behaviour with respect
to its class: quorum-based techniques can be exploited to cope
with byzantine failures of representative VMs (Castro and
Liskov, 1999). At this point, only the representative VMs of
each class are monitored with high sampling frequency to
collect information for the periodic consolidation task, while
the resource usage of the other VMs of the same class is
assumed to follow the representatives behaviour. On the other
hand, the non-representative VMs of each class are monitored
with coarse-grained granularity to identify behavioural drifts
that could determine a change of class. Moreover, sudden
changes leading to server overload are handled by the local
management through live VM migration.

The clustering technique may also improve the scalability
of the global management operations. The critical step of
server consolidation is the solution of a multidimensional
bin-packing problem, where each VM must be assigned to a
host node without exceeding the node capacity in terms of
available resources. This problem is typically solved using
heuristics and simplifications (such as considering only one
resource such as the CPU [Setzer and Stage, 2010]). We
argue that, by knowing that VMs belong to classes, we can
switch to a cluster-based consolidation that solves a much
smaller optimisation problem (with the possibility to use
more complex and accurate algorithms). Then, the VM
allocation solution may be replicated as a building block
to create the server consolidation solution for the whole
data centre.

Figure 1 shows how the previously introduced components
interact. Collection of data about resource usage of the
hosted VMs is performed by the monitoring system (hosted
on each node). Such data are then sent to the local
management system (arrow 1), which is responsible for
triggering live VM migration in case of host overload
(Wood et al., 2007). A second function of the monitoring
system is to process and send data to the VM clustering
system (1), which automatically builds a VM behaviour
model and groups similar VMs applying one of the
techniques proposed in Canali and Lancellotti (2014c,
2014d). The identified VM classes and the representatives
of each class are then communicated to the global
management (3a) and to the monitoring system (3b). This
result is used by the monitoring system to differentiate the
sampling frequency between representative and non-
representative VMs. The data collected with different
granularity are sent to the global management system (4)

which is responsible for two tasks. First, the global
management executes periodically the cluster-based
consolidation strategy, exploiting the resource usage of the
representative VMs to characterise the behaviour of every
VM of the same class and possibly taking also into account
information about the partition of VMs into clusters. The
local manager receives the global consolidation decisions (5)
and applies them. Second, the global management system
checks for behavioural drifts of non-representative VMs,
that must be re-classified.

It is worth to note that, unlike server consolidation, VM
monitoring and clustering are not necessarily periodic
operations. A new VM can enter the system at any time, and
when it happens fine-grained monitoring starts for that VM
to build a representation of its behaviour. As soon as the
data to build the VM behaviour model are available, the
clustering function is invoked. Clustering uses both already
available VM behaviour models (collected in previous
periods for the existing VMs) and the fresh data for the new
VM. In a similar way, VMs that change their behaviour, as
well as VMs causing overload of physical servers detected
by local management, are marked as unclassified VMs and
are monitored again with high sampling frequency to be
re-clustered.

From the description of the reference scenario, we
understand how the application of an automatic clustering
technique may improve the scalability of cloud monitoring
and management. However, the existing clustering solutions
(Canali and Lancellotti, 2014c; Canali and Lancellotti,
2014d) present drawbacks related to the computational cost,
the stability of the accuracy results and the dependence on
specific parameter values. In the next section, we present a
novel VM clustering technique that provides high accuracy
with limited computational requirements, and does not
depend on any parameter. This new technique will then be
compared with the existing available solutions to understand
which solution is the most appropriate for the different
possible scenarios of cloud data centres.

3 KL-based clustering technique

Let us now describe in detail the KL-based technique for
automatic VMs clustering. We provide an overview of the
structure of the proposed technique by identifying three
conceptual steps that are common to every solution for VM
clustering. This approach allows us to provide a common
background for comparing our proposal with the existing
alternatives, that will be described in Section 4. The proposed
KL-based technique, as well as the existing clustering
alternatives, includes the following three main steps:

1 Extraction of a quantitative model for describing the
VM behaviour.

2 Definition of a distance representing the similarities
among the VMs.

3 Clustering based on the proposed distance to identify
classes of similar VMs.

 A comparison of techniques to detect similarities 155

3.1 VM behaviour quantitative model

The description of the VM behaviour is obtained by modelling
the usage of the VM resources through a linear combination of
multiple Gaussian distributions, that we call a MoG. To
formalise our model, we consider a set of N VMs, and for each
VM  1,n N a set of M metrics, where each metric

 1,m M represents the usage of a VM resource.

Let  1 2, , ,n n n
MX X X be a set of time series, where n

mX

is the vector consisting of the samples of the resource usage
represented by the metric m of VM n. The probability

density function  n
mp X of each time series can be

considered as the description of the behaviour of metric m
on VM n. We approximate the probability density using the
previously introduced MoG:

   , , ,
=1

= ,

nGm
n n n n n
m m m i m i m i

i

p mog g   X

where n
mG is the number of Gaussian distributions used to

model the probability distribution of samples for metric m on
VM n, and ,

n
m i , ,

n
m i , ,

n
m i are the weight, mean value and

standard deviation of the specific component of the MoG.
The approximation of the probability distribution

through a MoG is carried out using the mclust package
provided by the R statistical analysis software (Fraley et al.,
2013). The package performs a clustering of the data
samples to automatically identify the number of modes in
the probability density function and then iteratively adjusts
the parameters of each Gaussian component in order to
obtain a close fitting of the probability density function with
the MoG. It is worth to note that no parameters are involved
in this process.

3.2 Definition of a distance

The second step of the technique consists in introducing a
distance to define similarities among VMs starting from the
representation of their behaviour. To define the VM
distance we exploit the Kullback–Leibler (KL) divergence,
which measures the similarity between two probability
distributions, possibly modelled as MoG (Kullback, 1997).
The KL divergence between two MoG, mog1 and mog2, is
defined as:

     
 

1
1 2 1=0

2

, = ln
x

mog x
KL mog mog mog x dx

mog x

  
  
 



However, an analytical solution in a closed form of such
equation is not always possible, and numeric approximation
of the integrals is computationally expensive. For two
Gaussian distributions g1 and g2, the KL divergence can be
defined with the following closed analytical form:

   22
1 1 22

1 2 2
1 2

1
, = log

22
KL g g

  
 

  
  

 
 (1)

where 1, 2, 1, and 2 are the mean values and the
standard deviation of the two distributions g1 and g2
(Hershey and Olsen, 2007).

For MoGs, we can use an approximation, namely
variational divergence (Hershey and Olsen, 2007), that
extends equation (1). The KL divergence for two Mixtures
of Gaussian distributions mog1 and mog2 is thus defined as:

 
 

 

1, 1,1
1

1, 2,2

,

1,1
1 2 1, ,

=1
2,1

, = ln

i j

i k

KL g gn
n

jj
VD i KL g gn

i
kk

e
KL mog mog

e














 
   
 
 




Finally, the distance between two VMs n1 and n2 is the sum
of squares of the KL divergence between the MoGs
representing the VM behaviour for each metric:

    2
1 2

1 2
=1

, = ,
M

n n

VD m m
m

D n n KL mog mog

3.3 Clustering

The last step of the technique returns the final clustering
solution. The distance previously defined is computed for
each couple of VMs, obtaining a distance matrix D. Then,
the distance matrix is fed into a clustering algorithm to
obtain the final solutions.

It is worth to note that to cluster together elements of a
set starting from a distance matrix, traditional algorithms
such as K-means or Kernel K-means (Jain, 2010) are not
viable options because they expect as input a set of
coordinates for each element to cluster. For this reason, we
exploit the widely adopted spectral clustering algorithm,
which is explicitly designed to manage as input a similarity
matrix or a matrix-based representation of graphs (Ng et al.,
2001). The output of the clustering step is a vector C, where
the n-th element cn is the ID of the cluster to which VM n is
assigned.

Once the clustering is complete, we need to select for
each class some representative VMs that will be monitored
with fine granularity. To this purpose, it is worth to note that
the output of the K-means internal phase of spectral
clustering provides as additional output the coordinates of
the centroids for each identified class. In this case, the
representative VMs can be selected as the VMs closest to
the centroids.

4 Existing approaches

In this section, we present three existing solutions to
implement the steps for a VM clustering technique outlined
in Section 3.

4.1 Ensemble-based

The ensemble-based technique, presented in Canali and
Lancellotti (2014c), uses the probability density of the
utilisation of VM resources to model the VM behaviour,
like the KL-based approach. But, differently from the

156 C. Canali and R. Lancellotti

proposed technique, the behavioural model of a VM
consists in a set of normalised histograms, one for each
considered metric of the VM.

Next, the ensemble-based approach uses the
Bhattacharrya distance (Bhattacharyya, 1943), which
provides the distance between two different histograms, to
compute a per-metric distance between every couple of
VMs. The use of this distance for VM clustering has been
proposed for the first time in a preliminary paper (Canali
and Lancellotti, 2013).

Then a set of per-metric clustering solutions are
obtained from the distance matrices obtained applying the
per-metric distance definition. To this aim, we rely on the
same spectral clustering algorithm already described for the
proposed KL-based clustering technique. To merge the
separate clustering solutions, we exploit a further clustering
step where the input is a co-occurrence matrix determined
through ensemble techniques. Specifically, the co-occurrence
matrix contains, for each couple of VMs (n1, n2), the number
of times that the VMs are clustered together throughout the
whole set of per-metric clustering solutions. The last
clustering step exploits again the spectral algorithm to
obtain the final clustering solution.

4.2 Correlation-based

The correlation-based technique (Canali and Lancellotti,
2014d) describes the behaviour of a VM using the
correlation between the time series of different metrics
of the same VM. From the correlation between each couple
of metrics (m1, m2) we obtain a vector of length

 1
=

2

M M
L

 
, that is the feature vector characterising the

VM. The output of the first step of the technique is a set of
N feature vectors (one for each VM) that define a L-
dimensional vector space. The vector space uses an
Euclidean distance to compute the distance between two
feature vectors.

Finally, the set of N feature vectors describing the VMs
is used as an input for the clustering algorithm. Specifically,
we use the K-means algorithm (Jain, 2010) for clustering.

4.3 PCA-based

The PCA-based technique (Canali and Lancellotti, 2014d) is
an evolution of the previously described correlation-based
solution that improves the quality of the clustering results.

This technique exploits the correlation values between
each couple of time series referring to the M considered
metrics of the same VM like the previous correlation-based
solution. The correlation values are assembled into a M  M
square matrix; then, we compute the eigenvectors of this
correlation matrix. In other words, we apply a Principal
Component Analysis (PCA) over the time series of each
VM. Using the well-known rule of the scree plot visual
analysis (Abdi and Williams, 2010), we identify the number
P of components that are significant to reconstruct the VM
behaviour (in our experiments P = 1, as in Canali and

Lancellotti [2014d]). As each component is associated to an
eigenvector of the correlation matrix, we build a feature
vector to describe the VMs behaviour using only the P
eigenvectors associated to the highest eigenvalues.

As for the correlation-based approach, the feature vector
of length P M defines a feature vector space with an
Euclidean distance. Clustering is then carried out with the
K-means algorithm.

5 Experimental evaluation

In this section, we evaluate the proposed methodology and
compare it with existing approaches for VMs clustering.
Specifically, we point out pros and cons of each technique,
with particular attention to critical elements such as stability
of the results, parameter dependence and computational
cost. To this purpose, we apply the clustering techniques to
two case studies that are described below. The experimental
evaluation initially discusses the parameters that may
affect the performance of each solution. We provide an
experimental comparison of the clustering accuracy of the
different techniques, then we pass to analyse the issues of
clustering on short time series (less than 24 hours) in
dynamic scenarios. Next, we analyse the sensitivity of the
performance to the number of considered metrics. Finally,
we compare the execution times of the different clustering
approaches and discuss the potential benefits in terms of
reduction of monitored data.

5.1 Case studies

To compare the performance of different clustering
techniques we consider two case studies: the Enterprise data
set coming from a real data centre, and the EC2 Amazon
case study based on a synthetic data set.

The Enterprise case study is based on a web e-health
application for the automated management of lab exams,
which is hosted on a private enterprise data centre. The
application is deployed on 110 VMs according to a multi-
tier architecture. The VMs are divided between the two
software components of the web application: web servers
and back-end servers (that are DBMS). This case study
represents a real web application hosted on a distributed
data centre, with resource usages showings the typical daily
patterns that characterise web traffic. We collect data about
the resource usage of every VM for different periods of
time, ranging from 5 days to 6 hours, with a sampling
frequency of 5 minutes.

The EC2 Amazon case study is based on a virtualised
test-bed running an e-commerce application: the application
is built on the RUBiS benchmark and deployed over the
Amazon Elastic Computing infrastructure (micro instances
of VMs). The benchmark is hosted on a set of 36 VMs, with
12 VMs dedicated to web servers, 12 to DBMS and 12 VMs
running a set of emulated browsers. As the considered
application is supporting a synthetic workload, the patterns
of client requests are stable over time. For this reason, we

 A comparison of techniques to detect similarities 157

collect samples with a frequency of 5 minutes for 12 hours:
longer time series would not provide additional information
from a statistical point of view in this steady state scenario.

In both the case studies, for each VM we consider
ten metrics describing the usage of different resources
related to CPU, memory, disk, and network. The complete
list of the metrics is provided in Table 1 along with a short
description.

Table 1 Virtual machine resources

Metric Description

X1 SysCallRate Rate of system calls [req/sec]

X2 CPUSys System CPU utilisation [%]

X3 CPUUser CPU utilisation (user mode) [%]

X4 CtxSwitch Rate of context switches [Cs/s]

X5 Memory Physical memory utilisation [%]

X6 BlockOut Rate of blocks written to storage [Blk/s]

X7 PgOutRate Rate of memory pages swap-out [pages/sec]

X8 OutPktRate Rate of network outgoing packets [pkts/sec]

X9 InPktRate Rate of network incoming packets [pkts/sec]

X10 AliveProc Number of alive processes

The final goal of VM clustering applied to these case studies
is to correctly classify the VMs running different software
components: web server and DBMS for the Enterprise
scenario, and web servers, BDMS and emulated browsers
for the EC2 Amazon case study. As a performance indicator
to evaluate the performance of VM clustering, we consider a
widely used measure, namely purity (Amigó et al., 2009)
that expresses the fraction of correctly classified VMs. The
clustering purity is obtained by comparing the clustering
solution C with the vector C*, which represents the ground
truth. Purity is thus defined as:

  : = , 1,
=

n n nc c c n N
Purity

C

  

where   : = , 1,n n nc c c n N   is the number of VMs

correctly clustered and =C N is the number of VMs.

5.2 Comparison of clustering approaches

We now compare the different clustering techniques applied
to our case studies. In particular, we consider the proposed
KL-based methodology and three existing approaches:
ensemble-based (Canali and Lancellotti, 2014c), PCA-based
and correlation-based (Canali and Lancellotti, 2014d).

A first comparison is related to the parameters affecting
the performance of the different techniques. The ensemble-
based solution relies on normalised histograms to represent
VM behaviour. A parameter involved in this approach is the
number of bins used to compute the histograms. Multiple
rules are available to determine this number, and results in
literature show that the selected rule can affect the quality of
the clustering performance (Canali and Lancellotti, 2014c).

On the other hand, the PCA-based solution is characterised by
the number of principal components to feed into the
clustering step, as mentioned in Section 4. Again, results in
literature demonstrate that the number of considered
components may affect the clustering performance (Canali
and Lancellotti, 2014d). Finally, the correlation-based
solution is not dependent on any parameter, like the proposed
KL-based technique (Canali and Lancellotti, 2014d).

The second comparison is based on a quantitative
evaluation of the achieved clustering performance. The
clustering purity achieved by the different clustering
techniques in the Enterprise scenario is shown in Figure 2 as
a function of the time series length, which ranges from 5
days to 6 hours. We see from Figure 2 that the performance
of the correlation-based approach significantly decreases for
time series shorter than 3 days. On the other hand, the
results of the other three techniques remains quite stable
for every time series length, with a slight decrease of
achieved purity for time series shorter than 1 day. The best
performance is achieved by the ensemble-based approach.
The proposed KL-based technique shows a good stability
for different time series lengths, while achieving performance
only slightly worse with respect to the ensemble-based
approach, with differences in clustering purity ranging from
3% to 3.5%.

Figure 2 Clustering purity in the Enterprise scenario

We now proceed to evaluate the performance of the
clustering techniques when applied to the EC2 Amazon case
study. The results are shown in Table 2.

Table 2 Clustering purity for EC2 Amazon case study

Clustering technique

KL Ensemble PCA Correlation

0.917 0.926 0.909 0.815

The clustering purity basically confirms the results of the
Enterprise scenario. The correlation-based technique
achieves the lowest purity, while the other three alternatives
show very similar results, with the ensemble-based
technique achieving a slightly better performance. We also
observe that the EC2 Amazon scenario provides a clustering
purity that is generally higher if compared to the Enterprise
case study, even if the overall data collection time is limited

158 C. Canali and R. Lancellotti

to 12 hours. This result is motivated by the use of a
synthetic workload for the EC2 Amazon case study, which
is characterised by regular access patterns that increase the
accuracy of the clustering algorithms.

5.3 Short time series in dynamic scenario

Using short time series (below 24 hours) to cluster similar
VMs may present some issues if we consider a dynamic
scenario where newly acquired VMs may frequently enter
the system. A typical example is represented in Figure 3 (a).
The graph shows the CPU utilisation of a web server
(Enterprise case study) over a period of about 78 hours: the
resource usage is characterised by the daily patterns that are
typical of a web application. Let us assume that during the
first 6 hours (period M1) the monitoring system collects the
resource usage time series for each VM in the system with
fine granularity, that is one sample every 5 minutes. We also
assume that at time t = 36 hours new VMs enter the system,
and fine-grained monitoring starts to collect their resource
usage for the next 6 hours (period M2). At time t = 42 hours
the clustering function is invoked and operates on VM
behaviour models built on time series collected during M1
for the VMs that were initially in the system and during M2
for the newly entered VMs.

The problem that may be caused by working on short
time series collected in different periods of time is evidenced
in Figure 3 (b) that shows the probability density functions
(that is used to model the VM behaviour in the KL-based
technique) for two VMs VM1 and VM2 monitored during
periods M1 and M2, respectively. We observe that the two
behaviour descriptions are completely different, with a mode
in the probability distribution close to 25% for VM1 and
to 65% for VM2, hence the resulting Kullback–Leibler
divergence of the two distributions is likely to be high. It is
important to note that the differences in the behaviour of the
VMs are not related to a difference in the software component
run on them (both VMs are web servers) but to the different
monitoring periods. In this experiment we evaluate whether
this difference may hinder the capability of the clustering
technique to identify similar VMs.

To emulate the described dynamic scenario, we consider
the 110 VMs of the Enterprise case study, and we apply the
clustering techniques to resource usage time series collected
during the period M1 for 85 VMs, and during period M2 for
the remaining 25 VMs. Table 3 shows the achieved purity
for the dynamic scenario, and compares it with the results
obtained for a static scenario where all the 110 VMs are
monitored during period M1.

Table 3 Clustering purity in static and dynamic scenarios

Clustering Scenario

Technique Static Dynamic

KL-based 0.778 0.721

Ensemble-based 0.802 0.743

PCA-based 0.755 0.751

Correlation-based 0.615 0.609

We observe that the clustering purity tends to decrease for
all the techniques passing from the static to the dynamic
scenario, but with a significant difference: the performance
deterioration is more evident for KL-based and ensemble-
based techniques (up to 6%), while the PCA-based and
correlation-based approaches achieve more stable results,
with a purity decrease below 1%. The motivation can be
found in the different mechanism used to model the VM
behaviour. The approaches using the probability density
function of the resource usage, like KL-based and
ensemble-based techniques, suffer from the issue shown in
Figure 3 (b) and tend to be less effective in identifying VM
similarities. On the other hand, the PCA-based and
Ccrrelation-based techniques model the VM behaviour
based on the correlation between the time series of different
metrics of the same VM: such correlation remains quite
stable even in presence of workload daily fluctuation, thus
explaining the smaller decrease of clustering purity in the
dynamic scenario. It is worth to recall that this effect only
applies when short time series (below 24 hours) are used to
model the VM behaviour, otherwise the presence of
complete daily patterns does not affect the clustering
performance.

Figure 3 Clustering issue for short time series in
dynamic scenario

(a) Metric collection periods

 (b) Probability density function

 A comparison of techniques to detect similarities 159

5.4 Sensitivity to number of metrics

Another element that may affect the performance of the VM
clustering is the number of metrics used to determine the
VM behaviour model. Using a high number of metrics may
be counter-productive because non-significant data are
likely to be fed into the final clustering step, with effects
comparable to noise that degrades the clustering performance.
In this experiment, we evaluate the sensitivity to the number
of metrics on the clustering techniques by considering a
reduced set of metrics, which is limited to four metrics
mostly used in data centre management strategies (Ardagna
et al., 2012; Hu et al., 2012; Gong and Gu, 2010): CPU
and memory utilisation, input and output packet rate. It is
worth to note that an automatic mechanism to select metrics
for VM clustering purposes has been proposed in a
preliminary study by the authors (Canali and Lancellotti,
2013): the selection, which is based on the analysis of
autocorrelation and coefficients of variation of the time
series, confirms the presence of the above-mentioned metrics
in the selected set.

Figure 4 Clustering purity for different sets of metrics

Figure 4 shows the purity of the clustering approaches in the
Enterprise and EC2 Amazon scenarios (time series of 1 day
and 12 hours, respectively) for the entire set of ten metrics
and for the reduced set of four selected metrics. We observe
that the number of metrics has very different impacts on the
performance of the considered approaches, and the effect
is similar in both the case studies. The KL-based and
ensemble-based techniques achieve quite stable results over
the different set of metrics, with a purity slightly improved
in the case of few representative metrics. On the other hand,
the performance of the PCA-based and correlation-based
approaches drastically decreases in case of few metrics. For
the latter approaches, indeed, the reduction of metrics
causes an excessive decrease in the dimension of the feature
vector space used to describe the VMs behaviour.
Differently, both KL-based and ensemble-based techniques
exploit a distance matrix that does not change dimension
with the metric reduction, maintaining the capability to
achieve accurate clustering. This result demonstrates that
the KL-based and ensemble-based techniques may achieve

good clustering performance which is not affected by the
presence of metric selection, thus outperforming their PCA-
based and correlation-based counterparts.

5.5 Execution time of clustering techniques

The global execution time required for VM clustering
consists of three different contributions, corresponding to
the main steps of the methodology defined in Section 3:
first, the time to extract the quantitative model of VMs
behaviour; second, the time to compute the VMs distance;
third, the time to perform the clustering step. In this
experiment, we evaluate the execution times of each step of
the methodology on a machine equipped with an Intel Xeon,
2GHz CPU. Table 4 shows the execution times of the three
contributions for the considered clustering techniques.

Table 4 Times [s] for clustering techniques

Clustering Step

Technique Model Distance Clustering

KL-based 5.82 390.27 11.61

Ensemble-based 1.32 1417.42 69.72

PCA-based 0.11 n/a 5.21

Correlation-based 0.06 n/a 8.21

It is worth to note that the extraction of the quantitative
behavioural model has to be performed separately for every
considered VM, and can be parallelised on distributed nodes.
On the other hand, the second and third contributions
represent a centralised task that cannot be parallelised. Hence,
for a fair comparison we measure the time for extracting the
behavioural model of a single VM (second column of the
table), while the other contributions (third and fourth
columns) are measured by considering the corresponding step
computed on all the 110 VMs of the data set.

We observe that the PCA-based and the correlation-
based approaches show lower execution times than the other
techniques for every considered step. With regard to the
ensemble-based approach, we note that the execution times
are particularly high in the case of the second and third
contributions, owing to the expensive computation of the
Bhattacharyya distance and to multiple clustering steps. On
the other hand, the proposed KL-based technique requires
longer time than the ensemble-based approach for the VM
model computation, but is much faster on the other steps.
Since the model computation corresponds to the only step of
the methodology that can be parallelised on multiple nodes,
we believe that the KL-based technique is a preferable
choice to apply clustering in large data centres, while the
ensemble-based approach is better suited for smaller-sized
infrastructures due to the high costs of the centralised steps.

5.6 Benefits for monitoring scalability

We now evaluate the reduction in terms of collected data
that is achievable by integrating a clustering technique in a
cloud monitoring system. For this experiment, we consider

160 C. Canali and R. Lancellotti

the Enterprise case study where the multi-tier web
application is deployed on 110 VMs, divided between web
servers and DBMS. If no clustering technique is applied,
it is necessary to monitor every VM at fine-grained
granularity to accomplish periodic consolidation tasks.

Assuming that the monitoring system considers K
resources for each VM, which are collected with a frequency of
one sample every 5 minutes, we have to manage a volume

of data 288 K samples per day per VM. Considering 110

VMs, the total amount of data is in the order of 43.2 10 K 
samples per day. If we apply a clustering technique in the
same scenario, the proposed methodology automatically
identifies two sets of similar VMs (web servers and DBMS)
and monitors at the granularity of 5 minutes only a few
representative VMs per class, while the remaining VMs can
be monitored with a coarse-grained granularity, for example
of one sample every few hours. Assuming to select three
representatives for each of the two VM classes the amount

of data to collect after clustering is reduced to 217.2 10 K 
samples per day for the class representatives; for the
remaining 104 VMs, assuming to collect one sample of the

K metrics every 6 hours for VM, the data collected are in

the order of 24.2 10 K  samples per day. Hence, we
observe that our proposal may reduce the amount of data
collected for periodic consolidation by nearly a factor of 15,

from 43.2 10 K  to 221.4 10 K  .

5.7 Summary of clustering comparison

Table 5 summarises the characteristics of the clustering
approaches. For each technique, we evidence with bold font
the elements that represent potential drawbacks for the
applicability and the performance achievable in a real cloud
environment.

Table 5 Comparison of clustering approaches

Clustering
approach

Parameters
No. of

metrics
Execution

time

KL-based None Low Medium

Ensemble-based # bins Low High

PCA-based # components High Low

Correlation-based None High Low

From the table we note that the KL-based technique is not
sensitive to any parameter. Moreover, its stable performance
with respect to the number of considered metrics allows us
to reduce the amount of monitored resources to describe the
VM behaviour. For these reasons and for its computational
cost, this approach may be preferable with respect to the
other alternatives. On the other hand, the ensemble-based
approach achieves slightly better performance than the
proposed technique, but it is sensitive to the choice of
the bin number for histograms computation and requires
multiple clustering steps that cause higher execution times.

Hence, we can conclude that the KL-based approach is
applicable to a wide range of scenarios, while the ensemble-
based technique may be a preferable solution for cases
where the number of VMs is limited and the workload is
stable to allow a tuning of the metric histogram bin numbers.

Our analysis also points out an unexpected result
concerning VM clustering based on short monitoring
periods of few hours in a dynamic scenario. As discussed in
Section 5.3, in this case the performance of KL-based and
ensemble-based techniques may be deteriorated if the
workload presents daily patterns or fluctuations. On the
other hand, PCA-based clustering achieves more stable
results, but this technique is sensitive to the number of
principal components and requires a high number of metrics.
A recent effort to investigate the problem of clustering VMs in
dynamic scenarios relying on short monitoring periods has
been done in Canali and Lancellotti (2014a), but it remains
on open issue that needs further investigation.

6 Related work

Scalability issues concerning resource monitoring and
management in cloud systems have received a lot of attention
by academic and commercial communities in the last few
years, but only recent studies have explored solutions based
on automatic clustering that take advantage from similarities
between VMs sharing a common behaviour.

The study in Zhang et al. (2011) proposes a method to
automatically identify similarities between VMs in cloud
systems that is based only on storage resources, with the
goal to perform storage consolidation strategies. The study
in Jayaram et al. (2011) investigates similarities in VM
images used in public cloud environments, focusing on the
static images of cloud VMs to provide insights for de-
duplication and image-level cache management. These
studies apply clustering to a very limited set of resources for
specific purposes, while our approach considers several
resources to model the general VMs behaviour, and leverage
similarities to improve scalability of cloud monitoring and
management.

Recent studies (Canali and Lancellotti, 2014c; Canali
and Lancellotti, 2014d) propose clustering techniques that
group together cloud VMs with similar behaviour on the
basis of their resource usage. The technique proposed in
Canali and Lancellotti (2014c) achieves very accurate VM
clustering, but at the price of high computational costs. On
the hand, in Canali and Lancellotti (2014d) much faster
solutions were presented, but less accurate. Furthermore, all
the techniques require some specific parameter that, if not
correctly tuned, may result in poor performance. The
proposed KL-based clustering overcomes the limitations of
the previous approaches, being a non-parametric technique
that does not need any specific tuning. A preliminary
version of the KL-based clustering was originally presented
in Canali and Lancellotti (2014b). This study clearly
extends the scope of the previous work for several reasons.

 A comparison of techniques to detect similarities 161

We consider two different workloads with varying demands
and shorter time series (up to 6 hours) to model the VMs
behaviour: this analysis allows us to give useful insights
with respect to the performance of different clustering
techniques in presence of specific conditions and workloads
patterns. Moreover, we evaluate the reduction in terms of
monitored data that are achievable by integrating the
clustering technique into the cloud monitoring system.

The benefits of the proposed VM clustering techniques
have been specifically evaluated in the context of cloud
monitoring, intending to improve the scalability of the data
collection process. A survey on monitoring solutions and
available platforms may be found in Aceto et al. (2013). In
literature current approaches typically address monitoring
scalability issues by propagating the collected data to the
management process only after aggregation and filtering, in
order to reduce their volume. Most of the proposed solutions
adopt a subsystem to propagate data or rely on agents,
which are responsible for performing data collection,
filtering and aggregation (Mehrotra et al., 2011; Shao and
Wang, 2011; Azmandian et al., 2011; Kertesz et al., 2013;
Andreolini et al., 2011). Different aggregation strategies
have been proposed: extraction of high-level performance
metrics by mean of machine learning algorithms (Shao and
Wang, 2011); extraction of predicted parameters by combining
metrics from different layers (hardware, OS, application and
user) and by applying Kalman filters (Mehrotra et al.,
2011); linear combination of OS-layer metrics (Azmandian
et al., 2011); and extraction of high-level statistics from OS
and application layers (Kertesz et al., 2013; Andreolini
et al., 2011).

Several open source platforms have also been proposed
to monitor cloud systems. Among the most popular
solutions, some examples deserving a mention are: Nagios,
a well-known open source monitoring platform that has
been extended to support the monitoring of cloud
infrastructures both in terms of virtual instances and storage
services (Katsaros et al., 2011), and DARGOS, a distributed
monitoring architecture using a push/pull approach to
disseminate information (Povedano-Molina et al., 2013). All
these solutions share a common limitation that is considering
each monitored object (being it a VM or a host) independent
from the others, thus failing to take advantage from VMs
similarities. Furthermore, it is worth to note that the
proposed clustering technique may be integrated in any
existing cloud monitoring solution as an additional step that
selects the granularity of the data collection for different
sets of VMs.

7 Conclusions

Previous studies in literature show that the automatic VMs
clustering may improve the scalability of the monitoring
process in large data centres. However, existing solutions
are affected by some trade-offs regarding the computational

costs, the accuracy of the results and the dependence on
specific technique parameters. We propose a novel approach
that exploits MoGs and Kullback–Leibler divergence to
measure the similarity between VMs. The proposed KL-
based approach is applied to two case studies and compared
with the existing techniques. A wide range of experiments
shows that the KL-based technique may guarantee results
that are comparable with the best performing alternative and
are stable thanks to its non-parametric approach. Moreover,
the limited computational cost makes the proposed approach
the preferable alternative in case of large cloud data centres.

References

Abdi, H. and Williams, L.J. (2010) ‘Principal component analysis’,
Wiley Interdisciplinary Reviews: Computational Statistics,
Vol. 2, No. 4, pp.433–459.

Aceto, G., Botta, A., De Donato, W. and Pescapè, A. (2013)
‘Cloud monitoring: a survey’, Computer Networks, Vol. 57,
No. 9, pp.2093–2115.

Amigó, E., Gonzalo, J., Artiles, J. and Verdejo, F. (2009) ‘A
comparison of extrinsic clustering evaluation metrics based
on formal constraints’, Journal of Information Retrieval,
Vol. 12, No. 4, pp.461–486.

Andreolini, M., Colajanni, M. and Tosi, S. (2011) ‘A software
architecture for the analysis of large sets of data streams in
cloud infrastructures’, Proceedings of the 11th IEEE
International Conference on Computer and Information
Technology (IEEE CIT 2011), 31 August–2 September, IEEE,
Cyprus, pp.389–394.

Ardagna, D., Panicucci, B., Trubian, M. and Zhang, L. (2012)
‘Energy-aware autonomic resource allocation in multitier
virtualized environments’, IEEE Transactions on Services
Computing, Vol. 5, No. 1, pp.2–19.

Azmandian, F., Moffie, M., Dy, J.G., Aslam, J.A. and Kaeli, D.R.
(2011) ‘Workload characterization at the virtualization
layer’, Proceedings of IEEE 19th International Symposium
on Modeling, Analysis Simulation of Computer and
Telecommunication Systems (MASCOTS), Singapore, pp.63–72.

Bhattacharyya, A. (1943) ‘On a measure of divergence between
two statistical populations defined by their probability
distributions’, Bulletin of the Calcutta Mathematical Society,
Vol. 35, pp.99–109.

Canali, C. and Lancellotti, R. (2013) ‘Automatic virtual machine
clustering based on Bhattacharyya distance for multi-cloud
systems’, Proceedings of International Workshop on Multi-
Cloud Applications and Federated Clouds, Prague, Czech
Republic, pp.45–52.

Canali, C. and Lancellotti, R. (2014a) ‘An adaptive technique to
model virtual machine behavior for scalable cloud
monitoring’, Proceedings of IEEE Symposium on Computers
and Communications (ISCC), 23–26 June, Madeira, Portugal.

Canali, C. and Lancellotti, R. (2014b) ‘Balancing accuracy and
execution time for similar virtual machines identification in
IaaS cloud, Proceedings of IEEE Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises
(WETICE), 23–25 June, IEEE, Parma, Italy, pp.137–142.

Canali, C. and Lancellotti, R. (2014c) ‘Exploiting ensemble
techniques for automatic virtual machine clustering in cloud
systems’, Automated Software Engineering, Vol. 21, No. 3,
pp.319–344.

162 C. Canali and R. Lancellotti

Canali, C. and Lancellotti, R. (2014d) ‘Improving scalability of
cloud monitoring through PCA-based clustering of virtual
machines’, Journal of Computer Science and Technology,
Vol. 29, No. 1, pp.38–52.

Castro, M. and Liskov, B. (1999) ‘Practical Byzantine fault
tolerance’, in Seltzer, M.I. and Leach, P.J. (Eds): OSDI,
USENIX Association, pp.173–186.

Dai, W., Liu, J.J. and Korthaus, A. (2014) ‘Dynamic on-demand
solution delivery based on a context-aware services
management framework’, Internationall Journal of Grid and
Utility Computing (IJGUC), Vol. 5, No. 1, pp.33–49.

Fraley, C., Raftery, A. and Scrucca, L. (2013) Package ‘mclust’:
Normal Mixture Modeling for Model-Based Clustering,
Classification, and Density Estimation, version 4.0. Available
online at: http://cran.r-project.org/web/packages/ mclust/index.
html

Gong, Z. and Gu, X. (2010) ‘PAC: pattern-driven application
consolidation for efficient cloud computing’, Proceedings of
Symposium on Modeling, Analysis, Simulation of Computer
and Telecommunication Systems, 17–19 August, IEEE,
Miami Beach, FL, pp.24–33.

Hershey, J.R. and Olsen, P.A. (2007) ‘Approximating the kullback
leibler divergence between Gaussian mixture models’, ICASSP
2007. IEEE International Conference on Acoustics, Speech and
Signal Processing, 2007, Vol. 4, pp.IV-317–IV-320.

Hu, L., Schwan, K., Gulati, A., Zhang, J. and Wang, C. (2012)
‘Net-cohort: detecting and managing VM ensembles in
virtualized data centers’, Proceedings of the 9th International
Conference on Autonomic Computing (ICAC ’12), ACM, San
Jose, CA, USA, pp.3–12.

Jain, A.K. (2010) ‘Data clustering: 50 years beyond K-means’,
Pattern Recognition Letters, Vol. 31, No. 8, pp.651–666.

Jayaram, K.R., Peng, C., Zhang, Z., Kim, M., Chen, H. and Lei, H.
(2011) ‘An empirical analysis of similarity in virtual machine
images’, Proceedings of the Middleware 2011 Industry Track
Workshop, Middleware’11, ACM, Lisbon, Portugal,
pp.6:1–6:6.

Katsaros, G., Kubert, R. and Gallizo, G. (2011) ‘Building a service-
oriented monitoring framework with REST and Nagios’,
Proceedings of 2011 IEEE International Conference on Services
Computing (SCC), Washington, DC, USA, pp.426–431.

Kertesz, A., Kecskemeti, G., Oriol, M., Kotcauer, P., Acs, S.,
Rodriguez, M., Merce, O., Marosi, A.C., Marco, J. and
Franch, X. (2013) ‘Enhancing federated cloud management
with an integrated service monitoring approach’, Journal of
Grid Computing, Vol. 11, No. 4, pp.699–720.

Kullback, S. (1997) Information Theory and Statistics (Dover
Books on Mathematics), Dover Publications, New York.

Mehrotra, R., Dubey, A., Abdelwahed, S. and Monceaux, W.
(2011) ‘Large scale monitoring and online analysis in a
distributed virtualized environment’, Proceedings of 8th IEEE
International Conference and Workshops on Engineering of
Autonomic and Autonomous Systems, 27–29 April, Las Vegas,
NV, USA, pp.1–9.

Moreno-Vozmediano, R., Montero, R.S. and Llorente, I.M. (2013)
‘Key challenges in cloud computing: enabling the future
internet of services’, IEEE Internet Computing, Vol. 17,
No. 4, pp.18–25.

Ng, A.Y., Jordan, M.I. and Weiss, Y. (2001) ‘On spectral
clustering: analysis and an algorithm’, Advances in Neural
Information Processing Systems, MIT Press, pp.849–856.

Povedano-Molina, J., Lopez-Vega, J.M., Lopez-Soler, J.M., Corradi,
A. and Foschini, L. (2013) ‘Dargos: a highly adaptable and
scalable monitoring architecture for multi-tenant clouds’, Future
Generation Computer Systems, Vol. 29, No. 8, pp.2041–2056.

Setzer, T. and Stage, A. (2010) ‘Decision support for virtual machine
reassignments in enterprise data centers’, Proceedings of
Network Operations and Management Symposium (NOMS’10),
19–23 April, IEEE, Osaka, Japan, pp.88–94.

Shao, J. and Wang, Q. (2011) ‘A performance guarantee approach for
cloud applications based on monitoring’, Proceedings of IEEE
35th Annual Computer Software and Applications Conference
Workshops, 18–22 July, IEEE, Munich, Germany, pp.25–30.

Wood, T., Shenoy, P., Venkataramani, A. and Yousif, M. (2007)
‘Black-box and gray-box strategies for virtual machine
migration’, Proceedings of Conference on Networked Systems
Design and Implementation (NSDI), Cambridge, MA.

Zhang, R., Routray, R., Eyers, D.M., Chambliss, D., Sarkar, P.,
Willcocks, D. and Pietzuch, P. (2011) ‘IO Tetris: deep storage
consolidation for the cloud via fine-grained workload analysis’,
IEEE International Conference on Cloud Computing, 4–9 July,
IEEE, Washington, DC, USA, pp.700–707.

