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Resumo 
 

  

 

O termo “cancro da cabeça e pescoço” refere-se a um qualquer tipo de cancro com início nas células 

epiteliais das cavidades oral e nasal, seios perinasais, glândulas salivares, faringe e laringe. Estes 

tumores malignos apresentaram, em 2018, uma incidência mundial de cerca de 887.659 novos casos e 

taxa de mortalidade superior a 51%. Aproximadamente 80% dos novos casos diagnosticados nesse ano 

revelaram a proliferação de células cancerígenas dos tumores para outras regiões do corpo através dos 

vasos sanguíneos e linfáticos das redondezas. De forma a determinar o estado de desenvolvimento do 

cancro e as terapias a serem seguidas, é fundamental a avaliação dos primeiros gânglios linfáticos que 

recebem a drenagem do tumor primário – os gânglios sentinela – e que, por isso, apresentam maior 

probabilidade de se tornarem os primeiros alvos das células tumorais. Gânglios sentinela saudáveis 

implicam uma menor probabilidade de surgirem metástases, isto é, novos focos tumorais decorrentes da 

disseminação do cancro para outros órgãos. 

O procedimento standard que permite o diagnóstico dos gânglios linfáticos cervicais, gânglios que 

se encontram na região da cabeça e pescoço, e o estadiamento do cancro consiste na remoção cirúrgica 

destes gânglios e subsequente histopatologia. Para além de ser um procedimento invasivo, a excisão 

cirúrgica dos gânglios linfáticos representa perigos tanto para a saúde mental e física dos pacientes, 

como para a sua qualidade de vida. Dores, aparência física deformada (devido a cicatrizes), perda da 

fala ou da capacidade de deglutição são algumas das repercussões que poderão advir da remoção de 

gânglios linfáticos da região da cabeça e pescoço. Adicionalmente, o risco de infeção e linfedema – 

acumulação de linfa nos tecidos intersticiais – aumenta significativamente com a remoção de uma 

grande quantidade de gânglios linfáticos saudáveis. Também os encargos para os sistemas de saúde são 

elevados devido à necessidade de monitorização destes pacientes e subsequentes terapias e cuidados 

associados à morbilidade, como é o caso da drenagem linfática manual e da fisioterapia.  

O desenvolvimento de novas tecnologias de imagem da cabeça e pescoço requer o uso de modelos 

realistas que simulem o comportamento e propriedades dos tecidos biológicos. A imagem médica por 

micro-ondas é uma técnica promissora e não invasiva que utiliza radiação não ionizante, isto é, sinais 

com frequências na gama das micro-ondas cujo comportamento depende do contraste dielétrico entre os 

diferentes tecidos atravessados, pelo que é possível identificar regiões ou estruturas de interesse e, 

consequentemente, complementar o diagnóstico. No entanto, devido às suas características, este tipo de 

modalidade apenas poderá ser utilizado para a avaliação de regiões anatómicas pouco profundas.  

Estudos indicam que os gânglios linfáticos com células tumorais possuem propriedades dielétricas 

distintas dos gânglios linfáticos saudáveis. Por esta razão e juntamente pelo facto da sua localização 

pouco profunda, consideramos que os gânglios linfáticos da região da cabeça e pescoço constituem um 

excelente candidato para a utilização de imagem médica por radar na frequência das micro-ondas como 

ferramenta de diagnóstico. 

Até à data, não foram efetuados estudos de desenvolvimento de modelos da região da cabeça e 

pescoço focados em representar realisticamente os gânglios linfáticos cervicais. Por este motivo, este 

projeto consistiu no desenvolvimento de dois geradores de fantomas tridimensionais da região da cabeça 

e pescoço – um gerador de fantomas numéricos simples (gerador I) e um gerador de fantomas numéricos 

mais complexos e anatomicamente realistas, que foi derivado de imagens de ressonância magnética e 

que inclui as propriedades dielétricas realistas dos tecidos biológicos (gerador II). Ambos os geradores 

permitem obter fantomas com diferentes níveis de complexidade e assim acompanhar diferentes fases 

no processo de desenvolvimento de equipamentos médicos de imagiologia por micro-ondas. Todos os 
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fantomas gerados, e principalmente os fantomas anatomicamente realistas, poderão ser mais tarde 

impressos a três dimensões.  

O processo de construção do gerador I compreendeu a modelação da região da cabeça e pescoço em 

concordância com a anatomia humana e distribuição dos principais tecidos, e a criação de uma interface 

para a personalização dos modelos (por exemplo, a inclusão ou remoção de alguns tecidos é dependente 

do propósito para o qual cada modelo é gerado). O estudo minucioso desta região levou à inclusão de 

tecidos ósseos, musculares e adiposos, pele e gânglios linfáticos nos modelos. Apesar destes fantomas 

serem bastante simples, são essenciais para o início do processo de desenvolvimento de dispositivos de 

imagem médica por micro-ondas dedicados ao diagnóstico dos gânglios linfáticos cervicais. 

O processo de construção do gerador II foi fracionado em 3 grandes etapas devido ao seu elevado 

grau de complexidade. A primeira etapa consistiu na criação de uma pipeline que permitiu o 

processamento das imagens de ressonância magnética. Esta pipeline incluiu: a normalização dos dados, 

a subtração do background com recurso a máscaras binárias manualmente construídas, o tratamento das 

imagens através do uso de filtros lineares (como por exemplo, filtros passa-baixo ideal, Gaussiano e 

Butterworth) e não-lineares (por exemplo, o filtro mediana), e o uso de algoritmos não supervisionados 

de machine learning para a segmentação dos vários tecidos biológicos presentes na região cervical, tais 

como o K-means, Agglomerative Hierarchical Clustering, DBSCAN e BIRCH. Visto que cada algoritmo 

não supervisionado de machine learning anteriormente referido requer diferentes hiperparâmetros, é 

necessário proceder a um estudo pormenorizado que permita a compreensão do modo de funcionamento 

de cada algoritmo individualmente e a sua interação / performance com o tipo de dados tratados neste 

projeto (isto é, dados de exames de ressonâncias magnéticas) com vista a escolher empiricamente o 

leque de valores de cada hiperparâmetro que deve ser considerado, e ainda as combinações que devem 

ser testadas. Após esta fase, segue-se a avaliação da combinação de hiperparâmetros que resulta na 

melhor segmentação das estruturas anatómicas. Para esta avaliação são consideradas duas metodologias 

que foram combinadas: a utilização de métricas que permitam avaliar a qualidade do clustering (como 

por exemplo, o Silhoeutte Coefficient, o índice de Davies-Bouldin e o índice de Calinski-Harabasz) e 

ainda a inspeção visual. A segunda etapa foi dedicada à introdução manual de algumas estruturas, como 

a pele e os gânglios linfáticos, que não foram segmentadas pelos algoritmos de machine learning devido 

à sua fina espessura e pequena dimensão, respetivamente. Finalmente, a última etapa consistiu na 

atribuição das propriedades dielétricas, para uma frequência pré-definida, aos tecidos biológicos através 

do Modelo de Cole-Cole de quatro pólos. Tal como no gerador I, foi criada uma interface que permitiu 

ao utilizador decidir que características pretende incluir no fantoma, tais como: os tecidos a incluir 

(tecido adiposo, tecido muscular, pele e / ou gânglios linfáticos), relativamente aos gânglios linfáticos o 

utilizador poderá ainda determinar o seu número, dimensões, localização em níveis e estado clínico 

(saudável ou metastizado) e finalmente, o valor de frequência para o qual pretende obter as propriedades 

dielétricas (permitividade relativa e condutividade) de cada tecido biológico.  

Este projeto resultou no desenvolvimento de um gerador de modelos realistas da região da cabeça e 

pescoço com foco nos gânglios linfáticos cervicais, que permite a inserção de tecidos biológicos, tais 

como o tecidos muscular e adiposo, pele e gânglios linfáticos e aos quais atribui as propriedades 

dielétricas para uma determinada frequência na gama de micro-ondas. Estes modelos computacionais 

resultantes do gerador II, e que poderão ser mais tarde impressos em 3D, podem vir a ter grande impacto 

no processo de desenvolvimento de dispositivos médicos de imagem por micro-ondas que visam 

diagnosticar gânglios linfáticos cervicais, e consequentemente, contribuir para um processo não invasivo 

de estadiamento do cancro da cabeça e pescoço.  

 

Palavras-chave: cancro da cabeça e pescoço; gânglios linfáticos cervicais; fantomas numéricos; 

fantomas antropomórficos; segmentação de MRI; propriedades dielétricas.  
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Abstract 
 

 

 

Head and neck cancer is a broad term referring to any epithelial malignancies arising in the paranasal 

sinuses, nasal and oral cavities, salivary glands, pharynx, and larynx. In 2018, approximately 80% of 

the newly diagnosed head and neck cancer cases resulted in tumour cells spreading to neighbouring 

lymph and blood vessels. In order to determine cancer staging and decide which follow-up exams and 

therapy to follow, physicians excise and assess the Lymph Nodes (LNs) closest to the primary site of 

the head and neck tumour – the sentinel nodes – which are the ones with highest probability of being 

targeted by cancer cells. The standard procedure to diagnose the Cervical Lymph Nodes (CLNs), i.e. 

lymph nodes within the head and neck region, and determine the cancer staging frequently involves their 

surgical removal and subsequent histopathology. Besides being invasive, the removal of the lymph 

nodes also has negative impact on patients’ quality of life, it can be health threatening, and it is costly 

to healthcare systems due to the patients’ needs for follow-up treatments/cares.                                                                                                                     

Anatomically realistic phantoms are required to develop novel technologies tailored to image head 

and neck regions. Medical MicroWave Imaging (MWI) is a promising non-invasive approach which 

uses non-ionizing radiation to screen shallow body regions, therefore cervical lymph nodes are excellent 

candidates to this imaging modality. In this project, a three-dimensional (3D) numerical phantom 

generator (generator I) and a Magnetic Resonance Imaging (MRI)-derived anthropomorphic phantom 

generator (generator II) of the head and neck region were developed to create phantoms with different 

levels of complexity and realism, which can be later 3D printed to test medical MWI devices. The 

process of designing the numerical phantom generator included the modelling of the head and neck 

regions according to their anatomy and the distribution of their main tissues, and the creation of an 

interface which allowed the users to personalise the model (e.g. include or remove certain tissues, 

depending on the purpose of each generated model). To build the anthropomorphic phantom generator, 

the modelling process included the creation of a pipeline of data processing steps to be applied to MRIs 

of the head and neck, followed by the development of algorithms to introduce additional tissues to the 

models, such as skin and lymph nodes, and finally, the assignment of the dielectric properties to the 

biological tissues. Similarly, this generator allowed users to decide the features they wish to include in 

the phantoms. 

 This project resulted in the creation of a generator of 3D anatomically realistic head and neck 

phantoms which allows the inclusion of biological tissues such as skin, muscle tissue, adipose tissue, 

and LNs, and assigns state-of-the-art dielectric properties to the tissues. These phantoms may have a 

great impact in the development process of MWI devices aimed at screening and diagnosing CLNs, and 

consequently, contribute to a non-invasive staging of the head and neck cancer.  

 

Keywords: head and neck cancer; cervical lymph nodes; numerical phantoms; anthropomorphic 

phantoms; MRI segmentation; dielectric properties.  
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1.  Chapter I - Introduction 
 

 

 

1.1. Motivation and Background 

 

 

Head and neck cancer is a broad term referring to any epithelial malignancies arising in the paranasal 

sinuses, nasal and oral cavity, salivary glands, pharynx, and larynx. This type of cancer reported 887,659 

worldwide new cases in 2018, with over 51% death incidence [1]. In up to 80% of these cancer cases, 

cancer cells metastasised through lymphatic and blood vessels [2] [3].    

Currently there is no satisfactory neoadjuvant (i.e. pre-operative) diagnosis to assess whether cancer 

has spread to neighbouring LNs. The assessment of LNs within the head and neck region, also referred 

to as Cervical LNs (CLNs), often requires their surgical removal and subsequent histopathology. This 

practice frequently results in the removal of healthy CLNs, which ultimately has negative impact on the 

patient’s health and quality of life, and also on the economy of a country, due to the high costs of 

surgeries and follow-up therapies supported by healthcare systems [4] [5]. 

 When CLN excision is performed certain repercussions are expected. The patients’ physical 

recovery often becomes a slower process, the speech and swallowing may be hampered, and the physical 

appearance is oftentimes deformed. In addition, the removal of healthy CLNs increases the risk of 

infection and lymphedema [6] [7] [8]. The extraction of too many lymph nodes causes patients to lose 

the capability to drain lymph into the lymphatic system, requiring continuous monitoring and treatment 

in case of infection or allergic reactions. Hence, they need to regularly undergo specific treatments, such 

as Manual Lymphatic Drainage or Lymphatic Drainage, with specific equipment in physiotherapy 

sessions, and take special care when travelling or doing certain sports. 

 If CLNs could be accurately diagnosed with a non-invasive approach ahead of surgery, the quality 

of life of cancer patients and survivors could potentially be significantly improved and the burden on 

patients and on healthcare systems reduced [6] [9].  

 

 

1.1.1. Available Lymph Nodes Imaging Modalities 

 

The modalities to image CNLs are divided into two main branches: the first one provides anatomic 

information, which is the category where the conventional diagnosis methodologies fall into, and the 

second one, the more recent one, gathers information about the molecular nature of a tumour. While 

anatomical imaging concerns the detection of the lesion and its extension, biological imaging focuses 

on studying the behaviour of the tumour and its response to chemoradiation [10]. 

In order to identify the status of the cancer and decide the measures to be taken as a response, 

physicians evaluate the LNs closest to the primary site of the tumour, which are the ones with highest 

probability of being targeted by cancer cells. These first LNs are also known as Sentinel Lymph Nodes. 

Neck dissection is the standard procedure to assess whether the cancer cells have spread to 

neighbouring tissues. Despite being a highly accurate method, it is invasive which may cause discomfort 

to the patient, some bruising and soreness in the area where the sample was taken from, it can also be 

painful, and entail a significant risk of infection [4] [6].  
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Other golden-standard techniques for LN imaging include ultrasound, Computed Tomography (CT), 

Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI). Ultrasound is the de 

facto imaging modality to diagnose head and neck tumours, but neoadjuvant diagnosis of CLNs was 

proven non-conclusive unless the high frequency waves used to identify possible metastatic LNs were 

combined with fine-needle aspiration cytology to assess if there is abnormality in the sample tissue. [11] 

This procedure has reported sensitivity and specificity as high as 98% and 95%, respectively [8]. Visual 

inspection and palpation may also help locate swollen CLNs. Regardless its advantages, ultrasound is 

highly dependent on the operator who must be well experienced and have great anatomical knowledge 

of the area under test, therefore the human error cannot be neglected.  

CT has reportedly been used for CLN diagnosis because of its availability, lower cost and fast scan 

times, but cannot reliably detect CLNs smaller than 5 mm [8]. Besides, CT uses ionizing radiation. MRI 

also has been universally accepted as a tool for head and neck cancer staging; due to its better tissue 

contrast, MRI is sometimes preferred over CT depending on the location and extent of the tumour. 

Conversely, MRI is also prone to motion and swallowing-related artifacts [12].  

PET scanning with 18F-Fluoro-2-DeoxyGlucose (FDG)  is a widely used imaging modality which 

allows the identification of nodal and distant metastasis by highlighting increased metabolic activities 

with radiotracer in those areas and thus, critical in evaluation of advanced stage cancers [13]. Combined 

PET and CT scans were proven more accurate than either modality alone in identifying malignant 

lesions in the head and neck region [14]. Besides, PET/CT scanning is also valuable in radiation therapy 

planning, and in recurrent lesions monitoring and treatment [15]. However, nuclear medicine techniques 

are not the chosen modalities for CLN imaging because of the high costs and the exposure to radioactive 

materials. 

Other imaging modalities, such as Electrical Impedance Spectroscopy (EIS) [16], have reported 

initial promising CLN diagnosis (of previously located CLNs) but these are not widely available nor 

used.  

 

 

1.1.2. Medical Microwave Imaging 

 

As a result of the lack of alternatives to assess CLNs, MicroWave Imaging (MWI) presents itself as 

an interesting option. Even though it uses non-ionizing radiation ranging from 3 to 300 GHz, which 

corresponds to wavelengths varying between 10 cm to 1 mm [17], radiation with such characteristics 

suffers significant attenuation in biological tissues, which limits the depth of screening and the resolution 

of image. Hence, it is only suited for mass screening of shallow body regions (depth up to ~6 cm). 

Medical MWI uses signals based on the dielectric contrast between different tissues, propagating 

through the body to visualise internal structures. This is founded on the premise that tissues with 

different dielectric properties generate electromagnetic scatterings when radiated with microwaves. The 

scattering of the incident wave alters the energy detected at the receivers and the transmitters, which are 

used to form maps of the electrical property distributions in the body. Microwave images for medical 

applications can be created using two approaches: tomography, if the shape of the target and the 

distribution of the permittivity are acquired from the incident and scattered fields, and radar-based 

technology if only the reflections from the object are used [18]. The focus of this dissertation is on the 

radar-based imaging method. 

Radar MWI operates by illuminating an anatomical region of interest (or models mimicking that 

region) with an Ultra-WideBand (UWB) pulse, and recording and processing the resulting backscattered 

signals. Medical radar MWI systems typically comprise: UWB antennas, transmit/receive electronics, 

and dedicated skin artefact removal and beamforming algorithms. Skin artefact removal algorithms 
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remove the large reflection produced by the skin surface; beamforming focuses the backscattered signals 

so that signals from high scattering regions (e.g. tumour tissues) are combined coherently and signals 

from clutter are combined incoherently; finally resulting in an image which shows the dielectric 

scatterers [19] [20]. Instead of creating anatomical images of the body, radar-based MWI creates a map 

of microwave scattering obtained from transmission and receiving of short electromagnetic pulses, 

which translates in a map of the dielectric properties of the irradiated area. Here, the abnormalities in 

the tissues are easily detected and quantified [21]. In addition to being a comfortable and non-invasive 

imaging modality, it is also portable, low-cost, user-independent, and uses low-power. 

MWI has gained significant momentum in the past few years with numerous research projects, 

patient studies [19] [20] and clinical trials [22] [23], and new products being brought to market (e.g. 

MARIATM  [24]), mostly in the area of breast cancer and stroke detection. Although MWI technology 

has matured considerably for some clinical applications, performance improvements are required to 

make clinical usage feasible. 

 

 

1.2. Objectives 

 

 

The main objective of this dissertation is to use Machine Learning (ML) techniques to create 

anatomically realistic phantoms which can be later used to develop medical MWI systems for screening 

and diagnosis, as there is a significant diagnostic blind-spot regarding mass screening of lymph nodes 

in the case of head and neck cancers. 

As screening CLNs using a microwave UWB radar technology has never been attempted before, 

the first goal (I) of this project comprises modelling the head and neck region according to its anatomy, 

with special attention to tissue architecture and distribution. This includes: 

(I.1) developing two-dimensional (2D) numerical phantoms inspired by some preliminary state-of-

the-art 2D breast models published in [25] [26] [27]; 

(I.2) developing three-dimensional (3D) numerical phantoms with different levels of complexity 

based on the developed 2D phantoms, which included skin, fat, bone and muscle tissues and CLNs.  

The second goal (II) consists of developing 3D anatomically realistic MRI-derived phantoms of the 

head and neck region, using state-of-the-art segmentation algorithms and realistic dielectric properties 

of biological tissues. The procedure of building these phantoms will include a thorough study of: 

(II.1) data cleaning techniques to enhance MRI image quality (data normalisation, background 

subtraction, linear and non-linear filtering); 

(II.2) Data Mining (DM) clustering techniques such as K-means, Agglomerative Hierarchical, 

BIRCH and DBSCAN for data segmentation; 

(II.3) metrics such as Silhouette Coefficient, Davies-Bouldin and Calinski-Harabasz indexes, used 

for clustering evaluation and algorithm selection purposes.   

(II.4) the assignment of the dielectric properties of the biological tissues to the phantoms using the 

4-pole-Cole-Cole model, and a strategy of piecewise-linear mapping. 
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1.3. Contributions 

 

 

While working on this dissertation, I have adapted an existing “building-block” 2D numerical model 

of the breast region to operate in the head and neck region. I have also developed from scratch a 3D 

numerical phantom generator for the head and neck region, using MATLAB®. Furthermore, an MRI-

derived 3D anthropomorphic phantom generator for the head and neck region was also adapted from an 

existing phantom generator used for the breast, previously developed within this research group. 

During this period of time, a collaboration with the Instituto de Telecomunicações (IT) of the 

Instituto Superior Técnico (IST) has included the creation of a 3D printed brain model for imaging tests. 

The model consisted of three different anatomically realistic hollow compartments designed to mimic 

the shape of the white and gray matter, the cerebellum and a blood clot, which could be latter filled with 

fluids that mimicked the properties of these structures. These will be printed in Instituto de Biofísica e 

Engenharia Biomédica (IBEB) early in 2020. 

In addition, I have also presented a poster regarding part of the work developed in this dissertation 

at the 11th Workshop on Biomedical Engineering (WBME) in April 2019 – Appendix A – and submitted 

a paper for the Best Student Paper Award to the 13th Congress of the URSI Portuguese Committee – 

“Espaço: Desafios e Oportunidades”, Lisbon, Portugal which was presented in December 2019. I also 

submitted the following conference paper: A.C. Pelicano, R.C. Conceição, “Head and Neck Numerical 

Phantom Development for Cervical Lymph Node Microwave Imaging” in Appendix B, which was 

accepted in EuCAP 2020 in convened session CS60 Sensors and Systems for Microwave Biomedical 

Imaging and Sensing, Copenhagen, Denmark – paper by invitation. 

 

 

1.4. Dissertation Overview 

 

 

The remainder of this dissertation is organized as follows. A background literature review of the 

head and neck region is presented in Chapter II. It includes reviews of the head and neck anatomy, a 

description of the lymphatic system of this region, and finally a subchapter dedicated to head and neck 

cancer, its formation and currently used staging system. A review of phantom development topics is 

also given in Chapter II. It is specially focused on filtering techniques for data cleaning and unsupervised 

clustering methods for data segmentation of MRI images. Some head and neck modelling topics were 

also addressed in this chapter. Such topics include studies regarding the measurements of the dielectric 

properties of biological tissues, the formulations which describe the behaviour of dielectric properties 

of biological tissues over a frequency range and the studies of both numerical and realistic phantoms 

developed to test MWI systems.  

Chapter III details the 3D numerical phantom generator. The relevant materials and methodologies 

used in the construction of the generator as well as the generator itself and its different levels of 

complexity are discussed within this chapter. 

Chapter IV comprises the methodology and materials used to develop a 3D anthropomorphic model. 

It also includes a step-by-step decision-making process regarding the construction of the 3D MRI-based 

phantom generator. 

The overall conclusions as well as identified limitations and suggestions for future work, are 

discussed in Chapter V. 
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1.5. Chapter conclusions 

 

 

In this chapter I have shown, how to this day, the available imaging modalities used to diagnose 

CLNs present several drawbacks that not only compromise the patients’ health and quality of life, but 

also have a negative impact on healthcare systems. 

Due to its characteristics, MWI appears to be a possible solution for this problem since it can be 

widely adopted for mass screening of shallow body regions. Furthermore, LNs within the head and neck 

are a prime target for this methodology both because of their shallow location and dielectric properties. 

 It is then of crucial and timely importance to develop anthropomorphic head and neck models to 

develop novel imaging techniques, such as MWI, which have the potential to correctly diagnose CLNs 

in a neoadjuvant and non-invasive manner. The successful detection and removal of metastatic CLNs 

will prevent tumour cells entering the blood system and metastasising to other parts of the body. 
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2.  Chapter II – Literature Review 
 

 

 

In the interest of understanding all the concepts and assumptions used in the course of this work, a 

background overview of several topics is provided in this chapter. The present chapter is divided in four 

main topics. The anatomical background starts with a comprehensive review regarding head and neck 

anatomy and lymphatic system network followed by an overview of head and neck cancer, including 

tumour formation and currently used staging system. The phantom studies section revises the existing 

numerical and physical models developed to mimic regions of the human body, especially in the head 

and neck region. Additionally, the phantom development section includes an overview of the filtering 

techniques and unsupervised clustering methods required to extract anatomical knowledge from MRI 

exams. Finally, head and neck modelling section includes an overview of studies regarding the dielectric 

properties of the tissues under study, and a summary of the methods which can be used to describe the 

behaviour of the dielectric properties of such tissues for varying microwave frequencies. 

 

 

2.1. Anatomical Background 

 

 

The head and neck regions of the human body are extremely complex and highly specialized. The 

present section aims at summarizing the most important concepts within the scope of this dissertation.    

 

 

2.1.1. Head and Neck Anatomy 

 

The human head is commonly divided into two separate regions: cranium and face. Along with the 

brain, four of the five sensorial organs are located within this part of the human body, such as the eyes, 

ears, nose and taste buds. The main functionality of the human head is the protection of the brain, which 

is an extremely vulnerable organ responsible for controlling most of the body systems [28]. The 

geometry of the human head was addressed in a study conducted by Vasavada et al [29]. They showed 

that human female and male heads are not geometrically similar, and the most prominent differences 

were observed in width, depth, and height rather than the size of its circumference. Conversely, in the 

case of the neck, the most significant difference in terms of gender concerns the circumference diameter 

(see Table 2.1).  

The neck, also referred to as cervical region, is responsible for supporting the weight of the head 

and allowing its movement. This region of highly compact tissues contains extremely vulnerable 

structures, such as arteries, veins, nerves and important glands [28]. It extends from the 

pericraniocervical line to the level of the clavicle. Usually, the neck is divided into two main triangles 

by the sternocleidomastoid muscle which obliquely transects it. Accordingly, the anterior and the 

posterior cervical triangles are created. The first has its apex directed inferiorly and is limited superiorly 

by the inferior border of the mandible, anteriorly by the median line of the neck, and posteriorly by the 

sternocleidomastoid muscle. Similarly, the posterior cervical triangle has its apex directed superiorly, 

the sternocleidomastoid muscle as the anterior and lateral borders, the trapezius muscle as the posterior 

frontier, and the base located at the clavicle level [30] (see Figure 2.1). These two triangles can be further 
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subdivided into six smaller triangles [28]. The cervical region of the human body consists of two main 

cervical muscles, the sternocleidomastoid muscle and the trapezius muscle, bones such as seven cervical 

vertebrae and the hyoid bone, and cartilages of pharynx and larynx [30]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Head and neck cancer sites comprise the oral and nasal cavities, paranasal sinuses, salivary glands, 

pharynx and larynx (see Figure 2.2). A more detailed description of such structures is presented below.  

 

• Oral cavity: located within the head region, consists of cheeks, lips, hard palate and soft palate. 

The opening of the oral cavity is referred to as the oral orifice. This cavity is limited anteriorly 

by the lips and posteriorly by the pharynx. Laterally, the border is limited by the cheeks of the 

face, and superiorly and inferiorly limited by the frontiers of the oral cavity are the palate and 

the floor of the mouth, respectively [31].  

 

• Nasal cavity: irregular space located between the roof of the mouth and the base of the cranium. 

It consists of two chambers formed by cranial and facial bones, separated sagittally by an 

osseocartilaginous septum. The nasal cavity serves as a communication gateway between the 

paranasal sinuses and the nasopharynx [30]. 

 

• Paranasal sinuses: consist of four sets of air spaces housed within certain bones of the skull 

surrounding the nasal area. Each sinus communicates via drainage ducts into the nasal cavity. 

Their function is not well-known although some think they help warm and moisten the inhaled 

air, lighten the skull bones, act as sound resonators, and provide mucus for the nasal cavity [31]. 

 

Table 2. 1: Mean value of external anthropometry of the head and neck and strength 

variables, for male and female subjects (adapted from [29]). 
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• Salivary glands: divided into major and minor glands according to their size. There are 

numerous minor glands located within the palatal region, however the major ones lie outside 

the oral cavity. The major salivary glands include the parotid, submandibular, and sublingual 

glands. Regardless of their size, they have the same purpose: produce saliva, which is drained 

directly into the oral cavity to lubricate, clean and help in digestion. The parotid gland is the 

largest of the salivary glands, albeit it only produces approximately 25% of the total salivary 

volume. The gland extends from each ear, along the zygomatic arch and inferior to the 

mandible. The duct associated with the parotid salivary gland is the Stensen duct. The 

submandibular salivary gland is the second largest major salivary gland which lies inferiorly 

and posteriorly to the base of the tongue. It is responsible for the production of 60% to 65% 

of total salivary volume. The saliva produced by these salivary glands is drained into the oral 

cavity through the Wharton ducts, which open directly into the oral cavity in the sublingual 

caruncle, on each side of the lingual frenum. Finally, the third salivary gland is the sublingual 

gland located under the mucous membrane of the floor of the mouth and anterior to the 

submandibular gland. This gland contributes with 10% of the total salivary volume. The 

Bartholin ducts, which are main ducts responsible for draining the saliva from the sublingual 

glands to the oral cavity, open at the sublingual caruncle as the ducts of the submandibular 

glands. In addition, several small other ducts that open in an area posterior to the sublingual 

caruncle are called ducts of Rivinus [28] [31]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Pharynx: inverted cone-shaped organ, 12–14 cm long which extends from the cranial base to 

the lower border of the cricoid cartilage. This organ connects with the nasal and oral cavities 

via the nasopharynx and oropharynx, respectively. Also, the pharynx continues to the larynx 

of the respiratory system, through the laryngopharynx, and to the esophagus of the digestive 

Figure 2. 1: Division of the neck into anterior and posterior cervical triangles by 

the sternocleidomastoid muscle. Highlight of some clinically important 

landmarks as the hyoid bone and thyroid cartilage [31]. 
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system. Accordingly, the nasopharynx is located posterior to the nasal cavity and above the 

soft palate, the oropharynx is the middle portion of the pharynx between the soft palate and 

the level of the hyoid bone and finally, the laryngopharynx begins from the level of the hyoid 

bone and opens into the esophagus and larynx. The hyoid bone is a “U”-shaped bone located 

in the anterior midline of the neck, superior and anterior to the thyroid cartilage of the larynx 

and below to the mandible. It has the particularity of not being articulated with any other bones 

which allows its mobility for mastication, swallowing, and speech [28] [30] [31]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Larynx: tube which extends from the laryngopharynx to the lower border of the cricoid 

cartilage, where it continues into the trachea. The main function of the larynx is to prevent 

food from entering the trachea, allow the passage of air to the lungs and finally, produce sound. 

It is composed of six paired cartilages and three large and unpaired cartilages. The biggest 

unpaired cartilage is the thyroid cartilage, also known as “Adam’s apple”, which is more 

prominent in adult males due to increased levels of masculine hormones [28]. The cricoid 

cartilage is the only cartilage that forms a complete ring around the traquea and is located 

below the thyroid cartilage [30]. 

 

 

2.1.2. Head and Neck Lymphatic System 

 

The lymphatic system of the human body is composed of vessels, nodes, ducts, and tonsils forming 

a one-way pathway which transports lymph back to the bloodstream. The lymph is in fact interstitial 

fluid accumulated in spaces between cells which has entered the lymphatic capillaries instead of 

returning to blood via vascular capillaries. The smaller lymphatic vessels containing lymph, the 

lymphatic capillaries, converge into one of the two principal larger lymphatic ducts, the thoracic duct or 

the right lymphatic duct. In the case of the head and neck region, the thoracic duct drains lymph from 

the left side of the head and neck to the left subclavian vein, while the right lymphatic duct drains from 

the right side of the head and neck into the right subclavian vein. When this system does not function 

Figure 2. 2: Sagittal section of the upper aerodigestive tract [51]. 
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well, the extra interstitial fluid is not properly drained from the tissues and a condition called 

lymphedema occurs [28].  

The lymph is a clear watery fluid which contains proteins, microorganisms and absorbed fats. 

Besides draining the excessive amount of interstitial fluid to the circulatory system, the lymphatic 

system is also responsible for transporting absorbed fats and some vitamins from the small intestine to 

the blood and has an important role in immunological defences against disease processes such as 

infection and cancer [31]. The tonsils of the lymphatic system are small amounts of lymphoid tissue 

located near the ear, nose and pharyngeal regions aimed at removing toxins that could begin disease 

processes [28]. Finally, the lymph nodes are round, oval, or bean-shaped bodies of organized lymphoid 

tissue enclosed within fibrous connective tissue capsules, surrounded by perinodal adipose tissue. These 

bodies are grouped in clusters along the lymphatic vessels and are named after the anatomical region 

they are adjacent to. Depending on their depth from the skin surface, they are classified as superficial if 

located in the hypodermis or deep lymph nodes. In healthy conditions, the size of the lymph nodes varies 

between 1 to 25 mm long, they are also soft and mobile in the neighbouring tissues [32].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Lymph nodes contain lymphocytes, white blood cells that remove bacteria and other foreign 

substances from the fluid. In short, they purify the lymph. Moreover, the lymph nodes are involved in 

lymphocytes production whenever foreign organisms are found in the lymph, by stimulating cell 

division of the lymphocytes inside. The lymph flows into the lymph node by a multiple number of 

afferent lymphatic vessels that enter the subcapsular sinus and is carried out by a single efferent 

lymphatic vessel, which emerges from the hilus – a depression on one side of the node [28] observed in 

Figure 2.3) 

Throughout the human body approximately 450 lymph nodes were found, with around 70 lymph 

nodes on head and neck region alone [32]. Clinicians divide them into six levels based both on their 

location or nearby anatomic structures as well as their depth: (see Figure 2.4) 

 

Figure 2. 3: Lymph node representation demonstrating the pathways of lymph 

into and out of the node. (From [31]). 
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• Level I: located at the chin level, superior to the 

mandible angle.  

• Level II: located inferiorly to the mandibular 

angle, above the hyoid bone and 

anteriorly/adjacent to the sternocleidomastoid 

muscle. 

• Level III: located between the hyoid bone and 

the thyroid cartilage, adjacent to the 

sternocleidomastoid muscle. 

• Level IV: located between the thyroid cartilage 

and the clavicle, adjacent to the 

sternocleidomastoid muscle. 

• Level V: located between the skull base and the 

clavicle, within the posterior triangle. 

• Level VI: located anteriorly to the 

sternocleidomastoid muscle and between the 

hyoid bone and the top of the manubrium, the 

uppermost segment of the sternum.   

 

 

2.1.3. Head and Neck Cancer 

 

Tumour is a generic term for a large group of diseases characterized by abnormal cell growth. It is 

classified as malignant (i.e. cancer) or benign depending on their ability to invade nearby tissues through 

lymphatic or blood vessels. Once the malignant tumour successfully spreads to other parts of the body 

it can interfere with the digestive, nervous, and circulatory systems. It may also release hormones that 

alter body function [33]. Cancer of the head and neck comprise arising cancers in particular regions such 

as the salivary glands, oral and nasal cavity, pharynx, larynx and paranasal sinuses.  

 

 

2.1.3.1. Tumour formation  

 

Certain genetic events, such as the activation of proto-oncogenes or the elimination of tumour-

suppressor genes, control the development of the disease. Some examples are the inactivation of the p16 

gene due to the loss of chromosomal region 9p21, which is frequently observed in patients with head 

and neck cancer in an early stage of the disease [34] [35]. Mutations on the p53 tumour-suppressor gene 

are also detected in roughly 50% of all head and neck cancers [36] [37]. And, in about a third of all these 

tumours, an amplification of 11q13 and overexpression of oncogene cyclin D1 occurs, which is 

associated with advanced-stage disease and presence of lymph node metastases [38]. Around 90% of 

head and neck cancers are Squamous Cell Carcinoma of the Head and Neck (SCCHN), for which 

tobacco and alcohol consumption are the most important risk factors [39] [40]. In these cases, 

carcinogens present in those substances (i.e. tobacco and alcohol) cause genetic mutations of the p53 

[41]. Other occupational risk factors include exposure to diesel fumes [42], paint and asbestos; 

woodworking and metal fabricating occupations [43]. Over the past years, a continuous increase in the 

incidence of oropharyngeal cancer was observed, despite the decrease of risk behaviours, such as 

tobacco and alcohol consumption [44] [45]. Investigators indicated the Human Papilloma Virus (HPV) 

Figure 2. 4: Representation of the location of cervical 

lymph nodes in levels I-VI in relation to the head and 

neck. (From [31]). 
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as a cause of oropharyngeal cancer due to the presence of oncogenic HPV DeoxyriboNucleic Acid 

(DNA) in more than 50% of epithelial cancers arising in the oropharynx [46] [47] [48]. DNA from 

Epstein-Barr virus was also found in cancerous tissues from the nasopharyngeal region, thus an 

association between this virus and nasopharyngeal cancer was established [49].  

In an early stage of the disease, the symptoms are only vague and vary according to the location of 

the primary site; accordingly, dentists and primary care physicians are instructed to perform a thorough 

analysis of the patients, particularly if they adopt risk behaviours [50]. Sinusitis and unilateral 

obstruction of the nasal airway are some of the symptoms referred by patients with early stage nasal 

cavity cancer; in more advanced tumours, facial swelling or pain, exophthalmos and loosening of the 

molars are mentioned. Regarding oral cavity malignancies, the most common signs pointed out by 

patients are pain, ulcers that do not heal and changes in the fit of dentures. Within the pharynx, symptoms 

vary according to the region where tumours arise. Nasal obstruction, epistaxis and serous otitis are some 

of the frequent symptoms referred by patients with early stage nasopharyngeal cancer; in more advanced 

cases, patients present cranial neuropathies and posterior cervical lymphadenopathy. Conversely, 

symptoms of early stage oropharynx and hypopharynx cancer rarely exist and consequently, the 

diagnosis is only determined in later stages. Otalgia and persistent unilateral sore throat are referred in 

these cases. Finally, for cancer arising in the laryngeal region, the symptoms may include hoarseness 

and pain [51].  

Cranial nerve dysfunction, pain, impaired speech and swallowing, and airway compromise may 

result from head and neck tumour recurrence, particularly in patients who suffer from alcohol and 

tobacco addiction. Thus, social and psychological care programmes are encouraged in these situations 

[52]. 

 

 

2.1.3.2. Tumour Staging 

 

State-of-the-art clinical diagnosis of head and neck cancer often involves removal of CLNs for TNM 

staging [53]. This staging system comprises all the clinically available information of the patient 

regarding the cancer. T stands for size and extent of the primary tumour, N refers to the number of 

metastatic lymph nodes and finally, M refers to whether the cancer has metastasized to secondary sites. 

Together, the classifications of each letter determines the overall clinical stage (I, II, III, or IV), and may 

indicate if metastases have spread to other organs [53] [54] [55]. Cancer staging is the assessment of the 

level of cancer progression and is critical in deciding therapy options. Depending on the type of head 

and neck tumour different CLNs from a sub-set of levels I-VI (see Figure 2.4) can be removed [56]. 

Currently CLN assessment often requires surgical removal and subsequent histopathology. More 

detailed information about the stages of head and neck cancer can be found in Table 2.2. 
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2.2. Phantom Studies 

 

 

Realistic physical phantoms are an important tool in MWI system development, for which several 

authors have reported a number of Tissue Mimicking Materials (TMMs) with dielectric properties 

comparable to biological tissues, at microwave frequencies.  

The human breast has been the most studied organ with MWI, thus more studies have been published 

over time, with an increasing level of complexity, regarding this region of the body. Several researchers 

have suggested TMMs for short-lived phantoms of the breast [57] [58] [59] [60]. Such phantoms varied 

over a large spectrum regarding their simplicity and level of realism. Some of the most simplistic TMMs 

short-lived phantoms of the breast developed in [57] consisted of a cylindrical structure with a diameter 

of 10 cm and a height of 30 cm which included TMMs for skin (the structure of the cylinder) and fatty 

tissues (the interior of the cylinder) and tumours. These tumours were represented with a hemispherical 

shape attached to a ground plane and placed in the breast model and with dimensions of 1 and 2 cm. 

Later, phantoms with an increasing complexity levels were built in [59]. Some of the tissues included 

consisted of a layer of skin, one or two dense inhomogeneous tissues and a spherical tumour. These 

phantoms were created using hemispheres as the mould. Additionally, anatomically realistic 3D MRI-

derived numerical and physical phantoms were developed in [58]. The numerical phantoms were 

considered immersed in an oil-like coupling medium, with an interior of homogeneous fat, a 2 mm layer 

of skin and a homogeneous chest wall. The physical phantom was also constructed from MRI exams. 

Table 2. 2: TNM Staging for the Larynx, Oropharynx, Hypopharynx, Oral Cavity, Salivary Glands, and 

Paranasal Sinuses (adapted from [54]). Tis, T1, T2, T3, T4a and T4b correspond to carcinoma in situ, 

tumour with 2 cm or less in greatest dimension, tumour greater than 2 cm but no more than 4 cm in 

greatest dimension, tumour with more than 4 cm, moderately advanced local disease and greatly 

advanced local disease, respectively. N0, N1 and N2 refer to no regional node metastasis, metastasis in 

a single ipsilateral LN with 3 cm or less in greatest dimension, and metastasis in a single ipsilateral LN 

with more than 3 cm and less than 6 cm in greatest dimension or in multiple ipsilateral LNs, none more 

than 6 cm in greatest dimension, respectively. M0 and M1 refer to no distant metastasis and distant 

metastasis, respectively.   
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Its realistic shape was formed by a 1-mm-thick mould of polyethylene and it contains two different 

TMMs for the skin and an interior of homogenous fat. Croteau et al [60] created a hemispherical and a 

realistic model for the breast. In the first case, the skin TMM was constructed with a Plexiglas mould 

with a hemispherical shape, the fat tissue was poured into de skin mould and finally, a lid with 

protrusions was used to create the fibroglandular tissue and the tumour cavities. After this, the lid was 

removed, and a syringe was used to inject the tumour and the fibroglandular liquids. In the case of the 

realistic breast models, a clay modelling technique was used to form the realistic shape of the breast, the 

insertion of the skin, tumour and fibroglandular tissue mimicking materials follows the same 

methodology as described for the hemispherical model. 

Long-lasting breast phantoms were also suggested in [61] [62]. In [61], realistic phantoms of the 

breast were built using a carbon-rubber mixture for the 2 mm skin tissue and a homogenous interior of 

liquid (e.g., canola oil and glycerine). The phantom created could withstand mechanical stress due to 

the compression of the breast. According to [62], different proportions of graphite, carbon black and 

urethane allowed the construction of a TMM which exhibited a wide range of dielectric properties 

comparable to the dielectric properties of the human soft tissues from 1 to 10 GHz. This TMM was 

flexible and mechanically strong, therefore it was ideal for creating complex phantoms and robust 

structures such as skin layers.  

In [63], breast phantoms were produced with 3D printed moulds for the skin, adipose tissue, bone, 

fat, fibroglandular and tumour TMMs. These phantoms were extended to allow variation of local 

characteristics. More recently, a numerical phantom of the axillary region based on medical image 

segmentation via DM clustering algorithms, and with the inclusion of the dielectric properties of the 

tissues for varying microwave frequencies, was reported to permit an alternative methodology for the 

assessment of the lymph nodes in the underarm region [25]. 

Inspired by the above detailed breast phantoms, some of the features of the head and neck models 

that can be considered are: the shape of the moulds (a spherical or ellipsoid shape for the head, and a 

cylindrical shape for the neck region), the main layers of tissue considered and their heterogeneity. 

Besides, some of the developed TMMs can also have applicability in the case of the head and neck 

physical phantoms. 

In the context of the head region, few authors have attempted to design models of this region. 

Scapaticci et al. [64] developed a planar numerical model of the human head which consisted of five 

layers, with different dielectric properties and lengths, concerning skin tissue, fat tissue, cortex bone, 

CerebroSpinal Fluid (CSF) and brain tissue. A single-pole Cole-Cole model was used to evaluate the 

behavior of the dielectric properties of biological tissues over a frequency range from 0.1 to 10 GHz. 

Later, Bjelogrlic et al. [65] made a contribution to the state-of-the-art by designing a spherically 

stratified model in which every concentric layer between the brain and the background medium 

represented a particular tissue. The printed multilayered spherical structure used fused deposition 

modeling technology with white ABS (Acrylonitrile Butadiene Styrene) for the plastic. Each shell with 

a 2 mm thickness was filled with liquids mimicking the main human head tissues, such as brain tissue, 

CSF, cortical bone, fat and skin. 

Both numerical and physical phantoms allowed a represent the human body in a simplistic way, 

compared to one of the most recent numerical models, such as the one developed by Fhager et al. [66], 

where they have added more realism to the phantoms in order to create a realistic simulation 

environment. The later was based on an existing anatomical tissue model of a healthy subject from 

BrainWeb [67]. This model includes the main tissues of the head such as CSF, blood, muscle, grey and 

white matter, fat and skull. They fitted the Debye model to the experimental data to describe the 

dispersive behavior of the dielectric properties of the different tissues.  
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From the developed head phantoms, some of the tissues that should be considered when designing 

head and neck phantoms for radar based MWI screening are the exterior of skin, and also bone tissue 

and an interior volume of heterogenous materials. Besides, the single-pole Cole-Cole model has already 

been used for describing the variation of the dielectric properties of the head biological tissues over the 

frequency of interest of radar based MWI. 

Head and neck phantoms developed so far were used in the context of radiation dosimetry, in which 

they must be able to represent the biological tissues regarding their x-ray absorption and scattering 

properties, and their dimensions, thicknesses and depths. Brand et al. [68] phantom considered only the 

bone tissue of the human skull and cervical vertebrae, soft tissues for the interior of the phantom and 

facial contours and also, air passages in the oral and nasal cavities, paranasal sinuses, pharynx, and 

larynx. Molineu et al. [69] designed a head and neck phantom for intensity-modulated radiation therapy 

which consists of an anatomically realistic outer plastic shell for the contour of the head and neck, 

imageable targets with radiation dosimeters, and a remaining volume of water. Head and neck phantoms 

were also developed in the context of hyperthermia. Paulides et al. [70] developed an elliptical shape 

neck with a homogenous muscle and some major structures such as trachea and spine. These structures 

were modeled based on semi-3D approximations from CT scans. Merunka et al. [71] adapted and 

simplified a neck phantom from the whole human body phantom of [72]. The simplified phantom 

consisted of a cylindrical shape with a diameter of 55 mm and 100 mm of height, with four structures: 

skin, muscle, cervical vertebrae, and larynx with tumour tissues. 

 

2.3. Phantom Development 

 

 

The creation of computational phantoms that mimic the biological structures of the human body is 

a vast field of study. Within the context of this dissertation, I will focus on exploring unsupervised 

clustering methods to separate the biological tissues of the MRI exams according to their intensity levels, 

and ultimately, their biological nature. The choice of unsupervised clustering was based on the lack of 

labelled data available regarding our MRI data. Before applying the clustering methods, filtering 

techniques are required for data cleaning. The filtering techniques and the unsupervised clustering 

methods studied in this dissertation are detailed below. Moreover, some methods used in this work to 

assess the clustering quality are also described in this section.  

 

 

2.3.1. Filtering Techniques 

 

MRI images are generally prone to Gaussian noise and Salt and Pepper noise due to image 

acquisition errors, such as sensor noise and electronic circuit noise, and transmission errors. Gaussian 

noise is a statistical noise with a probability density function of the Gaussian distribution and Salt and 

Pepper noise consists of corrupted pixels which were either set to have the value 0 or the maximum 

value of the pixels in the image [73].   

The enhancement of the MRI exams is a critical process, especially when analysing medical images. 

The removal of noise, which corrupts the information in the image, and the smoothness of other sharp 

transitions (e.g. edges) can be accomplished by using filters in the frequency domain. The Fourier 

Transform (FT) is a fundamental mathematical tool in signal processing, which allows the two-way 

conversion between the spatial and frequency domain of the periodic signals that compose a function 

(image). In the Fourier transform, low frequencies are responsible for the general appearance of an 
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image over smooth areas, while high frequencies are responsible for detail, i.e., sharp transitions such 

as noise and edges. If the goal is to remove noise, then filters capable of suppressing high frequencies 

while leaving the low frequencies unchanged should be applied. This will result in smoothing (blurring) 

in the frequency domain. Such filters are called Low Pass (LP) filters.  In this work, the ideal, 

Butterworth and Gaussian filters, which cover the range from very sharp (ideal) to very smooth 

(Gaussian) filter functions, were considered [74]. 

 

 

Ideal LP filters 

 

In these filters, the components of the FT with a frequency above a specified circular cut-off 

frequency (fc) are completely attenuated while the frequencies below the fc value pass without any 

attenuation. The transfer function, 𝐻(𝑢, 𝑣) of these 2D filters is given by Equation 2.1. 

 

 
𝐻(𝑢, 𝑣) =  {

1  𝑖𝑓 𝐷(𝑢, 𝑣) ≤ 𝐷0

0  𝑖𝑓 𝐷(𝑢, 𝑣) > 𝐷0
 (2.1) 

 

with 𝐷(𝑢, 𝑣) is the distance from any point (𝑢, 𝑣) to the centre (origin) of the FT, and 𝐷0 represents the 

specified distance calculated with the fc value. 

In the spatial domain, the final image resulting from the use of the convolution theorem shows some 

important characteristics: as the filter in the frequency domain gets narrower, the more severe blurring 

and ringing effects are shown in the spatial domain [74]. Ringing effects, generally caused by partial or 

complete loss of high-frequency information, are seen as rippling artifacts near sharp edges in images 

[75].  

 

 

Butterworth LP filters 

 

These filters can be viewed as a transition between two “extremes” of filter functions due to their 

additional parameter called the filter order, 𝑛. For high values of 𝑛, the Butterworth filter approaches 

the form of the ideal filter, while lower-order values result in smooth filters, similar to Gaussian filters. 

The transfer function of a Butterworth LP filter is presented in Equation 2.2. 

 

 
𝐻(𝑢, 𝑣) =  

1

1 + [
𝐷(𝑢, 𝑣)

𝐷0
]

2𝑛 
(2.2) 

 

A Butterworth LP filter of order 1 does not have a discontinuity as sharp as the ideal LP filter but, 

conversely, it causes no ringing in any of the images. Order 2 filters have a ringing effect which is 

generally imperceptible, however the same does not happen for filters of higher orders. According to 

[74], Butterworth LP filters of order 2 are the best when balancing between efficient lowpass filtering 

and tolerable ringing characteristics.  
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Gaussian LP filters 

 

These filters have the smoothest transfer function out of all the previously mentioned. The transfer 

function has a Gaussian shape and it is defined by Equation 2.3:     

                                                 

 𝐻(𝑢, 𝑣)  =  𝑒−𝐷2(𝑢,𝑣)/2𝐷0
2
 (2.3) 

 

where 𝐷0 is the standard deviation, i.e. a measure of the spread of the Gaussian curve. 

Because the inverse FT of the Gaussian LP filter is also a Gaussian, the ringing effect does not exist 

[74]. In medical imaging, a tight control in the transition between the low and high frequencies is 

sometimes required. Besides, the absence of ringing is a very important factor when choosing a LP filter. 

When the separation between the frequencies that should pass or be removed is a determining factor for 

image processing, then Butterworth LP filters of order 2 should be considered given its narrower profile 

compared to the Gaussian profile, for the same value of cut-off frequency [74]. Otherwise, Gaussian 

filters are usually preferred over Butterworth filters. 

 

 

Median filters 

 

Unlike the above-mentioned linear filters, in which the output value of a pixel results from a linear 

combination of the values of the pixels in the neighbourhood, non-linear filters such as the median were 

also tested at this stage. Non-linear filters are spatial domain filters, as opposed to the previous frequency 

domain filters. Particularly, the median filter allows the replacement of the value of a pixel by the median 

of the gray levels in its neighbourhood [74]. These filters are quite effective in the presence of Salt and 

Pepper noise and cause less blurring than linear smoothing filters of similar size [74].  

 

 

2.3.2. Unsupervised Clustering Techniques 

 

Image segmentation is a process of utmost importance for many medical image analysis tasks 

because it allows the partitioning of the image into non-overlapping homogenous regions of comparable 

properties such as intensity, depth, colour, or texture [76]. The goal is to change the representation of 

the image into something that is more meaningful and easier to comprehend. Image segmentation is 

typically used to locate objects and boundaries (lines, curves, etc.) in images [77]. 

DM is the process of discovering interesting patterns and knowledge from considerable amounts of 

data. It comprises techniques from distinct domains, such as statistics, pattern recognition, machine 

learning, and others. Typically, we use clustering methods, also known as unsupervised learning, to 

discover hidden patterns within the data [78] [79]. Hence, for some applications, clustering is also called 

data segmentation and it can be successfully applied to medical image analysis [80]. 

Clustering is the process of grouping a set of data objects into clusters (which should be grouped by 

similarity and in principle should correspond to different classes) by maximizing intraclass similarity 

and minimizing interclass similarity. Traditional clustering techniques are broadly classified into the 

following categories: partitioning methods, hierarchical methods, density-based methods, and grid-

based methods [78]. Apart from the grid-based methods, which take a space-driven approach, all the 

previously mentioned methods are data-driven – they partition the set of objects according to their 

distribution in the embedding space. In space-driven methods, the partition of the embedding space into 
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cells occurs independently of the distribution of the objects [78]. All previously mentioned data-driven 

methods will be intensively presented below. 

The proximity measure is an important step since it allows the definition of the concept of similarity 

between data samples. Some methods, such as the partitioning methods, determine the similarity 

between objects given the distance between them. Different types of distance between samples include 

the Euclidean, city block (or Manhattan), Chebychev and Mahalonobis distances [81]. In others, such 

as density-based methods, the similarity does not rely on the absolute distance between objects but may 

be defined by the notion of density (number of objects in their neighbourhood region), which allows the 

creation of clusters of arbitrary shape [78]. 

 

 

Partitioning Methods 

 

Partitioning methods are generally distance-based methods that divide the data into k clusters, each 

with a minimum of one object. These methods are also classified as parametric techniques, since the 

number of clusters must be defined a priori. Objects within the same clusters are considered “close” 

whereas the ones in different groups are considered “far apart”. The most well-known and commonly 

used partitioning techniques is the K-means. The K-means method is a centroid-based technique in 

which the centroid of a cluster is its centre point, i.e. the centroid is defined as the mean of the objects 

assigned to each cluster. This method is extremely sensitive to outliers and noise since the mean value 

of the clusters is easily distort by these data points. Besides, it is efficient in finding mutually exclusive 

clusters of spherical shape in small- to medium-size datasets, although it is not suitable for discovering 

nonconvex shaped clusters. Moreover, the need for the a priori specification of the k number of clusters 

can be considered as a disadvantage of this method [78]. In order to tackle this limitation of the 

partitioning methods, some analytical techniques have already been studied to determine the optimal k 

[82] [83]. 

In the medical analysis research area, partitioning algorithms have been widely used for image 

segmentation. Rajapakse et al [84] presented a three-tissue model which uses the K-means method to 

segment cerebral MRI images, by distinguishing between the major three tissue classes within the brain 

(white matter, grey matter and cerebrospinal fluid). The algorithm was proven sufficiently accurate even 

in the presence of noise and intensity inhomogeneities of the scanners. Later, Chen et al [85] described 

an algorithm combining 3D segmentation using K-means clustering and knowledge-based 

morphological operations on a sequence of cardiac CT volumetric images. This technique was proven 

very successful at differentiating regions which may be separate in anatomy but whose boundaries are 

not clearly defined by image intensity information. The K-means methodology was also shown valuable 

when used as a primary segmentation on MRI images before applying improved watershed segmentation 

algorithms. By using the proposed process, Ng et al [77] were able to considerably reduce the amount 

of over-segmentation when segmenting the masseter, a muscle of mastication. Later Riahi’s [86] results 

showed great effectiveness of the designed K-means clustering algorithm in detecting the borders of 

different sized brain tumours found in MRI scans. More recently, Muneer and Joseph [87] and Sharma 

et al [88] tested the performance of K-means algorithms for brain lesion detection using MRI 

examinations. 

In the context of lymph node segmentation, Conceição et al [25] presented a methodology for 

segmenting torso tissues and axillary lymph nodes in the axillary region, in which they used K-means 

clustering tools to segment CT images of the upper torso. 
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Hierarchical Methods 

 

These methods, which can be distance-based or density-based, organise data objects into a hierarchy 

of clusters. They are categorized into agglomerative algorithms when clusters are recursively merged 

together into larger clusters, or divisive ones when clusters are split into smaller groups, i.e. subclusters. 

As merging and splitting decisions cannot be undone, nor perform object swapping between clusters, 

hierarchical clustering methods can lead to poor quality clustering if the decisions are not well chosen 

[78].  

 Unlike the K-means algorithm, the hierarchical method does not require a priori knowledge of the 

number of clusters. Instead, it allows the introduction of this number in the algorithm as a termination 

criterium for merger/splitting decisions.  

Agglomerative algorithms start by treating each observation as a separate cluster. Then, it follows 

the computation of a similarity (distance) matrix, which exhibits the distance between all clusters [89]. 

Several distance metrics are available, and their choice depends on the data. For example, the Euclidean 

distance, which is the most commonly used, is the length of the straight line drawn from one cluster to 

another. Next, the linkage metric will define how the distance is computed. The type of linkage metric 

used has a significant impact on hierarchical algorithms because it reflects the concept of closeness. 

Among these, the single-link and complete-link algorithms are most popular in large datasets [79] yet 

very sensitive to outliers or noisy data. Besides, average linkage, and sum of square distances, also 

known as the Ward linkage, are also frequently used [78].  

In a comparative study of brain tumour detection using Digital Imaging and Communications in 

Medicine (DICOM) images, the hierarchical algorithm was proven faster – almost half of the time 

required by K-means clustering in the segmentation of MRI brain scans [89].  More recently, Gors et al 

[90] studied a hierarchical clustering algorithm applied to Alzheimer’s disease detection. 

In order to improve cluster quality in hierarchical methods, other clustering techniques were 

integrated in the hierarchical method, resulting in multiphase clustering such as Balanced Iterative 

Reducing and Clustering using Hierarchies (BIRCH). Compared to Agglomerative methods, BIRCH 

gains in scalability and in its ability to undo the previous decisions of merging or splitting clusters. First, 

it hierarchically partitions the objects into a tree structure, the Characteristic Feature Tree (CFT), where 

each subcluster contains statistical information of the objects within it. Then, any clustering algorithm, 

such as a typical partitioning algorithm, is applied to perform clustering on the leaf nodes of the CFT 

[78].  

 

 

Density-based Methods 

 

Density-based clustering algorithms offer the possibility to find clusters of arbitrary shapes, in 

presence of noise and without prior knowledge, such as the number of clusters. Besides, fewer 

parameters at the start of the process are required in comparison with the above approaches [91] [92]. 

In this technique, clusters are modelled as dense regions in the data space, separated by sparse regions 

[78].  

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is one of the promising 

density-based clustering techniques which detects arbitrary clusters using two user defined thresholds: 

Epsilon (Eps) and Minimum Points (MinPts) which correspond to the radius of a neighbourhood for 

every object and the density threshold of dense regions, respectively. The Eps-neighbourhood of an 

object is the space within a radius, Eps, centred at the object and the density of a region is measured by 

the number of data objects within the region circumscribed by that radius [78]. Initially, DBSCAN starts 
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by marking all the objects in the dataset as unvisited. Then it randomly selects an unvisited object p, 

marks it as visited and observes if the Eps-neighbourhood of p has at least MinPts objects. If not, p is 

marked as a noise point. Otherwise, a new cluster C with p is created and the objects within the Eps-

neighbourhood of p are considered as a subset of objects N. Of the objects of N, those that do not belong 

to any cluster are iteratively added to C until the subset N is empty. At this time, C is completed. The 

following cluster is created by selecting a new unvisited object p from the initial dataset. 

In short, this technique detects the dense area first and then allocates non-dense areas to one of the 

dense clusters based on a proximity criterion function. Thus, it can easily detect outliers [81].  

Celebi et al [91] adapted a DBSCAN clustering algorithm to perform the detection of the boundaries 

of the skin lesions and identification of subregions within the lesion with different colouring. The 

proposed algorithm was able to accurately detect the lesion borders in 80% of the image samples and 

was proven valid for different colour subregions identification. Bandyopadhyay and Paul [93] also 

studied the performance of a DBSCAN algorithm for segmenting brain tumours from MRI exams. More 

recently, Roy and Bhattacharyya [92] have adopted a generalized version of a DBSCAN clustering 

algorithm in order to segment grey and white matter along with tumour tissues using brain MRI scans. 

 

 

2.3.3. Clustering Quality 

 

After applying a clustering algorithm, it is important to assess how good the resulting clusters are. 

When the ground truth of a dataset is available, we use extrinsic methods to compare the clustering 

against the group truth. Otherwise, intrinsic methods which evaluate the goodness of a clustering by 

considering how well the clusters are separated are used [78]. Some of the intrinsic methods tested in 

this work included: the silhouette coefficient, the David-Bouldin index, and the Calinski-Harabasz 

index, which are detailed below. In this work, clustering evaluation algorithms are particularly important 

for the determination of the optimal k number of clusters to be used when performing data segmentation. 

 

 

Silhouette coefficient 

 

This coefficient is computed for all objects of a dataset. Its value varies between 1 and -1, whether 

the object belongs to a compact cluster and it is far away from other clusters, or the object is closer to 

objects in other clusters rather than objects within the same cluster, respectively [78]. For each data 

point, this coefficient (s) is defined by Equation 2.4:         

                                                         

 
𝑠 =

𝑏 − 𝑎

max (𝑎, 𝑏)
 (2.4) 

 

where 𝑎 and 𝑏 represent the average distance between a sample and all other points in the same cluster 

and the minimum average distance from a sample of a cluster to all other clusters, respectively. 

Alternatively, it is also possible to compute the average silhouette coefficient value of all objects within 

a cluster in order to measure the cluster’s fitness within a clustering [78]. Some of the advantages of 

using the silhouette coefficient in clustering evaluation include the fact that the score of the coefficient 

is bounded to the interval [-1 1] and it is easy to understand that the higher the score, the denser and 

more well separated the clusters are. 
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Davies-Bouldin Index (DBI) 

 

This index takes into consideration both errors caused by representing the data objects with their 

cluster centroids (intra cluster diversity) and the distance between clusters (inter cluster diversity) [94]. 

Intra cluster diversity of a cluster j is given by the Mean Square Error (MSE) value in Equation 2.5.  

 

 
𝑀𝑆𝐸𝑗 =  

1

𝑁
 ∑ 𝑑(𝑐𝑗, 𝑥𝑖)

2
 (2.5) 

 

where 𝑁 is the number of data vector, 𝑑 represents the distance between the data vector 𝑥𝑖 and the 

centroid of the cluster j, 𝑐𝑗. Small values of intra cluster diversity reflects the compactness of the clusters. 

Inter cluster diversity is calculated as the distance between the centroids, 𝑐𝑗 and 𝑐𝑘, of the two clusters j 

and k, respectively. Moreover, a measure of closeness, 𝑅𝑗,𝑘, can be obtained from the intra and inter 

cluster diversities in Equation 2.6. 

                                                               

 
𝑅𝑗,𝑘 =

𝑀𝑆𝐸𝑗 + 𝑀𝑆𝐸𝑘

|𝑐𝑗 − 𝑐𝑘|
 (2.6) 

 

Small values of closeness indicate well separated clusters. Conversely, large values of 𝑅𝑗,𝑘 refer to 

clusters close to each other. Then, the DBI is defined in Equation 2.7. 

 

 

𝐷𝐵𝐼 =
1

𝑀
 ∑ 𝑚𝑎𝑥𝑗≠𝑘  𝑅𝑗,𝑘

𝑀

𝑗=1

 (2.7) 

 

where M is the number of clusters [95].  

The lower the DBI, the better the partition of the data.   

 

 

Calinski-Harabasz Index (CHI) 

 

This index, in Equation 2.8, expresses the ratio between cluster variance and the overall within- 

cluster variance. 

                                                         

 
𝐶𝐻𝐼𝑘 =

𝑁 − 𝑘

𝑘 − 1
 

𝐵𝐶𝑆𝑆𝑘

𝑊𝐶𝑆𝑆𝑘
 (2.8) 

 

where N refers to the number of data points, k represents the number of clusters, 𝐵𝐶𝑆𝑆𝑘 is the between 

cluster sum of squares, and 𝑊𝐶𝑆𝑆𝑘 is the within cluster sum of squares [96]. A higher value of CHI 

relates to a model with better defined clusters. Although this algorithm is fast to compute, this index is 

generally higher for convex clusters than other types clusters, such as the ones obtained from density-

based clustering [97]. 
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2.4. Head and Neck Modelling 

 

 

Medical MWI systems promise additional imaging and diagnosis tools. These systems use signals 

based on the dielectric contrast between different tissues, propagating through the body to visualise 

internal structures. To test them, the anatomical region of interest needs to be mimicked, with special 

attention to tissue architecture, distribution, and dielectric properties. Within this section, a review of 

some important topics regarding head and neck modelling is presented. Such topics include studies 

regarding both dielectric properties of biological tissues and developed numerical and realistic phantoms 

of the human body, especially of the head and neck region.  

 

 

2.4.1. Dielectric Properties  

 

In the context of medical MWI, an external electromagnetic field is applied to biological materials 

resulting in electromagnetic scatterings generated by tissues with different dielectric properties. The 

interaction between the materials and the electrical field is described by the complex permittivity, ɛ, in 

which the real part, ɛ′, refers to the amount of energy stored in the material, and the complex part ɛ′′ 

given by Equation 2.9, is the loss factor that includes both dielectric loss, ɛ𝑑
′′,  and conductivity, 𝜎, the 

latter given in Siemens per metre (S/m). The complex permittivity parameter is measured in terms of 

Faraday per metre (F/m). Generally, the relative permittivity, ɛ𝑟, is used which is dimensionless [98]. 

To achieve this, the complex permittivity is divided by the permittivity of free space, ɛ0 =

8.854 × 10−12 F/m, in Equation 2.10.  

 

 ɛ′′ =  ɛ𝑑
′′ +

𝜎

𝜔
 (2.9) 

 ɛ𝑟 =
ɛ

ɛ0
=  

ɛ′ − jɛ′′

ɛ0
 (2.10) 

 

where  𝜔 = 2𝜋𝑓 is the angular frequency of the field in radians per second.  

Together, the conductivity and relative permittivity form the more relevant dielectric properties of 

biological tissues as a function of frequency, where the latter is intrinsically related to the water content 

present in the tissue sample. In a rich water content tissue, such as muscle, the values of permittivity are 

greater than those of low water content tissues, such as fat. Likewise, higher values of conductivity are 

found in high water content tissues. Considering a microwave travelling through a tissue: the higher the 

conductivity of the tissue (and water content), the more energy will be absorbed by or lost to that tissue 

and consequently, the greater will be the attenuation of the microwave energy and the lower will be the 

penetration depth of the radiation. Moreover, the conductivity increases with the frequency [21]. 

Cancerous tissues differ significantly from healthy tissues regarding their dielectric properties. The 

morphological and physiological changes that occur in tumour cells affect their membrane permeability, 

and consequently, the process of osmosis, by causing an increase of water flow to the interior of the cell. 

Hence, the extra quantities of water and sodium ions inside the cancerous cells lead to greater values of 

conductivity and relative permeability when compared to healthy cells of the same tissue type [99]. 
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2.4.2. Dielectric Properties of biological tissues  

 

A small number of studies [100] [101] [102] have addressed the dielectric properties of tissues of 

healthy and metastatic Axillary Lymph Nodes (ALNs) in the context of breast cancer. Joines et al [101] 

first measured the electrical conductivity and relative permittivity of 6 malignant ALN tissues from 50 

to 900 MHz. No healthy ALNs were analysed. Later, Choi et al [102] examined the dielectric properties 

of breast cancer tissue and ALNs tissue in frequencies ranging between 0.5 GHz and 30 GHz. They 

observed that metastatic lymph nodes showed dielectric characteristics similar to the bulk cancer tissues 

but completely different from normal ALNs. More recently, Cameron et al [100] conducted a 

preliminary study of the electrical properties of healthy and malignant LNs. They measured the dielectric 

properties of 23 samples by placing probes in contact with the exterior surface of the nodes and also in 

contact with its cross-section surface. Results showed higher permittivity and conductivity in tissues 

with tumour content. The measurements in this study are encouraging but not conclusive, especially due 

to the limited number of samples.   

Dielectric properties of CLNs have not been directly studied, but Malich et al [103] suggested 

significant contrast between benign and malignant CLNs properties through the use of EIS to 

differentiate sonographically-located suspicious or highly suspicious CLNs. 

 In 1996, Gabriel et al [104] [105] completed a comprehensive study in which they measured 

dielectric properties of many human tissues such as the heart, lungs, muscle, skin, bone, etc, which are 

the tissues surrounding CLNs that have to be considered in the head and neck model. 

 

 

2.4.3. Finite-Difference Time-Domain Method 

 

The Finite-Difference Time-Domain (FDTD) method has been widely used to model the 

propagation of electromagnetic waves in a specified material and simulate its behaviour at several 

frequencies. The dielectric properties of biological tissues are frequency-dependent and their variation 

with frequency is very complex; hence the dielectric properties of biological materials are very 

dispersive [106]. In order to incorporate dispersion into the FDTD methods, some auxiliary formulations 

that describe the behaviour of the dielectric properties of biological tissues over a wide frequency band 

are required. 

The dielectric spectrum of a tissue is characterized by three main relaxation regions at low, medium 

and high frequencies and by some minor dispersion. To a first order approximation, the expression for 

the complex relative permittivity, 𝜀∗, is a function of angular frequency, as given in Equation 2.11 by 

the Debye model, which corresponds to the manifestation of a single polarization mechanism over the 

frequency range: 

 

 𝜀∗(𝜔) = 𝜀∞ + 
𝜀𝑠 − 𝜀∞

1 + 𝑗𝜔𝜏
+

𝜎𝑠

𝑗𝜔𝜀0
 (2.11) 

 

where 𝜏 is the relaxation time constant, 𝜎𝑠 and 𝜀𝑠 refer to the static ionic conductivity and static 

permittivity at 𝜔 = 0, respectively, and  𝜀∞ represents the permittivity at 𝜔 = ∞ [105]. 

Despite being very intuitive and of fast computation, the Debye model does not represent the 

frequency variation of many biological tissues accurately over a wide frequency band because of the 

complexity of biological materials. In this case, each dispersion region may be broadened by multiple 

contributions to it. The Cole–Cole model offers an alternative approach since it introduces a distribution 
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parameter that accounts for the broadening of the dispersion. Moreover, the spectrum of a tissue is better 

described in terms of multiple Cole-Cole dispersions, given by Equation 2.12. 

 

 

 
𝜀∗(𝜔) = 𝜀∞ +  ∑

∆𝜀𝑛

1 + (𝑗𝜔𝜏𝑛)(1−𝛼𝑛)
𝑛

+
𝜎𝑠

𝑗𝜔𝜀0
 (2.12) 

 

where ∆𝜀 =  𝜀𝑠 − 𝜀∞ , 𝛼 is the distribution parameter, 𝑛 is the number of relaxation mechanisms 

considered in the whole frequency range of interest and 𝜏𝑛 is the relaxation time constant of each 

relaxation mechanism [105].  

In conclusion, the Cole-Cole model is usually used as a fitting tool with the purpose of describing 

the variation of the dielectric properties within biological tissues, even though it is not adequate for 

modelling the propagation of the electromagnetic waves in this type of tissue, given the complex 

numerical computation of electromagnetic fields [107]. On the contrary, the Debye model is very 

intuitive and of fast computation but does not represent accurately the biological tissues’ dispersive 

dielectric properties over a wide frequency band [108]. 

 

 

 

2.5. Chapter Conclusions 

 

 

This chapter details some important anatomical structures of the cervical region of the human body 

which are vital when designing an anthropomorphic phantom of this region, especially when aiming at 

organising the LNs within levels from I-VI. The anthropomorphic phantom generator will be further 

discussed within chapter IV. 

The phantom studies revised contributed and served as inspiration to the head and neck phantoms 

design process. Such process requires additional steps regarding the pre-processing of the MRI exams 

which were highlighted in section 2.3.   

In addition, this chapter also demonstrates how the study of the dielectric properties of biological 

tissues have been used to identify and then model diseased tissues, hence validating the importance of 

MWI for clinical diagnosis. 
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3. Chapter III – 3D Numerical Models 
 

 

 

This dissertation is divided in two main objectives. In this chapter, only one objective is addressed: 

the development of a phantom generator of 3D computation models for the head and neck region with 

different levels of complexity. I also intend to create a repository of these models to be accessed within 

the research group. The second objective of developing a repository of computational anatomically 

realistic phantoms based on MRI segmented data will be later discussed in Chapter IV.   

Chapter III starts with a detailed description of relevant preliminary data that served as basis for the 

initial part of this dissertation and the methodologies used to represent the biological tissues in a 

numerical model. Then, the developed 3D numerical phantom generator will be presented along with 

all its structures and levels of complexity. Finally, this chapter ends with the limitations encountered 

over the course of this part of the work and some simple conclusions.  

  

 

3.1. Materials  

 

 

Previous work developed within the research group was focused on creating 2D numerical models 

of the underarm region. In order to obtain such models, which are published in [25] [26] [27], my group 

colleagues have utilised a “building-block” technique that allowed the creation and inclusion in the 

model of numerical structures aimed at mimicking the biological tissues observed in their region of 

interest, the axilla. Tissues such as skin, muscle, heterogenous tissue (mixture of adipose and fibro-

connective tissue), and LNs could be inserted in these models. 

Similarly, I intend to obtain analogous type of models for the head and neck region in order to assess 

the feasibility of the MWI prototype system in imaging and diagnosing CLNs. Hence, 2D numerical 

models of the cervical region have been developed in MATLAB® R2018a based on the recent work 

within the group, which was previously mentioned. During the construction of these models, vast 

structural changes were performed since my focus was on a very different body region which includes 

biological structures such as skin, muscle, bone, subcutaneous adipose tissue, mixed tissues (later 

discussed in the methodology section) and LNs. Moreover, later modifications were necessary in order 

to convert the 2D model into a more realistic 3D model. This section details the final 3D phantom 

generator for head and neck region obtained during my work. 

 

 

3.2. Methodology  

 

 

The numerical models developed in this section are not anatomically realistic shaped, yet they are 

anatomically inspired and a reasonable approximation and good starting point for feasibility studies. 

Each numerical phantom was modelled with the dimension of 40.0 cm in the three coordinates, the 

volume size is 800 × 800  × 800 voxels and the unitary element of the grid represents 0.5 mm of height, 

length and depth. To model the human head and neck, a volume bound by an ellipsoid and a cylinder 
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were used, respectively. The dimensions used for these structures approximate their real average size 

according to [29], the values, in cm, are shown in Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

In the head, I have differentiated three ellipsoid-shaped layers with different thicknesses 

corresponding to skin, fat and muscle tissues, and a nucleus of a material called mixed tissue. From the 

outside perspective towards the nucleus, the first superficial layer corresponds to skin tissue with a 

thickness of 1.4 mm [109]. Immediately after the skin, a second layer was included which corresponds 

to subcutaneous adipose tissue with 6.0 mm of thickness. [110] Finally, a layer corresponding to the 

cranium with a thickness of 4.0 mm was included [111]. To all the above tissues, a unique value was 

associated to the specific tissue type considered. This value is vital when associating the dielectric 

properties to the tissues, however this will be later discussed in a more complex model, in Chapter IV. 

The head and neck region of the human body is an extremely complex area which consists of 

compact zones of different tissues with different sizes, shapes and directions. In some regions the main 

structures are easily identified, but there are other regions where this task is not that easy given the 

mixture of different and small tissues observed. With this in mind, the remaining volume, which is 

referred to as the mixed tissue, consists of a mixture of a variable amount of adipose tissue, loose 

connective tissue, platysma (muscle) and small bones [30]. In this case, the model will either associate 

a unique value of intensity to this tissue type as before, or randomly associates two different values of 

intensity (lower and upper bound) to the voxels, depending on the level of variability of the dielectric 

properties the user intends to introduce in the model. 

The neck region was modelled with concentric cylinders. I considered four main tissues aside from 

the heterogeneous region previously mentioned. From the exterior to the interior, the skin corresponds 

to the first and superficial layer immediately followed by the layer of the subcutaneous adipose tissue – 

the second layer. The third layer is the muscle layer with a thickness of 25.0 mm [112] which mimics 

the sternocleidomastoid and trapezius muscle distribution in order to protect the cervical vertebrae, 

which are represented in the fourth layer - the bone tissue. Figure 3.2 shows the central coronal slice of 

the developed phantom for the head and neck region with all the previously mentioned anatomical 

structures. 

 Width Height/Length Depth 

Head 15.0 20.0 20.0 

Neck 12.0 5.0 12.0 

Figure 3. 1: Schematics of the nomenclature used for the coordinates 

above; coronal plane at top left and sagittal plane at top right. The values 

in cm used to model the head and neck are presented below. (Adapted 

from [29]). 
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LNs were also included in the 3D numerical phantoms. Their shape varies between round, oval, or 

bean-shaped structures, although in this work the LNs were considered oval for the purposes of 

simplification. In healthy conditions, LNs size ranges from 1.0 to 25.0 mm long, in its major axis. When 

diseased, the LNs are swollen and bigger than normal LNs due to high concentrations of tumour cells 

inside them [32]. Two structures can be identified in a LN: its surrounding perinodal adipose tissue, and 

the LN itself. Literature has shown that the dielectric properties of these two groups differ significantly, 

therefore two tissues are taken into consideration when developing the representation of LNs in the 

numerical model [100]. As mentioned before, LNs can be divided into six levels depending on their 

location. Figure 2.4 shows the frontiers of the head and neck region that were taken into consideration 

in the 3D numerical model. The six different volumes were obtained with a rough translation of this 

representation to the 3D head and neck model. 

An example of a 3D model which includes all the previously discussed tissues such as skin, muscle, 

fat, bone and mixed tissue and LNs, both healthy and diseased, is shown in Figure 3.3. In this figure, 

the coronal plane of the volume modelled which contained the centre of the LNs is considered. 

The described methodology used to develop numerical models of the specific tissues within the head 

and neck region of the human body, was taken into consideration while developing the phantom 

generator. The later will be the focus of the next section. 

Note that I fully developed the described methodology, hence this section also comprises part of the 

results obtained during this project. The following section includes the remaining part of the obtained 

results, particularly those which come from the application of the developed methodology. 

 

Background 

Adipose Tissue 

Skin Tissue 

Muscle Tissue 

Bone Tissue 

Mixed Tissue 

Figure 3. 2: Representation of the central coronal slice of the developed phantom, which includes the skin tissue, adipose tissue, 

muscle tissue, bone tissue, and mixed tissue. 
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3.3. Results and Discussion  

 

 

The creation of the first 3D numerical phantoms generator is the first original goal to be achieved 

during this project. A numerical phantom generator allows the user to create various phantoms of the 

region of interest, the head and neck region in this study. In addition, it gives freedom of choice regarding 

the level of complexity of the phantom, the biological structures to be included in the model, and the 

number and location of CLNs. 

 

 

 

Background 

Adipose Tissue 

Skin Tissue 

Muscle Tissue 

Mixed Tissue 

Bone Tissue 

Healthy Lymph Node (cross-section) 

Healthy Lymph Node (surface) 

Metastasised Lymph Node (cross-section) 

Metastasised Lymph Node (surface) 

a) 

b) 

Figure 3. 3: a) Representation of a model which includes all the previously discussed tissues such as skin, muscle, fat, bone and mixed 

tissue and LNs, both healthy and diseased. b) “Zoom in” of the representation above in order to better visualise the different tissues 

type of each lymph node. 
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3.3.1. Numerical Phantom Generator 

 

When creating a new phantom, users are asked several questions in order to personalise their model. 

The first group of questions concerns the biological tissues to be incorporated in the model. The initial 

step refers to the addition of subcutaneous adipose tissue (Figure 3.4). This tissue is represented by an 

ellipsoid-shaped layer. Between all the regions studied in [110], the submandibular region is the one 

which is located in the area of interest, therefore the subcutaneous adipose tissue thickness of the models 

was generalised to 6.0 mm. 

The following steps concern the inclusion of muscular (Figure 3.5) and bone tissue (Figure 3.6). 

Some simplifications were performed at this phase since the development of the 3D numerical phantom 

generator served as a basis for the final objective of this work, the anatomically realistic 3D phantom 

generator. These simpler models are essential to develop MWI algorithms capable of detecting CLNs. 

Some examples of the simplifications performed at this phase include: (i) the muscular tissues in the 

head were neglected as the main structures in this region consist of bone and brain, (ii) only the cranium 

and vertebrae were represented in the model as bone tissue, (iii) the muscular tissues in the neck which 

mimic the sternocleidomastoid and trapezius muscle distribution in order to protect the bone tissue are 

represent by a cylinder, which in turn, surrounds the mixed tissue. For the purpose of this generator no 

more complexity and details were required since I was only concerned with the representation of the 

main tissue types observed in the head and neck region of the human body. 

The incorporation of the mixed tissue in the model is the fourth step (Figure 3.7). The mixed tissue, 

which represents the remaining tissues of the head and neck that were not described above, can be further 

modelled as homogenous or heterogeneous depending on the variability of the dielectric properties the 

user intends to assign to the model (Figure 3.8).  

Finally, the addition of skin tissue is the last step of the first group of questions asked to users (Figure 

3.9). Although Chopra et al. [109] have demonstrated that the average dermal thicknesses of the head 

and neck regions, such as anterior and lateral neck and posterior scalp,  varies from 1.2 mm to 1.4 mm, 

the models were chosen to have a constant value of skin thickness. If, on the one hand, the model 

becomes simpler, on the other hand, the use of an average value removes the real aspect of skin thickness 

variability.     

 

 

Figure 3. 4: Interface which allows the 

user to add subcutaneous adipose 

tissue to the phantom. 

Figure 3. 5: Interface which allows the 

user to add muscular tissue to the 

phantom. 

Figure 3. 6: Interface which allows the 

user to add bone tissue to the phantom. 

Figure 3. 7: Interface which allows the 

user to add mixed tissue to the 

phantom. 

Figure 3. 8: Interface which allows the 

user to choose the variability of the 

dielectric propertites of the tissues 

included into the mixed tissue type. 

Figure 3. 9: Interface which allows the 

user to add skin tissue to the phantom. 
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The second group of questions concerns the LNs (Figure 3.10); their number (maximum of ten in 

total and five per level – hence we guarantee that they are located in the desired level and do not overlap 

regardless their size) (Figure 3.11), size, state (healthy/metastasised) and coordinates of its centre 

(Figure 3.12). As mentioned before, the primary model of the head and neck has already been separated 

into six different regions that correspond to the six levels of LNs. These regions as well as their frontiers 

are clearly defined and shown to the users, which allows them to finger point the location where they 

wish to place the LNs (Figure 3.13). Besides, with this type of methodology, the users can choose 

whether they prefer the LNs to be close together, or conversely, far apart.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

If the user is not interested in specifying the location of the LNs, the phantom generator will 

automatically assign the locations of the LNs (Figure 3.14). After designing the phantom, the user can 

choose whether he/she desires to save the phantom (Figure 3.15). In the case of an affirmative answer, 

the phantom will be saved in a .mat file.  

 

 

 

 

 

 

 

 

 

Figure 3. 10: Interface which allows the 

user to add lymph nodes to the phantom. 
Figure 3. 11: Interface which allows 

the user to add the number of lymph 

nodes to the phantom. 

Figure 3. 12: Informative note which 

specifies the frontiers of the six different 

levels of the lymph nodes. 

Figure 3. 13: Interface which allows 

the user to choose the size, location 

and state of a lymph node. 

Figure 3. 14: Interface which allows the 

user to choose whether he/she wants to 

specify the location of the LNs or if 

he/she prefers the phantom generator to 

automatically assign positions to the 

LNs. 

Figure 3. 15: Interface which allows the 

user to save the designed model of the 

head and neck in a .mat file. 
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3.4. Chapter Conclusions 

 

 

In this chapter, details of all the functionalities of the 3D numerical phantom generator, which were 

developed within the scope of this dissertation, are presented. This generator allows the users to decide 

the features they wish to project onto the phantom; thus, several combinations of characteristics can be 

designed in order to approximate the model according to the interests of the researchers. The creation 

of a generator that allows the personalisation of models of the head and neck of the human body extends 

their applicability to several fields of research.  

The models obtained with the 3D numerical phantom generator result from several approximations 

to the reality, though with different levels of complexity. In some cases, for example the shape and size 

of the head and neck, the approximations resulted in numerical structures with high level of similarity 

to the anthropometry of the body. The representation of the skin tissue in these models was also very 

satisfactory, although some limitations were highlighted regarding the impossibility of thickness 

variability. Conversely, other tissues, such as bone and muscle tissue, were represented in these 

phantoms in a very simplistic way. Other simplifications were also performed, for example: the creation 

of an artificial tissue (mixed tissue) that gathered all remaining tissues in the head and neck regions (e.g. 

regions with a variable amount of adipose tissue, connective tissue, muscle and small bones), the 

approximate definition of the LNs levels, and finally the fixed oval shape of the LNs. Improving these 

numerical models was not a priority in this work since they were used as a starting point to reach more 

complex and realistic models that reflected anatomical knowledge. However, future work in this area 

could include some improvement efforts, such as the determination of more realistic measures, shapes 

and locations of the biological structures within the cervical region and also, the incorporation of smaller 

and/or less representative tissues.  

In conclusion, although numerical phantoms are a good approximation and starting point for 

feasibility studies, they only provide limited anatomical realism. Nonetheless, simple numerical 

phantoms are useful for initial development of technologies as very complex models may hinder initial 

progress. 

In order to address the limited anatomical realism of the numerical phantoms, anthropomorphic 

models were developed while working in this project. 
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4. Chapter IV – 3D Anthropomorphic Models 
 

 

 

The second goal of this project consists of creating a generator of 3D computational anatomically 

realistic phantoms of the head and neck regions based on the anatomical realistic distribution of tissues 

observed and detected in MRI exams. The focus of this work is on developing phantoms of this region 

which will allow the study of CLNs using medical MWI systems. Since I was designing the head and 

neck phantom development process from scratch, the methodology pipeline was applied to only one 

MRI exam, although it can be later applied to others MRI exams to increase phantom variability. 

Nevertheless, the developed phantoms show partial variability since they allow the CLNs positioning in 

different levels.  

This chapter starts with a section describing the datasets studied during this work, and the software 

utilised to manipulate data and construct the phantom generator.  

Section 4.2 details the procedure of building the phantom generator. Firstly, it comprises a 

description of the process of selecting the MRI exam which will be used for constructing the 

anatomically realistic models. Then, data normalisation and data cleaning techniques used to enhance 

image quality, are explained. Some unsupervised clustering algorithms, such as K-means, Hierarchical 

Cluster Analysis, BIRCH and DBSCAN, applied to group different biological tissues in the MRI exams, 

are also described in this section. An overview of the developed techniques which have offered the 

possibility of creating and adding synthetic tissues to the models is present in this section, as the 

corresponding biological tissues were not correctly segmented after the performance of the clustering 

algorithms. Finally, the procedure of assigning the biological tissues’ dielectric properties to the 

segmented tissues in the model ends section 4.2, followed by the schematics which summarise the 

proposed methodology of this dissertation. 

The results obtained at each step of the proposed methodology are shown and discussed in section 

4.3. Finally, chapter IV closes with the limitations encountered at each step of the designing process of 

the 3D anthropomorphic phantom generator and some simple conclusions.  

 

 

4.1.  Materials 

 

 

The second part of the project consists of using information and anatomical features provided by 

digital images to build numerical phantoms of the head and neck region. The phantoms developed in 

this dissertation are based on MRI exams downloaded from a public archive of medical images of 

cancer, The Cancer Imaging Archive (TCIA) [113]. In particular, from a “collection” called The Cancer 

Genome Atlas Head-Neck Squamous Cell Carcinoma (TCGA-HNSC) which includes MRI exams from 

16 individuals. Hence different scanner modalities, manufactures and acquisition protocols are 

available.  

I considered multiple protocols such as T1, T1 post contrast, T1 long tau inversion recovery/FLAIR, 

T1 Turbo Spin-Echo (TSE), T1-weighted FL3D T1 VIBE, T2 Short T1 Inversion Recovery (STIR) and 

T2 Spectral Attenuation Inversion Recovery (SPAIR). The last two are well known fat-suppression 

sequences. The features of the MRI exams available in TCGA-HNSC are summarised in Table 4.1. 

DICOM file format, which is a standard for handling, storing, printing and transmitting information in 

medical imaging, is the primary file format used by TCIA. In order to visualise and exploit the MRI 
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data, I used RadiAnt DICOM Viewer, which is a very intuitive software that provides basic tools for 

image manipulation and measurement. 

The manual creation of a mask for later background subtraction, was achieved with Medical Image 

Segmentation Tool Set (iSEG®) software. A high number of software toolkits and toolboxes (e.g. 

Numpy, Scipy, Scikit-learn from PythonTM, and Statistics and Machine Learning toolboxes from 

MATLAB®) were used for the creation of unsupervised ML algorithms for data segmentation. 

Furthermore, the open source software platform for medical image informatics, image processing, and 

three-dimensional visualisation 3D Slicer (version 4.10.1) was used to register different MRI sequences 

of the same patient. 

 

 

Table 4. 1: MRI TCGA-HNSC dataset. 

 

 

4.2. Methodology 

 

 

The ultimate goal of creating an anatomically realistic phantom generator of the human head and 

neck region was a very complex process which required multiple intermediate steps. The present section 

details all the different methodologies attempted in each part of the process. Every decision regarding 

the construction of the methodology pipeline dictated by the feasibility of 3D printing the resulting 

models.   

Note that I also developed the methodology followed during this part of the dissertation, therefore 

this section also comprises part of the obtained results. Section 4.3 includes the remaining part of the 

obtained results, particularly those which come from the application of the developed methodology. 

 

Patient Sequence Dimensionality  Acquisition plane Resolution (mm) 

1 
(TCGA-BB-A5HY) 

T1 FLAIR 2D Sagittal 0.72 x 0.72 x 4 

2 
(TCGA-BB-4228) 

T2 with SPAIR 

(upper) 

2D Axial 0.72 x 0.72 x 4 

T2 with SPAIR 

(lower) 

2D Axial 0.72 x 0.72 x 4 

T1 post contrast 2D Axial 0.55 x 0.55 x 4 

3 
(TCGS-BB-4223) 

T1 (upper) 2D Axial 0.89 x 0.89 x 5 

T1 (lower) 2D Axial 1.02 x 1.02 x 5 

4 
(TCGA-BA-7269) 

T1 TSE (upper) 2D Axial 0.57 x 0.57 x 5 

T1 TSE (lower) 2D Axial 0.57 x 0.57 x 5 

T2 STIR (upper) 2D Axial 1.02 x 1.02 x 5 

T2 STIR (lower) 2D Axial 1.02 x 1.02 x 5 

FL3D T1 VIBE 3D Axial 0.86 x 0.86 x 2 

5 
(TCGA-BA-5557) 

T1 TSE 2D Axial 0.57 x 0.57 x 5 

T2 STIR 2D Axial 1.02 x 1.02 x 5 

FL3D T1 VIBE 3D Axial 0.86 x 0.86 x 2 
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4.2.1. Step 1 - MRI Data Selection  

 

At this point, the anatomical information extracted from MRI exams will be incorporated within the 

developed models of the head and neck. As my work is focused on using a single MRI exam to create 

an anatomically realistic model of human head and neck region, the search of the anatomical data 

stopped as soon as an eligible exam was found. By accessing a public archive in [113], exams of five 

different subjects were downloaded and examined to check conditions such as: (i) the MRI slices must 

be parallel to the axial plane as at this plane was easier to identify the structures, (ii) the resolution and 

signal-to-noise ratio must permit a clear and easy visual identification of the main biological structures1. 

The results of the MRI exam choosing process to create a complete numerical model is discussed in 

section 4.3.1. 

Afterwards, attempts to combine data included in different MRI sequences of the selected patient 

are also performed as the anatomical information provided by a solo sequence can alone not be sufficient 

in the construction of an anatomically realistic model. These attempts to combine data using registration 

techniques are only performed after the determination of the optimal methodology pipeline and the 

results are analysed and discussed in section 4.3.6.1.  

In order to combine the anatomical information across different sequences, registration was used. 

This process permits the alignment of two or more images with respect to a particular reference image 

[114]. In this case, I considered the reference images as the MRI sequence with the higher resolution, to 

preserve as much detail as possible. By using the 3D Slicer software, an affine transformation was 

performed, in which the lines and parallelism (maps parallel lines to parallel lines) were preserved. Such 

transformation is obtained by composing a scaling transformation with an isometry, i.e. a shape-

preserving transformation (in this case, translation in the plane). We use a non-proportional scaling 

transformation centered at the origin with the form (𝑥, 𝑦) → (𝑎𝑥, 𝑏𝑦), where 𝑎, 𝑏 ≠ 0 are the scaling 

factors (real numbers) [115]. The scaling factors allow the modification of the original images 

dimensions to be the same as the reference images. The application of the affine transformation resulted 

in images with the dimensions and resolution of the reference images, and in the same spatial referential.  

The registered and reference images will be exported to MATLAB® software where they shall be 

combined/overlapped. Two different combination processes will be tested in an empirical attempt to 

quantify the combination of the two images: the addition of the registered and reference images (Test 

A) and the multiplication of the registered and reference images (Test B). However, both images require 

previous data cleaning such as background subtraction and filtering, and unsupervised clustering before 

their combination. The previous steps are all detailed below. 

 

 

4.2.2. Step 2 - Data Cleaning 

 

The incorporation of medical data in the numerical models required some pre-processing techniques 

to transform raw data in a more useful and efficient format. In this section, the considered pre-processing 

steps are presented and detailed. 

 

 

 

                                                           
1 Medical microwave imaging cannot reconstruct an object with resolution lower than 5 mm so any phantom with this resolution 

as a minimum is adequate. 
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i) Data Normalisation     

 

Data normalisation was the first step in the process of data cleaning, which permitted to scale data 

values in a specific range (in this case, 0.0 to 255.0). The Minimum-Maximum normalisation, in which 

the maximum value of the original data corresponded to the value 255.0 in the new scale and the 

minimum value of the original data was replaced by 0.0, was used; the intermediate values were 

calculated according to Equation (4.1):  

 

 
𝑣′ =

𝑣 − min(𝐴)

max(𝐴) − min(𝐴)
(𝑛𝑒𝑤max(𝐴) − 𝑛𝑒𝑤min(𝐴)) + 𝑛𝑒𝑤min(𝐴) (4.1) 

 

where 𝑣′ and 𝑣 are the new and old values of each pixel respectively; 𝐴 is the attribute data, and max(𝐴) 

and min (𝐴) are the maximum and minimum values of 𝐴, respectively. 𝑛𝑒𝑤max(𝐴) and 𝑛𝑒𝑤min(𝐴) are 

the maximum and minimum values of the new range, respectively [116]. In this case, Equation 4.1 can 

be given as: 

 
𝑣′ =

𝑣 − min(𝐴)

max(𝐴) − min(𝐴)
× 255.0 (4.2) 

 

With this step, all the pixels used have values in the same scale. 

 

 

ii) Removal of Background 

 

Noise is always present in an MRI image. Background regions can be easily removed by binary 

masks while preserving the foreground, i.e. the body. Therefore, binary masks were manually created 

using the iSeg software. Firstly, a threshold was applied to the original images, resulting in binary 

images where the original pixels with values below the threshold were represented with 0’s, and the 

pixels with values above with 1’s. This threshold was empirically determined; only one condition was 

taken into consideration when choosing this value: no pixels outside the body region can be included in 

the mask. The opposite situation is acceptable as it can be later corrected using the same software. The 

small gaps in the anatomical region after the application of the threshold were addressed with Close, a 

commonly used morphological operation for image enhancement which allows the connection of objects 

that are close to each other, i.e. smooths the contours, fuses narrow breaks and long thin gulfs, eliminates 

small holes, and fills gaps on the contours [117]. The final result of this process should be a set of binary 

images with 1’s for all pixels that represent the human body and 0’s for the remaining pixels. Finally, 

by applying the mask to each slice of the original MRI data, the background was removed. 

 

 

iii) Filtering Techniques 

 

Four different techniques (detailed in section 2.3.1) aimed at filtering noise and smoothing 

boundaries in MRI exams, were considered in this study. These techniques include the application of 

the ideal, Butterworth and Gaussian LP filters, and median filter to the MRI images. Besides testing 

each filter individually (Option A), filter combinations (Option B) were also applied in order to obtain 
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the best combination of filters which resulted in better quality images, in other words, images with 

reduced noise and smoother transitions. 

The following pipeline was used: (1) data normalisation and background subtraction of the MRI 

exam, (2) option A - application of a single filter to the data and, option B - application of the 

combination of the two best filters (observed in option A) to the data, and (3) application of the K-means 

algorithm (with k = 4, for testing purposes) to the processed MRI data. 

Step (3) is necessary to visually assess which filter/combination of filters allows the best 

segmentation of the biological tissues. The choice of the segmentation algorithm (K-means) at this stage 

was based on previous work developed within the research group. Furthermore, the number of clusters 

introduced in the K-means are the main groups of tissues expected to be found in the MRI exams 

(muscle, fat and bone tissue plus the background). 

The specifications of the implementation of the filters are detailed below. 

 

 

Ideal LP filter specifications  

 

The 3D ideal LP filter function, with MATLAB® implementation, only required the fc parameter, 

which was normalized to [0 1]. A fc of 0.6 was used for testing purposes. In the case of good performance 

of the ideal LP filter, the value of the fc parameter can be further optimized. 

 

 

Butterworth LP filter specifications 

 

The digital Butterworth filter transfer coefficients were obtained with 

the[a,b]=butter(n,Wn)function from MATLAB®, with n= 2 due the imperceptible ringing 

effects of order 2 filters . Wn corresponds the cut-off frequency normalized to [0 1], where 1 corresponds 

to the Nyquist rate – half the sample rate. A Wn of 50% of its maximum value was chosen for testing 

purposes. In the case of good performance of the Butterworth LP filter, the value of the Wn parameter 

can be further optimized. These coefficients along with the input data x were introduced in y = 

filter(b,a,x) function from MATLAB®, where y is the filtered data.   

 

 

Gaussian LP filter specifications 

 

In order to implement the Gaussian filter, the MATLAB® function B = imgaussfilt3(A)was 

used, where A is the 3D image and B is the filtered result. This function filters the 3D image A with a 

3D Gaussian smoothing kernel with a standard deviation of 0.5. 

 

 

Median filter specifications 

 

The median filter was implemented using MATLAB® function B = medfilt3(A), where A is 

the input 3D image and B is the filtered image. This function filters the 3D image A with a 3-by-3-by-3 

filter, which are the neighbourhood dimensions. 
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4.2.3. Step 3 - Unsupervised Clustering 

 

Four different clustering techniques aimed at segmenting the MRI exams were considered in this 

study. The techniques included: K-means, agglomerative hierarchical, BIRCH and DBSCAN clustering. 

With these algorithms, the main groups of tissues expected to be clustered were the bone, muscle and 

fat tissues. Other clusters without an anatomical match were also expected. These should be grouped in 

one large cluster of body tissue apart from the identifiable main groups. This large cluster will be referred 

to as mixed tissue, similarly to the tissue of the numerical phantom which represented the mixture of a 

variable amount of adipose tissue, loose connective tissue, platysma (muscle) and small bones. Hence, 

the four main groups of tissues expected to be found after MRI clustering include bone, muscle, fat and 

mixed tissues. 

The specifications of the unsupervised clustering algorithms and the clustering quality metrics used 

in this work are detailed below. Any unsupervised clustering algorithm returns a column vector 

containing the cluster indices of each point of the entry data. Besides other inputs specified below, the 

data input of such algorithms must be in a column vector. The inputs of the metrics algorithms are 

column vectors with the pixel’s intensities before the clustering and cluster indices of each data point. 

Note that all the clustering quality metrics described in section 2.3.3 and tested in this dissertation 

express good clustering quality when the clusters are dense and well separated, which means that the 

objects inside the same cluster should be very close in value and, simultaneously, their values should be 

distant from the values of the objects of other clusters. However, when analysing the type of the data 

used in this work (i.e. MRI), we understand that it is very likely that the clusters formed in the data are 

not well separated as voxels’ intensity vary within a continuous range of values. Hence, I suspect that 

the results from the studied metrics do not reflect the quality of the clustering in the MR images studied. 

 

 

K-means clustering specifications 

 

The K-means algorithm was tested in MATLAB®, with [IDX, C] = kmeans(X, K)function, 

which partitions the input data X into K clusters and returns the vector IDX containing the cluster indices 

of each point, and the K cluster centroid locations C. By default, kmeans function uses the squared 

Euclidean distance metric. 

This algorithm was also tested in Python™, with KMeans from sklearn.cluster module. The 

two parameters required for the implementation of this algorithm were the k number of clusters and the 

input data. 

In both cases, the algorithms required the input and the number of clusters, which were varied from 

4 to 7. Clustering quality metrics described in section 2.3.3 were used for k parameter optimization. 

 

 

Agglomerative hierarchical clustering specifications 

 

The agglomerative hierarchical algorithm was implemented in Python™, therefore 

AgglomerativeClustering was imported from sklearn.cluster module. The two 

parameters required for the implementation of this algorithm were the k number of clusters and the type 

of linkage metric. Similarly to K-means, several k’s, from 4 to 7, were tested in order to obtain the 

optimal value for this parameter.  
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BIRCH specifications 

 

The BIRCH algorithm was tested in Python™ using Birch imported from sklearn.cluster 

module. The three parameters required for the implementation of this algorithm were the threshold, 

which limits the distance between the entering sample and the existing subcluster, the number of 

clusters, and the branching factor, which limits the number of subclusters in a node.  The k number of 

clusters was set to 7 and the threshold was set to its default value of 0.5.  

Additionally, several values for the branching factor, from 2 to 30, were tested in order to choose 

which one provided better visual separation of the anatomical structures under study. In order to select 

the optimal branching factor, a clustering evaluation metric was used.  

 

 

DBSCAN specifications 

 

This algorithm was tested in Python™ using DBSCAN imported from sklearn.cluster 

module. The two parameters required for the implementation of this algorithm were the Eps and the 

MinPts, which were varied with a coarse grid-search approach from 0.01 to 10 and 10 to 500, 

respectively. In order to select the optimal combination of parameters, a clustering evaluation metric 

was used.  

 

 

Silhouette coefficient specifications  

 

The silhouette coefficient was implemented both in MATLAB®, using the function silhouette 

of the Statistics and Machine Learning Toolbox, and in Python™, using silhouette_score 

imported from sklearn.metrics module. The output from the Python™ is the mean value of the 

silhouette coefficient of each data point and the MATLAB® function returns the silhouette values of all 

data points.  In order to compare the coefficients obtained from MATLAB® and Python™, the average 

of the MATLAB® output was used. 

 

 

Davies-Bouldin index specifications 

 

The DBI was implemented in Python™, using davies_bouldin_score imported from 

sklearn.metrics module. The output of this metric is the mean value of the DBI of each cluster. 

Here, the computation of the DBI is simpler compared to the silhouette coefficient, however the distance 

metric is limited to Euclidean space. Zero is the lowest possible value for DBI; values similar to zero 

indicate a better partition of the data [97]. 

 

 

Calinski-Harabasz index specifications 

 

The CHI was implemented in Python™, using calinski_harabasz_score imported from 

sklearn.metrics module. 
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4.2.4. Step 4 – Synthetic Tissues Insertion 

 

Although MRI is a vital tool to screen the body, there are tissues which are easier to identify in these 

exams rather compared others. The size of the tissues is a decisive factor for its detection. Generally, 

CLNs are very small biological structures extremely hard to identify in MRI exams, even for trained 

eyes. Therefore, there is the possibility that the segmentation algorithms are not able to identify clusters 

corresponding to CLNs.  

Moreover, I suspect that the segmentation algorithms applied would not be able to correctly detect 

and assign the skin tissue to a single cluster over the body surface as this organ has a very thin thickness 

compared to the MRI resolution and the contrast of the images can make the identification and 

segmentation of this tissue difficult in its extension. 

The synthetic tissue insertion step includes the development of algorithms to manually insert in the 

anatomically realistic phantoms the synthetic tissues missing or wrongfully identified in the segmented 

MRI exams provided by the unsupervised clustering step. 

 

 

Skin insertion 

 

The algorithm to generate a synthetic layer of skin to outline the body boundary will be included in 

the phantom generator. Its inputs are the volume of binary masks previously calculated for background 

subtraction and the expected thickness of the skin layer, which is fixed to 1.4 mm according to [109]. 

At each slice of the transverse plane, i.e. at each imaginary plane that divides the body into superior and 

inferior parts, this algorithm determines the position where the mask pixels change in value between 0, 

for background, and 1, for body region. Then, the synthetic layer of skin is introduced at the surface of 

the body region towards the interior of the body. By applying this algorithm in both directions of the 

image, a continuous synthetic layer of skin is added over the whole-body surface.  

 

 

LNs insertion 

 

I used the model of the LNs developed for the 3D numerical phantom generator, detailed in Chapter 

III, to include synthetic LNs in the anatomically realistic phantoms. Such algorithm allowed the user to 

choose the number of LNs introduced in the phantom, and their size, location in levels and medical state. 

The placement of the LNs into the levels required a thorough study of the anatomy in order to 

identify, in the MRI scans, all the structures that define the frontiers of the levels. As the limits of the 

levels vary between slices, the determination of these frontiers is a procedure with several 

approximations and simplifications.    

  

 

4.2.5. Step 5 – Dielectric Properties Assignment 

 

An objective of this dissertation was the creation of anatomically realistic models of the human head 

and neck, which include the dielectric properties of the tissues within the region under study. Hence, I 

studied the variation of these tissues’ properties. The models created within the scope of this dissertation 

are compatible with future image studies that use FDTD modelling to model the propagation of the 

electromagnetic waves in biological tissues, at microwave frequencies. 
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As Cole-Cole models offer a suitable approach for representing the frequency variation of many 

biological tissues at frequencies used for medical MWI, they will be implemented. In particular, the 4-

Cole-Cole model, which is considered the best fitting technique as it describes the four relaxation 

mechanisms exhibited by biological tissues in a frequency range of 10Hz to 100 GHz [108]. Initially, to 

assign dielectric properties to MRI derived models, four dielectric properties curves for permittivity and 

conductivity were considered: a curve for skin, bone, fat and muscle tissue. In order to account for the 

dielectric differences within bone, fat and muscle tissue due to physiological processes, a dielectric 

variation of 5% with respect to the nominal property was incorporated [118] – except for skin. Thus, 

seven curves of the dielectric properties were obtained: one for the skin tissue, and two curves which 

limit the lower and upper bound for the bone, fat and muscle tissues. Although the curves cover a large 

range of frequency, only the range of interest for medical MWI (1-10 GHz) is depicted in Figure 4. 1. 

The 4-Cole-Cole parameters for each curve are shown in Table C1 of Appendix C [118]. 

 

 

 

Healthy and malignant lymph nodes were modelled according to the values obtained by Ricardo 

Eleutério in [119] as the 4-Cole-Cole parameters for these tissues are not available elsewhere. The 

parameters used to model the LNs refer to the Debye model, however we have already observed that the 

Debye model is a simplification of the Cole-Cole model, hence the Debye parameters were used to 

define 1st pole of the Cole-Cole model and the 2nd-3rd-4th poles were assumed to be null in the 4-Cole-

Cole model. The parameters are shown in Table C2 of Appendix C, and Figure 4.2 depicts the four 

curves of the dielectric properties of the healthy and metastasised LNs, both cross-section and surface. 

Similarly, this figure only covers the frequency range of interest for medical MWI. 

 

Figure 4. 1: Dielectric properties curves considered to assign the dielectric properties to the tissues in the cervical region, which 

are represented in the developed models and phantom generator. The graph on the left depicts the permittivity curves, and the 

graph on the right shows the conductivity curves, for the considered biological tissues. Both curves were obtained by using the 

4-Cole-Cole formulation with the parameters given in [118]. 
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The developed algorithm, which allows the assignment of the dielectric properties, provides two 

matrices, one for each dielectric property, with the same dimensions as the phantom. For each matrix, 

the voxels contain the dielectric property value, for a user specified frequency, corresponding to each 

voxel of the anatomically realistic model. In order to obtain this, several steps occur: (1) For each cluster 

with a segmented tissue, the maximum and the minimum value of the intensity of the original MRI exam 

is determined, (2) These maximum and minimum intensity voxels are associated with the upper curve 

and the lower curve of the tissue, respectively, (3) The remaining voxels of the same cluster are linearly 

mapped to a value between the curves of that tissue. This methodology was inspired by Zastrow et 

al.[120]. As the mixed tissue consists of a mixture of multiple tissues such as adipose, loose connective, 

muscle and bone tissues, I set the muscular tissue and the adipose tissue curves as the upper and lower 

curve of this type of tissue, respectively. This way, I was able to cover the dielectric properties variability 

of all tissues included in this cluster. 

 

   

4.2.6. Methodology Overview  

 

The methodology developed in this dissertation can be very complex to summarise, therefore Figure 

4.3 depicts, in a simplistic way, all the steps of the process and all the techniques tested at each step.  

 

 

 

 

Figure 4. 2: Dielectric properties curves considered to assign the dielectric properties to the LNs which are inserted in the 

developed models. The graph on the left depicts the permittivity curves, and the graph on the right shows the conductivity 

curves, for the healthy and unhealthy cross-section and surface of the LNs. Both curves were obtained by using the 4-Cole-

Cole formulation with the Debye parameters given by [119]. The missing 4-Cole-Cole parameters were assumed to be null. 
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4.3. Results and Discussion 

 

 

Within this section, the results of steps 1 to 5 described above are presented and discussed. For 

purposes of organization given the several tests performed to build the anthropomorphic 3D phantom 

generator, the results obtained will be discussed at each step of the process in order to begin an 

elimination process of tests that underperform until reaching the optimal image processing methodology 

and machine learning algorithms for clustering. The tailored pipeline will be used in the creation of the 

final 3D numerical model. This model serves as input to the developed phantom generator of the head 

and neck region. 

 

 

4.3.1. Step 1 - MRI Data Selection 

 

In this work, I evaluated MRI exams of five different patients whose clinical data was acquired 

using different protocols. As mentioned in section 4.2.1, MRI exams of the axial plane with a resolution 

and signal-to-noise ratio which permitted a clear and easy visual identification of the main biological 

structures, were preferred.  

Figure 4. 3: Illustration of the methodology steps followed during this dissertation. 
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In patient 1, only axial T1 FLAIR exams were available. The exams of this patient were discarded 

because only the upper region of the head and neck, mainly head, was imaged.  

In patient 2, both axial T1 post contrast and axial T2 with SPAIR exams were available. T2 exams 

are divided in sets of slices from the upper and lower region of the head and neck. Both sets contain 

slices with the same resolution.  

Axial T1-weighted MRI exams were available for patient 3, but the upper and lower region were 

imaged with different resolutions, (0.89 × 0.89 × 5) mm and (1.02 × 1.02 × 5) mm, respectively. The 

exams of patient 3 were discarded due to the different resolutions between the upper and lower slices of 

the head and neck, which would only increase the difficulty in data processing.  

Both patient 4 and 5 included exams with axial T1 TSE, axial T1 FL3D VIBE and axial T2 STIR 

sequences, with a resolution of (0.57 × 0. 57 × 5) mm, (0.86 × 0.86 × 2) mm and (1.02 × 1.02 × 5) 

mm, respectively. 

Patients 2, 4 and 5 were compared, with preference to choose the images with the highest resolution 

in all anatomical planes. Through comparison, I observed that the differences of resolution in sagittal 

and coronal planes between all scans are not as significant as the differences of resolution in the axial 

plane. Therefore, T1 FL3D VIBE sequences have been chosen over the others given their significant 

higher resolution in the axial plane.  As T1 FL3D VIBE sequences of patients 4 and 5 have the same 

resolution, a visual inspection to choose the exam from which it was possible perceive more anatomical 

information was performed. Based on the scans shown in Figure 4.4, I chose to use the T1 FL3D VIBE 

scans of patient 5 to develop the phantom generator, because it was easier to identify the biological 

structures in the exams of this patient rather than patient 4. 

 

 

The MRI exam chosen to represent the anatomically realistic model consists of 96 axial slices with 

240 × 256 pixels, with 16-bit grayscale format. The region of interest is comprised between slices 23 

and 80, therefore only 58 axial slices will be considered in this dissertation. 

The size of the voxels corresponds to the resolution of the 3D data, hence, the original-shaped voxels 

from the chosen MRI exam have a shape of a quadrangular prism, with 4 rectangular surfaces with 

dimensions (0.86 × 2) mm, and squares of size (0.86 × 0.86) mm in the base. Thus, the chosen exam 

has a resolution of (0.86 × 0. 86 × 2) mm.  

Figure 4. 4: Scans of patients 5 and 4, on the left and right, respectively. In both figures, the axial plane of the cricoid cartilage 

was considered, for comparison purposes. 
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The original-shaped voxels have a z-dimension larger than the double of its x- and y-dimension, 

hence the anatomical structures were represented with half of their real volume due to the elongated (in 

the z axis) shape of the voxels. In order to change the shape of the voxels, each one was divided into 

two almost cubic voxels with size (0.86 × 0.86 × 1) mm - the pseudo-cubic transformed voxels.  

Hence, the performance of the segmentation algorithms in 2D images (the axial slices of the 3D data 

with pixels of size 0.86 × 0.86 mm) and in 3D data with original-shaped voxels and pseudo-cubic 

transformed voxels was compared in Data Cleaning step. 

 

 

4.3.2. Step 2 – Data Cleaning 

 

Data cleaning steps i and ii normalise the values of the data from 0 to 255 and change the values of 

the background region to 0. 

In order to determine the filter or the combination of filters that optimize the image processing 

methodology, a test was designed to compare the results from K-means clustering after the application 

of different filtering techniques (step iii - detailed in section 4.2.2). 

 

 

Option A 

 

In Option A, all filters mentioned in 2.3.1 (i.e. ideal, median, Butterworth and Gaussian) were tested, 

using the following pipeline: (1) data normalisation and background subtraction of the original MRI 

data, (2) application of a single filter to the data, and (3) application of the K-means algorithm (with k 

= 4) to axial slices of the 3D data and to the whole 3D data with both original-shaped voxels and pseudo-

cubic transformed voxels. 

With Option A, I determined which filters provide the best results in terms of removing noise and 

smoothing the edges’ sharp transitions of the data. Besides, I was also able to assess the performance of 

the K-means algorithm in segmenting slice per slice versus segmenting the whole volume of the 3D 

MRI data with original-shaped voxels and pseudo-cubic transformed voxels. The results of Option A 

are shown in Figures 4.5 – 4.8. 
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Figure 4. 6: Axial slice of the normalised MRI exam after background subtraction is represented at 

the top left. Results obtained (the same axial slice is shown) after applying the Gaussian LP filter and 

a 2D K-means segmentation of axial slices (bottom left), 3D K-means segmentation of the original-

shaped voxels (top right) and 3D K-means segmentation of the pseudo-cubic transformed voxels 

(bottom right). The right sternocleidomastoid muscle is located within the black circles and the red 

circles indicates areas with small-sized granularities. 

Figure 4. 5: Axial slice of the normalised MRI exam after background subtraction is represented at the 

top left. Results obtained (the same axial slice is shown) after applying the median filter and a 2D K-

means segmentation of the axial slice (bottom left), 3D K-means segmentation of the original-shaped 

voxels (top right) and the 3D K-means segmentation of pseudo-cubic transformed voxels (bottom right). 

The right sternocleidomastoid muscle is located within the black circles and the red circles indicates 

areas with small-sized granularities. 
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Figure 4. 7 : Axial slice of the normalised MRI exam after background subtraction is represented at the 

top left. Results obtained (the same axial slice is shown) after applying the Butterworth LP Filter (n=2) 

and a 2D K-means segmentation of axial slices (bottom left), 3D K-means segmentation of the original-

shaped voxels (top right) and 3D K-means segmentation of the pseudo-cubic transformed voxels 

(bottom right). The right sternocleidomastoid muscle is located within the black circles. 

Figure 4. 8: Axial slice of the normalised MRI exam after background subtraction is represented at the 

top left. Results obtained (shown in the same axial slice) after applying the ideal LP filter and a 2D K-

means segmentation of axial slices (bottom left), 3D K-means segmentation of the original-shaped voxels 

(top right) and 3D K-means segmentation of the pseudo-cubic transformed voxels (bottom right). The 

right sternocleidomastoid muscle is located within the black circles. 
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Regarding the performance of the K-means algorithm in segmenting slice per slice versus segmenting 

the whole volume of the 3D MRI data with original-shaped and pseudo-cubic transformed voxels, I 

observed more irregular edges and a higher number of clusters without anatomical correspondence (as 

observed in Figures 4.5 – 4.8 with a black circle over the right sternocleidomastoid muscle) when the 

algorithm was applied to slices rather than the whole 3D dataset. Therefore, the methodology pipeline 

should be applied to the whole 3D dataset. 

Blurring and ringing properties are characteristics of ideal LP filters, whose effects intensify as the 

amount of high frequency content removed increases. In order to eliminate the small-sized granularities 

present in the images in Figure 4.8, a low cut-off frequency should be considered. Although a low cut-

off frequency allows to smooth the edges, ringing artifacts would also be added to the images. Since a 

good balance between these characteristics was not achieved, the ideal LP filter was excluded from the 

methodology pipeline.  

Results from the filtering test with Option A demonstrated both severe blurring and presence of 

numerous small-sized granularities in the case of the Butterworth LP filter, Figure 4.7. The granularities 

resulting from Butterworth LP filtering could be minimised by removing the high frequency content, but 

the resulting blurring of the structures causes loss of anatomical information. Therefore, the Butterworth 

LP filters were excluded from the methodology pipeline.   

Conversely, median LP filters were proved to be best for smoothing edges and Gaussian LP filters 

were very effective in removing noise, as shown in Figures 4.5 and 4.6, respectively. Besides, the K-

means segmentation algorithm applied after these filtering techniques provided the separation of large 

structures with less fine detail, which is preferable for 3D printing. Note that to 3D print, anatomical 

structures must fit with one another, otherwise they become “loose” after printing takes place. 

The visual comparison between the results from the segmentation of 3D MRI data with the original-

shaped voxels and the pseudo-cubic transformed voxels allowed to conclude that, in the second case, 

additional granularities were being added (as observed in Figures 4.5 and 4.6 within red circles). This can 

be attributed to the fact that the process of doubling the number of slices effectively results in enlarging 

the clusters in the axial direction. Very small-sized clusters that would have been not perceptible before, 

especially among pixels that correspond to the same tissue, are now not negligible and can be easily seen 

in the images. Noisy points that were not completely removed by the filters can end up in these observable 

small-sized clusters. Besides, the doubling of the data implies the increase of computational cost. 

Consequently, only the original-shaped 3D MRI data will be used in future tests. 

 

 

Option B 

 

From the filtering test with Option A, I concluded that both median and Gaussian LP filters provided 

improved results in noise removal and edge smoothing compared to ideal and Butterworth LP filters. 

Option B allows the comparison between the performance of the above-mentioned single filters and 

their combination. The following pipeline was used: (1) data normalisation and background subtraction 

of the 3D MRI data with the original-shaped voxels, (2) application of Gaussian or median LP filters, 

and their combination, and finally, (3) application of the K-means clustering algorithm (with k = 4) in 

the 3D data with original-shaped voxels. Figure 4.9 depicts the obtained results. 
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The application of the Gaussian filter and the combination of Gaussian filter followed by median 

filter resulted in small-sized granularities (for example, as observed in Figure 4.9 within the black circles), 

which are not well-suited for 3D printing. Consequently, these alternatives were dismissed from the data 

processing pipeline. The combination of the median filter followed by the Gaussian filter resulted in 

smoother edges and less small-sized clusters, when compared to the application of the median filter alone. 

Therefore, the combination of the median filter followed by the Gaussian filter was included in the data 

processing pipeline as it allowed the best anatomical information retrieval and a printer-friendly model. 

 

 

4.3.3. Step 3 - Unsupervised Clustering 

 

As pre-processing data methodology was discussed and established, the following step concerns the 

segmentation of the MRI data in a more meaningful representation, i.e. grouping the data objects with 

similar characteristics, which hopefully will translate into groups of biological tissues. The performance 

of four different algorithms were tested in the 3D data: K-means, Agglomerative Hierarchical, BIRCH, 

and DBSCAN. 

 

 

DBSCAN:  

Due to memory constraints/errors in MATLAB®, DBSCAN algorithm was tested in an axial slice 

of the 3D data, in Python™. The two parameters required for the implementation of this algorithm were 

the Eps and the MinPts, which were varied in a search-grid search from 0.01 to 10 and 10 to 500. A grid 

search of both parameters was performed in order to find the combination which provided better 

Figure 4. 9: Results of the filtering test with Option B – the combination of the best filters yielding from 

Option A. Application of the Gaussian and median filters alone, and the combination of the Gaussian 

filter followed by the median and the median filter followed by the Gaussian filter, from left to right and 

top to bottom, respectively. The black circles indicate regions with small-sized granularities. 
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separation of the anatomical structures. The results showed that for Eps ≤ 0.2, the resulting number of 

clusters varied from 1 to 187, with the highest number of clusters related to the smaller values of the 

MinPts parameter. For Eps > 0.2, the resulting number of clusters varied from 2 to 4, over the entire 

range of MinPts (10 – 500). After the application of the DBSCAN, the silhouette coefficient was 

calculated for each combination of parameters. In theory, the highest the score of the metric, the better 

the segmentation results. 

The highest value of the cluster quality metric silhouette (s = 0.983) was obtained for the 

combination of Eps = 0.2 and MinPts = 30, which resulted in 162 clusters. For a number of clusters 

similar to the number of the main biological tissues found in the head and neck region obtained with 

Eps = 0.05 and MinPts = 415, the value of the silhouette metric was 0.222. The results of DBSCAN 

algorithm for each case are shown in Figure 4.10.  

 

 

For DBSCAN clustering method two different scenarios were assessed: an option in which the 

chosen number of clusters is similar to the number of the main tissues found in the human head and 

neck:  6 clusters, and the case for which the best score of the metric was obtained. In the first case, the 

results of the segmentation do not allow the extraction of any kind of anatomical information whereas 

the second scenario shows shapes of some known anatomical structures, although the image contains a 

vast number of small-sized clusters that have no clear anatomical meaning. Therefore, DBSCAN method 

is not suitable for segmenting MRI scans of the cervical region nor for 3D printing. 

If we revisit the definition of DBSCAN in section 2.3.2, it is based on a density-based algorithm 

which separates dense regions from sparse regions of data points. In the case of the MRI data, DBSCAN 

is not focused on the density of the regions but on the intensity of the pixels. The histogram of the MRI 

data used in this work is shown in Figure 4.11. It divides the range of intensity values of the voxels in 

several series of intervals, on the horizontal axis, and counts the number of voxels which fall into each 

interval. Thus, we can observe that the MRI data comprise a continuous range of voxels intensity and 

the number of voxels monotonically decreases for higher values of intensity. As the histogram does not 

exhibit a behaviour of large amounts of voxels around specific values of intensity, alternated with low 

amounts of voxels in the in-between intensities, density-based methods can hardly find new clusters 

apart from the clusters corresponding to background and foreground. For this reason, I believe that 

DBSCAN is not appropriate to segment the MRI data. 

Figure 4. 10: DBSCAN clustering results of a slice of the 3D MRI data: 6 and 162 clusters, from left to right.     
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BIRCH:  

 

For testing purposes, the BIRCH algorithm was tested in an axial slice of 3D data, in Python™. The 

three parameters required for the application of this algorithm were the branching factor, the number of 

clusters, and the threshold, where the last two parameters were set to 7 and 0.5, respectively.  

As the threshold parameter represents the maximum radius of a subcluster, a low value for this 

parameter promotes the creation of a higher number of subclusters, which can potentially be later 

corrected with manual combination of clusters according to the knowledge of the anatomical region 

under study. The number of clusters used for this algorithm was a little higher than the expected five 

groups (background, muscle, adipose, bone and mixed tissue) resulting in the subsequent combination 

of clusters. The opposite strategy may lead to large clusters that include multiple tissue types. 

Several values for the branching factor, from 2 to 30, were tested in order to choose the one which 

provided better visual separation of the anatomical structures. In order to select which branching factor 

to use, the silhouette coefficient was calculated for each. The highest value of the silhouette metric (s = 

0.707) was obtained for a branching factor of 6. The resultant segmented image with 7 clusters included 

small granularities, which are not suitable for 3D printing, and multiple clusters with irregular edges 

that represent the same biological tissue. For example, in Figure 4.12 (on the left), the olive green and 

the dark blue clusters are both muscle tissue and the small-sized yellow clusters within the aqua-green 

clusters represent adipose tissue (as observed within the red circle). Combinations of these clusters were 

performed, which resulted in the segmented image on the right of the Figure 4.12. However, the results 

are not quite satisfactory since there is little anatomical information that can be extracted from that 

image. 

 

 

 

 

 

 

 

Figure 4. 11: Histogram of the gray levels of MRI data after normalisation and background 

subtraction. 
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A secondary approach to improve the results consisted on applying the BIRCH algorithm with the 

same initial parameters as before, except the number of clusters, which was increased to 10. The increase 

of the number of clusters will prevent different tissues from being included in the same cluster but will 

also separate in different clusters tissues with the same biological nature. However, this was corrected 

with manual combination of clusters based on anatomical knowledge. The primordial segmented image 

and the altered segmented image was shown in Figure 4.13. 

 

 

 

Despite obtaining a higher number of clusters after using the combination strategy in the initial 

segmented images with k = 10 compared to the initial segmented images with k = 7, the 5 final clusters 

showed on the right image of Figure 4.13 do not have explicit anatomical meaning. Besides, the presence 

of several granularities, which are an obstacle for 3D printing, prevents the BIRCH algorithm to become 

the chosen technique for segmenting the head and neck MRI scans.  

BIRCH algorithm is designed to identify sparse and dense regions, and hence discover the overall 

distribution patterns or the correlations among data points, i.e. it takes advantage of the fact that data 

space is generally not uniformly occupied, and hence not every data point is equally important for 

clustering purposes [121]. As shown in the histogram of Figure 4.11, the MRI data does not have density 

Figure 4. 13: Segmented image (k = 10) after the application of the BIRCH clustering algorithm, on the left. Final image (k = 

5) resulting from the manual combination of clusters that represent the same tissue type, on the right. 

Figure 4. 12: Segmented image (k = 7) after the application of the BIRCH clustering algorithm, on the left. Final image (k = 

4) resulting from the manual combination of clusters that likely represent the same tissue type, on the right.   
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varying regions (i.e. large amounts of voxels around specific values of intensity, alternated with low 

amounts of voxels in the in-between intensities), thus BIRCH algorithm is not well-suited for 

segmenting the MRI images. 

The BIRCH algorithm was also tested in the whole volume of the MRI data, for k = 7 and k = 10 

with a branching factor of 6 and a threshold of 0.5, but the results were similar to the ones obtained from 

the application of this algorithm to the axial slices of the 3D MRI data. Due to space constraints, the 

results obtained are not presented in this dissertation.  

 

 

Agglomerative Hierarchical: 

  

Due to memory errors in MATLAB®, this algorithm was tested in an axial slice of the 3D data in 

Python™. The two parameters required for the implementation of this algorithm were the k number of 

clusters and the type of linkage metric. The usage of the Ward linkage is common to multiple studies of 

MRI clustering using the hierarchical method [122] [123] [124], hence, I chose to work with this linkage 

metric. 

Several values of k were tested in order to obtain the optimal value for this parameter. The variation 

of k was set in the range of values from k = 4 to k = 7. The minimum value of the k parameter is the 

minimum number of tissues expected to be found (background, muscle, bone and fat tissues), and the 

maximum value corresponds to a value that allows a finer separation of tissues, which can be later 

manually combined into more anatomical meaningful clusters. For k >7, the segmented images showed 

excessive details which hinder the segmentation of well-known anatomical structures. The optimal value 

of k was achieved through the determination of the silhouette coefficient for each case. The obtained 

segmented images and the values of the metric, for each case, are depicted in Figure 4.14 and Table 4.2, 

respectively. Images from the scenarios a) to d) correspond to k values from 4 to 7, respectively. 

 

 

Figure 4. 14: Segmented images after the application of the agglomerative hierarchical clustering algorithm, with different k 

numbers of cluster. a) k = 4, b) k = 5, c) k = 6 and d) k = 7. 



53 
 
 

Table 4. 2: Values of the silhouette coefficient calculated for each segmented image obtained from Agglomerative Hierarchical 

clustering with varying k number of clusters from 4 to 7. 

Scenario k Silhouette Coefficient 

a) 4 0.238 

b) 5 0.109 

c) 6 0.117 

d) 7 0.116 

 

 

 

Visual examination of the segmented images resulting from the application of agglomerative 

hierarchical clustering in Figure 4.14, and consequent anatomical information retrieval were very 

promising, however the values of the metric in Table 4.2 disagree with these as they fall very far from 

the score of 1.  

Given the inconclusive results of the silhouette coefficient in Table 4.2, other metrics designed to 

evaluate the clustering quality of unsupervised methods, such as the Davies-Bouldin and Calinski-

Harabasz indexes, were calculated and presented in Table 4.3, so that these could help determine the 

optimal k. 

 

 

 

Table 4. 3: Values of the silhouette coefficient, and Davies-Bouldin and Calinski-Harabasz indexes calculated for each 

segmented image from scenario a) to d), obtained from Agglomerative Hierarchical clustering with varying k number of clusters 

from 4 to 7, respectively. The value of each metric corresponding to the best clustering according to each clustering evaluation 

method, is highlighted. 

Scenario k 
Silhouette 

Coefficient  

Davies-Bouldin 

Index 

Calinski-

Harabasz Index 

a) 4 0.238 0.459 418 616.9 

b) 5 0.109 0.448 487 504.5 

c) 6 0.117 0.449 565 026.4 

d) 7 0.116 0.463 694 988.4 

 

 

If we revisit the definition of the silhouette coefficient in section 2.3.3, we infer that a silhouette 

coefficient of one is obtained when the clusters are compact and far away from the other clusters, 

conversely, negative scores indicate overlapping clusters [125]. A zero value of this metric indicates 

that the clusters are extremely close to each other, but without overlapping. Table 4.2 results of the 

silhouette coefficients consist of values near zero, which indicate clusters extremely close to each other, 

in other words, the values of the pixels intensity between clusters do not vary abruptly. As discussed 

before, the MRI data comprises a vast range of continuous values, thus the clusters obtained after 

segmentation are not dense nor well-separated and consequently, the scores of the silhouette coefficient, 

which are focused on measuring cluster cohesion and separation  [126], do not reflect the quality of the 

clustering of the MRI data used in this study. As in the silhouette coefficient, both Davies-Bouldin and 

Calinski-Harabasz indexes compute distances of intra-cluster diversity and inter-cluster diversity, which 

translates into how dense and well-separated the clusters are, respectively. Hence, a good separation of 

different biological tissues is not reflected in the indexes of these above-mentioned metrics. In 

conclusion, the optimal k was chosen by an empirical visual assessment of the amount of biological 
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information given by each segmented image on Figure 4.14. For k ≥ 6, excessive detail grouped in 

clusters does not allow an easy identification of the biological tissues, and for k = 4, different tissues 

were merged as one, such as the muscular and adipose tissue. Thus, k = 5 was the chosen optimal number 

of clusters. 

Although agglomerative hierarchical clustering provided improved segmented images, this 

algorithm resulted in unreasonable computational costs - 8h per axial slice which would account for ~32 

days to cluster the initial volume (Intel® Core™ i7-3630QM and 16.0 GB). Hence, impractical for 

studies such as the one carried out, which implies several tests to determine the best sequence of steps 

that result in well segmented MRI images.  

Segmenting slice per slice versus segmenting the volume as a whole adds the difficulty of manually 

having to correlate the clusters assigned with a specific cluster number in one slice, with a different 

number in the consecutive slices. In conclusion, the hierarchical methods are not feasible for segmenting 

the MRI data. 

 

 

K-means:  

 

The K-means algorithm was tested in the whole 3D dataset, both in MATLAB® and Python™. As 

the results and the computational costs were very similar, I chose to work with the MATLAB® software 

as the majority part of my research group’s work was developed using this software.  

The variation of k was set in the range of values from k = 4 to k = 7. The minimum value of k in the 

range is the minimum number of tissues expected to be found in the segmented images (background, 

muscle, bone and fat tissues) and the maximum value is the maximum number of clusters which allow 

a finer separation of the tissues, which can be later manually combined into more anatomical meaningful 

clusters.The resulting segmented images from a) to d), are represented in Figure 4.15.  

The optimal k was determined by the values of the clustering quality metrics, such as the silhouette 

coefficient and the Davies-Bouldin and Calinski-Harabasz indexes. These results are shown in Table 

4.4. 
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Table 4. 4: Values of the silhouette coefficient, and Davies-Bouldin and Calinski-Harabasz indexes calculated for each 

segmented image from scenario a) to d), obtained from Agglomerative Hierarchical clustering with varying k number of clusters 

from 4 to 7, respectively. The value of each metric corresponding to the best clustering according to each clustering evaluation 

method, is highlighted. 

Scenario k 
Silhouette 

Coefficient  

Davies-Bouldin 

Index 

Calinski-

Harabasz Index 

a) 4 0.802 8.364 46 964.7 

b) 5 0.804 11.432 48 447.8 

c) 6 0.805 12.329 36 470.9 

d) 7 0.804 26.839 29 331.6 

 

 

As discussed before, a good separation of different biological tissues is not reflected in the results 

of the above-mentioned metrics. Hence, the optimal k which provided the best biological information 

retrieval was chosen by the visual inspection of the segmented images. From Figure 4.15, little valuable 

anatomical information is present in a) and multiple details that hinder the extraction of relevant 

anatomical information are present in d). A thorough visual analysis of several slices was performed for 

k = 5 and k = 6. The results are depicted in Figure 4.16.  

 

 

 

 

 

Figure 4. 15: Segmented images after the application of the K-means clustering algorithm, with different k numbers of cluster. 

a) k=4, b) k=5, c) k=6, and d) k=7. 



56 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The anatomical knowledge provided by the segmented images in which data is partitioned into five 

and six groups is comparable, however, for k = 6, additional details produce a more complex image. For 

instance, the muscle tissue (sternocleidomastoid muscle) is represented by two different clusters, as 

observed within the black circle. Instead of adding valuable information, these details mask and make 

the interpretation of the main biological structures in the image difficult, and consequently their 3D 

printing. Therefore, I chose to work with k = 5.   

In conclusion, the K-means algorithm with k = 5 clusters was the segmentation algorithm chosen to 

extract anatomical features from the MRI exams of the head and neck regions. The data processing 

pipeline developed and optimized to provide the best anatomical information retrieval and 3D printing 

conditions is depicted in Figure 4.17.  

 

 

Figure 4. 16: Segmented images after the application of the K-means clustering algorithm, with k =5, on the left 

column, and k =6 on the right. Several slices were studied, z = 10, 20 and 30, from top to bottom, respectively. 
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4.3.4. Step 4 – Synthetic Tissues Insertion 

 

After the application of the chosen segmentation algorithms some difficulties were encountered: (1) 

the skin tissue was not identified in one single cluster, instead several portions of skin were identified 

in multiple clusters and (2) the LNs, which were not easily visible in the original exams, were also not 

detected by the segmentation algorithms.  

Problems (1) and (2) were solved with the implementation of the algorithms detailed in section 

4.2.4, which allowed to solve these in an artificial manner. Specifically, these algorithms provided the 

creation of synthetic tissues, representing skin and LNs, which were introduced in the anatomically 

realistic model generated so far. Features of the tissues - such as the size, location in levels, and medical 

state of the LNs – can be chosen by the user. In Figure 4.18, a skin layer of a thickness of 1.4 mm is 

represented on the left, and two LNs in red and brown, with 1.5 mm in the major axis, healthy and 

located in level II, and 2.0 mm in the major axis, metastasized and located in level V, respectively, are 

shown on the right. 

 

 

The step for inclusion of synthetic tissues is vital in increasing the realism/complexity of the 

anatomically realistic model. 

Figure 4. 18: Skin insertion algorithm created from the binary mask on the left; the blue line is the skin layer around the body. 

Results of the application of the LNs insertion algorithm on the right; healthy LN represented in red and metastasised LN in 

brown. 

Figure 4. 17: Final data processing pipeline used to build realistic models of the head and neck region.  
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4.3.5. Step 5 - Dielectric Properties Assignment 

 

The assignment of the dielectric properties step results in two matrices with the same dimensions as 

the model, one to store the relative permittivity and another to store conductivity, for a chosen frequency. 

In these matrices, each voxel, which contains the value of the dielectric property for a user-specified 

frequency, corresponds to the same voxel in the anatomically realistic model. Hence, the resulting 

matrices from this step can be viewed as 3D maps with the variation of the tissues’ dielectric properties. 

The matrices of the dispersion of the dielectric properties of the biological tissues within the head 

and neck generated in this work are compatible with FDTD modelling, which can help simulate medical 

MWI prototypes for screening CLNs in the head and neck regions. 

 

 

4.3.6. Development of the Anthropomorphic Model 

 

The final data processing pipeline was applied to the MRI data in order to build the anthropomorphic 

model for the head and neck region. The results are presented in Figure 4.20, on the left. Here, the 

following are observed: (1) there are some small green granularities present in the orange cluster and 

(2) both light blue and yellow clusters represent muscle tissue. This visual inspection allowed the 

comprehension of the biological meaning of the data. In (1), small granularities clustered inside large 

clusters without anatomical meaning represent noise, and in (2), the two clusters represent the same 

biological tissue.   

In order to address both issues, I manually merged together the clusters in Figure 4.19 (on the right). 

By doing this, noise and extra details, which could ultimately hinder 3D printing, were removed. 

 

 

 

 

 

 

 

 

 

 

 

Registration  

 

Both images in Figure 4.19 show that some tissues are not clearly clustered. For instance, bone 

tissue (vertebra observed within the black circles in Figure 4.19) is clustered with mixed tissue, and the 

mixed tissue itself clusters several types of biological tissues as explained before. Hence, additional tests 

were performed to ensure that all the relevant anatomical features were extracted from MRI exams.  

Figure 4. 19: Segmented image resulting from the application of the final data processing pipeline to the MRI exam, on the 

left. Final image after the merger of clusters, on the right. The black circles mark bone tissue (a vertebra). 



59 
 
 

Registration was pursued to combine different anatomical information provided by two separate 

MR sequences from the same patient. For the chosen patient, STIR T2-weighted (1.02 × 1.02 × 5.5) 

mm and TSE T1-weighted (0.57 × 0.57 × 5.5) mm images were available. Registration was tested using 

TSE T1- and STIR T2-weighted sequences due to their ability to highlight different elements of the 

body, and their equal resolution in zz. The T1-weighted exam served as reference image due to its finer 

resolution when compared to the T2-weighted exam, which allowed minimising information loss with 

the registration.  

In step 1, the 3D Slicer software was used to generate the alignment transform and obtain the 

registered volume of STIR T2-weighted images matching the size and resolution of the reference images 

(Figure 4.20(1)).  

Step 2 consisted of performing data cleaning and unsupervised clustering – using the methodology 

pipeline previously studied in this work – for both original T1-weigthed images and registered T2-

weighted images, in MATLAB® (Figure 4.20(2)). 

Finally, step 3 included the combination of segmented images from the two sequences (segmented 

original T1 and segmented registered T2), by means of addition (Test A) or multiplication (Test B), in 

MATLAB® (Figure 4.20(3)), in an empirical attempt to quantify the combination of the segmented 

original and registered images. 
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 Figure 4. 20: Pipeline with the methodology of the combination process of MRI images of patient 5 acquired using different 

sequences, and the results obtained at step 1, 2, and 3. 

Original T1 Original T2 

Original T1 T2 registered to T1 

Segmented T2 registered to T1 Segmented T1 

Segmented T2 registered to T1 + Segmented T1 Segmented T2 registered to T1 × Segmented T1 

Test A Test B 
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The segmentation of the T1-weighted images with K-means algorithm with k = 5 (Step 2), resulted 

in images with clusters numbered from 1 to 5. The same occurred with the application of this K-means 

algorithm to the registered T2-weighted images. Table 4.5 shows the combination from adding the 

cluster numbers from the segmented T1-weighted images (e.g. row), with the cluster numbers from the 

segmented registered T2-weighted images (e.g. column) and Table 4.6 provides the combination from 

multiplying the cluster numbers from the segmented T1-weighted images (e.g. row), with the cluster 

numbers from the segmented registered T2-weighted images (e.g. column). 

 

 

 

 

The analysis of Table 4.5 showed that the combination by means of addition of the segmented 

images generated by Step 2 resulted in the creation of 9 different clusters with cluster numbers varying 

linearly from 2 to 10 with a step of 1. Also, it is also demonstrated that different combinations of cluster 

numbers can result in a new cluster number after the combination process. For instance, the 

combinations of the cluster numbers 5 + 1, 4 + 2 and 3 + 3 (marked with blue circles in Table 4.5) create 

the same cluster with the number 6. In other words, voxels within cluster 6 can be obtained after the 

combination of different clusters corresponding to different types of biological tissues, therefore the 

resulting clusters from this combination process can compromise future anatomically related 

conclusions. 

Table 4.6 shows the creation of 14 clusters after the combination by means of multiplication of the 

segmented images provided by Step 2. In this case, the resulting cluster numbers varied from 1 to 25 

non-linearly. Initially the number of the clusters are close to each other, e.g. 1, 2, 3, 4, 5 and 6, but then 

consecutive larger differences between the cluster numbers appear, e.g. 8, 10, 12, 15, 16, 20 and 25. 

Therefore, the colours observed in the images resulting from Step 3 can artificially give the perception 

of better segmented tissues in the multiplication case, given the distinct colours used to represent these 

clusters. 

Besides, for both Test A and B, the number of a cluster is randomly assigned to it, therefore there is 

no correspondence between the cluster number and the intensity of the MRI voxels within that cluster. 

Hence, the colours assigned to each cluster can also make the interpretation of the segmented images 

harder.   

In conclusion, the images obtained from these combination techniques were dismissed and solely 

the previously selected MRI data (T1 FL3D VIBE scans of patient 5 with resolution 0.86 mm × 0. 86 

mm × 2 mm) was used. 

 

 

Table 4. 5: Results from the combination of clusters by means 

of addition. The numbers in the rows and columns correspond 

to the cluster numbers from the segmented T1- and T2-

weighted images.  

Table 4. 6: Results from the combination of clusters by means 

of multiplication. The numbers in the rows and columns 

correspond to the cluster numbers from the segmented T1- 

and T2-weighted images. 
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4.3.7. 3D Anthropomorphic Phantom Generator 

 

The result of the above detailed procedure of data processing is a matrix of cluster numbers, in 

which each voxel contains the cluster number corresponding to the biological tissue type present in that 

voxel. At this stage, the biological tissue types present in the model are the ones which can be directly 

extracted from the segmented MRI exam after section 4.3.6 - such as fat, muscle and mixed tissue. This 

means that the default model includes fat, muscle and mixed tissues. The matrix of labels, the matrix of 

the binary masks to remove the background and the original MRI exams are the inputs of the phantom 

generator. 

The 3D anthropomorphic phantom generator developed in this dissertation is very versatile in the 

way that it covers all the spectrum resulting in extremely simple or complex models of the head and 

neck region. Its simplest form occurs when the generated anatomically realistic phantom consists of 

only the interior of the body (without skin) with only one tissue - mixed tissue – with the average 

dielectric properties of the main tissues within this region.  Increasing the complexity of the generated 

phantoms includes the insertion of more types of tissue, according to the level of complexity required 

for the development of a specific medical MWI equipment. 

Similarly to the model/phantom generator in Chapter III, users can personalise their model by means 

of answering a series of questions. The first group of questions concerns the biological tissues to be 

incorporated in the model. As the starting model already includes biological tissues such as fat and 

muscle, the phantom generator allows the removal of these tissues in order to simplify the model. This 

simplification consists of turning the undesirable tissues into mixed tissue. The initial step refers to the 

addition of subcutaneous adipose tissue to the model (Figure 4.21). In this case, if the answer is 

affirmative, the cluster numbers of the voxels included in the fat cluster maintain their value, otherwise 

these values are replaced by the cluster number of the mixed tissue. The following step concerns the 

inclusion of skin tissue in the model (Figure 4.22). If affirmative, a function will create a layer of skin 

with 1.4 mm of thickness that surrounds the body region. The incorporation of the muscular tissue in 

the model is the third step (Figure 4.23). If affirmative, the cluster numbers of the voxels included in the 

muscle cluster maintain their value, otherwise these values are replaced by the cluster number assigned 

to the mixed tissue. 

The second group of questions, concerning the LNs, is similar to the one used in the numerical 

phantom generator of Chapter III, shown in Figure 4.24. Their number is chosen in an interface 

(maximum of twelve in total and six per level – hence we guarantee that they are located in the desired 

level and do not overlap regardless their size) presented in Figure 4.25. As before, the regions of the 

LNs levels as well as their frontiers are clearly defined and shown to the users, which allows them to 

indicate the location to introduce the LNs (Figure 4.26). Finally, their size, state (healthy/metastasised) 

and coordinates of its the centre is chosen in the interface depicted in Figure 4.27.  With this type of 

methodology, users can choose whether they prefer the LNs to be close together, or conversely, far apart.  

The final group of questions concerns the association of the MRI voxel’s intensity to the dielectric 

properties of the biological tissues. A matrix whose voxels contain the values of dielectric properties of 

the corresponding biological tissue is produced. In order to complete the matrix of the dielectric 

properties, the user is asked to choose a frequency value so that the algorithm is able to determine the 

maximum, minimum and the linearly interpolated intermediate values of the dielectric properties for 

each tissue type, at the chosen specific frequency (Figure 4.28). 
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Figure 4. 21: Interface which allows 

the user to add subcutaneous adipose 

tissue to the realistic phantom. 

Figure 4. 22: Interface which allows 

the user to add skin tissue to the 

realistic phantom. 

Figure 4. 23: Interface which allows 

the user to add muscular tissue to the 

realistic phantom. 

Figure 4. 25: Interface which allows the user 

to add the number of lymph nodes to the 

realistic phantom. 

Figure 4. 24: Interface which allows the user 

to add lymph nodes to the realistic phantom. 

Figure 4. 26: Informative note which 

specifies the frontiers of the six different 

levels of the lymph nodes. 

Figure 4. 27: Interface which allows the 

user to choose the size, location and state of 

a lymph node. 

Figure 4. 28: Interface which allows the 

user to choose the frequency value at 

which the algorithm should interpolate the 

dielectric properties values of the 

biological tissues. 
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If the user is not interested in specifying the location of the LNs, the phantom generator will 

automatically assign default locations (Figure 4.29). After designing the phantom, the user can choose 

to save the phantom (Figure 4.30). In this case, the following models: i) before segmentation, ii) after 

segmentation and tissue selection, and iii) the matching dielectric properties matrices will be saved in 

.mat files. The dielectric properties matrices have the same dimensions as the MRI exam, since each 

voxel of the MRI exam corresponds to the relative permittivity and conductivity values, at a chosen 

frequency, in the matrix of permittivity and conductivity, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

For printing purposes, the final phantom (model after the segmentation) will have its original-shaped 

voxels resized to cubic-shaped voxels so that a physical model is not shrunk in the z-direction due to the 

original resolution of the MRI exams, and will be saved in STL format.     

 

 

4.4. Chapter Conclusions 

 

 

The creation of anthropomorphic models of the head and neck region was detailed in this chapter. 

Here, every step from the building process of such models and the 3D anatomically realistic phantom 

generator, is described. As before, the generator was designed to allow the creation of head and neck 

models. 

The anatomical data incorporated in the model (T1 FL3D VIBE exams from patient 5) was chosen 

over the others given its significant higher resolution in the axial plane and easy visual identification of 

the biological structures.  

Both ideal and Butterworth filters resulted in clustering with several small-sized granularities, which 

ultimately compromise 3D-printed phantoms. Median filters were proved the best for smoothing edges 

and Gaussian filters were effective in removing noise. The combination of the last two was found to be 

the best approach for data pre-processing since they tackle different problems and combined, they allow 

the best anatomical information retrieval.  

No useful segmentation was obtained from DBSCAN and BIRCH algorithms. In the first case, the 

algorithm was not capable of grouping data points in large clusters with anatomical meaning, instead, 

only small and very sparse clusters were found. Hence, the DBSCAN algorithm for clustering was 

excluded from the methodology pipeline. The results of BIRCH showed severe loss of anatomical 

Figure 4. 29: Interface which allows the 

user to choose whether he/she wants to 

specify the location of the LNs or if 

he/she prefers the phantom generator to 

automatically assign positions to the 

LNs. 

Figure 4. 30: Interface which allows the 

user to save the phantom. 
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information for k ≤ 4, but several noisy small-sized granularities and clusters without explicit anatomical 

meaning for k ≥ 5. Neither option is appropriate to be used to build the model, thus, BIRCH algorithm 

was excluded from the methodology pipeline. Despite providing clustering with anatomical meaning, 

HCA algorithms used unreasonable computational costs - 8h per axial slice which would account for ~32 

days to cluster the initial full volume (Intel® Core™ i7-3630QM and 16.0 GB). Finally, K-means 

clustering was the adopted algorithm given its speed and good clustering quality. In order to determine 

the optimal k, three different metrics were calculated. Results showed that good values of metrics did not 

imply good anatomical information retrieval, for the dataset used in this project – this was observed 

empirically. As a result, visual inspection and comparison to prior anatomical knowledge were 

empirically used to assess the segmentation quality. 

As skin tissue and LNs were not correctly segmented in the models after the segmentation 

procedure, algorithms which allowed the manual insertion of such tissues, were developed. Despite 

increasing the variability of the models by choosing the location of the LNs within the levels, size and 

medical state, their shape and direction (horizontal, vertical, oblique) were fixed for purposes of 

simplification. In the future, the combination of the anatomical information from the MRI exams with 

the information from other modalities, such as CT images, may be fruitful for the identification of the 

location of the LNs, which ultimately would allow an automatic segmentation of these tissues without 

having to manually insert them.  

Synthetic skin tissue was also added to the models as this tissue was not correctly segmented by the 

unsupervised clustering algorithms. In the model, a fixed thickness for skin tissue was chosen for 

simplification purposes. Future work should improve the realism of the models created by the phantom 

generator.  

During the construction of the head and neck models, users are asked several questions in order to 

personalize each model. The first group of questions concerns the tissues they wish to include in the 

model, the second group of questions concerns the LNs and their features and the third group concerns 

the association of the MRI voxel’s intensity to the dielectric properties of the biological tissues. When 

finalised, users can save their phantom in .mat files and STL file format for printing. 
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5. Chapter V – Conclusions and Future work 
 

 

 

The objective of this project was twofold: firstly, it aimed at developing a phantom generator of 3D 

computational models for the head and neck region with different levels of complexity, and secondly, it 

focused on creating a realistic anthropomorphic phantom generator derived from MRI exams, using 

anatomical knowledge, ML techniques, and realistic dielectric properties of biological tissues. For both 

cases, the ultimate goal – beyond the scope of this project – consists of later using the developed 

phantoms to assess the feasibility of a MWI prototype system in imaging and diagnosing CLNs, as there 

is a significant diagnostic blind-spot regarding mass screening of LNs in the case of head and neck 

cancers. 

The 3D numerical phantom generator developed in this project allows the creation of 3D 

computational models of the head and neck region, with varying levels of complexity to match the 

interests of the researchers, and consequently, it extends the applicability of the numerical models to 

several fields of research. The process of creating a model consists of a sequence of steps which allow 

the incorporation of biological tissues, such as skin, muscle, fat and bone tissue, in the model. LNs can 

also be included and their number, size, location and medical condition (i.e. whether or not they are 

metastasised) are defined by the user. 

Although the level of realism provided by the developed 3D numerical models was limited, these 

models have an utmost importance in the initial process of MWI prototype development as they fairly 

represent the general features of the human anatomy, and more complex models may hinder initial 

progress in the development of an MWI tailored to image the head and neck regions. Hence, the 

numerical models developed in this project were used as a starting point to reach more complex and 

realistic models. 

Future work in this area could include some improvement efforts, such as the determination of more 

realistic measures, shapes and locations of the biological structures within the cervical region and also, 

the incorporation of smaller tissues. 

The second part of this work aimed at creating a generator of 3D computational anatomically 

realistic phantoms of the head and neck region based on MRI segmented data. A methodology pipeline 

was designed and optimized in order to obtain a model as realistic as possible for later 3D printing. 

The methodology pipeline consisted of: (1) MRI data selection which is an extremely important step 

to assure that the model accurately represents the head and neck anatomy. High resolution exams with 

low noise levels, which provide easy visual identification of the anatomical structures, are vital for this 

project. (2) Data cleaning steps allowed the background subtraction, removal of noise, smoothing of 

sharp edges in the boundaries of the tissues, and elimination of small-sized granularities which make 

the segmentation process difficult. (3) Different unsupervised clustering algorithms, such as K-means, 

Agglomerative Hierarchical, BIRCH and DBSCAN, were tested, and the K-means partitioning method 

(with a k = 5) excelled against the others in its fast computation and results with explicit anatomical 

meaning. The optimization of this algorithm was performed by an empirical visual assessment of the 

amount of anatomical information given the segmented images as the tested intrinsic metrics, such as 

the silhouette coefficient, Davies-Bouldin and Calinski-Harabasz indexes, did not reflect a good 

separation of different biological tissues. 

The developed phantom generator uses as input the results from the methodology pipeline to create 

anatomically realistic phantoms of the head and neck. The default anatomically realistic model includes 

few biological tissues, such as muscle, adipose and mixed tissues. Users choose which tissues they desire 
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to include in the phantoms by answering a sequence of questions regarding the pre-existing tissues in 

the phantom, and new synthetical tissues which can be included, such as skin and LNs. Similarly to the 

3D numerical phantom generator, the LNs number, location and medical condition in the 3D 

anthropomorphic phantom generator are defined by the user. Finally, the dielectric properties of the 

biological tissues, for a user specify frequency, are assigned to the MRI voxel’s intensity. After the 

phantom creation process, the models before segmentation and after the inclusion of all tissue can be 

saved in .mat files along with the matrices of the corresponding dielectric properties. 

In all the considered unsupervised clustering algorithms, each data point belonged to one cluster 

only. This strict requirement can lead to an erroneous segmentation, especially when considering 

continuous data values (MRI intensities) such as those in the project. Although K-means segmentation 

provided very good and realistic results, I propose that future work should include the study of more 

advanced unsupervised segmentation algorithms, such as probabilistic model-based cluster analysis, 

which can be computed using the Expectation-Maximization Algorithm. In these models, fuzzy/flexible 

clusters allow the objects to participate in multiple clusters. Each one of these probabilistic clusters is 

mathematically represented by a probability density function. At the end, the goal is to infer from the 

data the set of probabilistic clusters that is most likely to generate the data.  

In the context of future work, semi-supervised methods appear to be also a viable option to segment 

the head and neck MRI exams as the validation of the results provided by the studied unsupervised 

methods requires users with great anatomical knowledge of the region under test. Semi-supervised 

methods fall between unsupervised and supervised methods; therefore, they make use of a small amount 

of labelled data (in this case, manual segmentation provided by physicians) with a large amount of 

unlabelled data (MRI exams). Thus, these methods should entail great potential as the manual 

segmentation would be particularly valuable to validate the automatic segmentation of the main tissues 

and in the identification of LNs. 
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ABSTRACT

MICROWAVE IMAGINGINTRODUCTION

METHODOLOGY

Currently there is no satisfactory neoadjuvant (i.e. pre-operative) diagnosis to assess whether cancer has spread to neighbouring lymph nodes (LNs).

State of the art clinical diagnosis of head and neck cancer often involves removal of Cervical LNs (CLNs) for TNM staging [1]. We propose that LNs

within the head and neck region are a prime target for clinical diagnosis using MicroWave Imaging, both because of their shallow location and

dielectric properties. We aim to create realistic anthropomorphic models of the head and neck for later testing of a full MWI prototype system, capable

of imaging and diagnosing CLNs. This includes developing anthropomorphic phantoms, using state-of-the-art segmentation algorithms.

Head and
Neck Cancer

887,659 new 

cases in 2018 [2]

Over 51% 

death 

incidence [2]

In 80% of these cancer cases, cancer cells metastasise 

through lymphatic and blood vessels [3]

STANDARD DIAGNOSIS METHODOLGY OF CERVICAL 
LYMPH NODES – NECK DISSECTION

NEGATIVE IMPACT IN PATIENTS 

AND HEALTH SYSTEMS [4]

▪ Slow physical recovery;

▪ Physical deformations (scars);

▪ Affects speech and swallowing;

▪ Lymphoedema.

Figure 1. Schematic representing the typical methodology steps of the UWB radar imaging system. 

Low cost Non-ionising

Non-invasive Low power

Ultra Wideband (UWB) 
Radar for Microwave

Imaging

11th Workshop on Biomedical Engineering

GOAL

Development of anthropomorphic models of the head and neck for later testing in a full MWI prototype system, capable of imaging and diagnosing CLNs.

MRI scans
• T1 (Axial 2D);

• T2 (Axial 2D);

• T2 w/ SPAIR (Axial 
2D);

• FL3D T1 VIBE (3D).

Data 
normalisation

Background 
subtraction

Frequency-Domain
Filters [5]

• Butterworth Lowpass Filters;

• Gaussian Lowpass Filters;

• Median Filters

Machine Learning
Algorithms for clustering
[6]

• K-means clustering;

• Hierarchical Cluster Analysis;

• DBSCAN;

RESULTS CONCLUSIONS AND FUTURE WORK
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❑ By using this pipeline, we are able to reasonably differentiate tissues in the head and 

neck region. 

❑ In future work, different MRI sequences will be considered, both because of their 

worldwide usage in clinical applications and their ability to separate tissues.

❑ Further tests will help determine the optimal image processing methodology and 

machine learning algorithms for clustering.

FL3D T1 VIBE (3D);

Data normalisation;

Background subtraction;

Median filter;

K-means clustering algorithm
(k=4);

Manual insertion of healthy and
metastised LNs.
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6
Figure 2. Sample image of the head and neck region,

resulting from MRI images of the body segmented with

data clustering method K-means. (orange – bone,

green – muscle, blue – heterogenous tissue , yellow –

LNs.

 



79 
 
 

Appendix B 

 

Head and Neck Numerical Phantom Development 

for Cervical Lymph Node Microwave Imaging 
Ana Catarina Pelicano1, Raquel C Conceição2 

1 Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal, catarina_pelicano@hotmail.com 
2 Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, 1749-016 

Lisbon, Portugal, rcconceicao@fc.ul.pt 

 

Abstract—In this paper, we present a methodology to 

build a numerical phantom for the head and neck 

regions, which can be used to develop a cervical lymph 

node microwave imaging device. We have shown a 

pipeline of data processing steps which can be applied 

to Magnetic Resonance Images (MRI) of the head and 

neck. Such models will be the starting point to start 

developing a microwave imaging device suitable to 

detect metastasised cervical lymph nodes and as a 

result contribute to the correct staging of head and 

neck cancer.  

Index Terms— cervical lymph nodes; MRI 

segmentation; microwave imaging. 

I. Motivation 

Head and neck cancer is a broad term referring to 

any epithelial malignancies arising in the paranasal 

sinuses, nasal and oral cavity, salivary glands, 

pharynx, and larynx. This type of cancer reported 

887,659 worldwide new cases in 2018, with over 

51% death incidence [1]. In up to 80% of these cancer 

cases, cancer cells metastasised through lymphatic 

and blood vessels [2] [3].  

 Currently there is no satisfactory neoadjuvant (i.e. 

pre-operative) diagnosis to assess whether cancer has 

spread to neighbouring Lymph Nodes (LNs). The 

assessment of LNs within the head and neck region 

often requires their surgical removal and subsequent 

histopathology. This practice frequently results in the 

removal of healthy Cervical LNs (CLNs), which 

ultimately has negative impact on the patient’s health 

and quality of life, and also on the economy of a 

country, due to the high costs of surgeries and follow-

up therapies supported by healthcare systems [4] [5]. 

 If CLNs could be accurately diagnosed with a 

non-invasive approach ahead of surgery, the quality 

of life of cancer patients and survivors could 

potentially be significantly improved and the burden 

on patients and on healthcare systems reduced [6] [7]. 

II. Introduction 

As a result of the lack of alternatives to assess 

CLNs, MicroWave Imaging (MWI) presents itself as 

an interesting option. Medical MWI uses signals 

based on the dielectric contrast between different 

tissues, propagating through the body to detect 

internal structures. 

Radar MWI operates by illuminating an 

anatomical region of interest (or models mimicking 

that region) with an Ultra WideBand (UWB) pulse, 

and recording and processing the resulting 

backscattered signals. Medical radar MWI systems 

typically comprise: UWB antennas, transmit/receive 

electronics, and dedicated skin artefact removal and 

beamforming algorithms. Skin artefact removal 

algorithms remove the large reflection produced by 

the skin surface; beamforming focuses the 

backscattered signals so that signals from high 

scattering regions (e.g. tumour tissues) are combined 

coherently and signals from clutter are combined 

incoherently; finally resulting in an image which 

shows the dielectric scatterers [8] [9]. Instead of 

creating anatomical images of the body, radar-based 

MWI creates a map of microwave scattering, which 

translates in a map of the dielectric properties of the 

irradiated area. Here, the abnormalities in the tissues 

are easily detected and quantified [10]. In addition to 

being a comfortable and non-invasive imaging 

modality, it is also portable, low-cost, user-

independent, and uses low-power. 

MWI has gained significant momentum in the 

past few years with numerous research projects, 

patient studies [8] [9] and clinical trials [11] [12], and 

new products being brought to market (e.g. 

MARIATM [13]), mostly in the area of breast cancer 

and stroke detection. Although MWI technology has 

matured considerably for some clinical applications, 

performance improvements are required to make 

clinical usage feasible. 

The main objective of this paper is to use Machine 

Learning techniques to create realistic 

anthropomorphic phantoms which can be later used 

to develop medical MWI systems for screening and 

diagnosis, as there is a significant diagnostic blind-

spot regarding mass screening of lymph nodes in the 

case of head and neck cancers. 

As screening CLNs using a microwave 

UltraWideBand (UWB) radar technology has never 

been attempted before, the first steps comprise 

mailto:rcconceicao@fc.ul.pt
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modelling the head and neck region according to its 

anatomy, with special attention to tissue architecture, 

distribution, and dielectric properties. This includes 

developing three-dimensional (3D) anthropomorphic 

phantoms of the head and neck region, using state-of-

the-art segmentation algorithms and assigning the 

realistic dielectric properties of biological tissues to 

the segmented tissues. In order to create a 3D realistic 

MRI-derived phantom of the head and neck regions, 

a thorough study of Data Mining (DM) clustering 

techniques for data segmentation must be conducted. 

Furthermore, metrics such as Silhouette are used for 

clustering evaluation and algorithm selection 

purposes. As the dielectric properties of the tissues 

modelled are to be incorporated into the 3D 

anatomically realistic model, 4-pole-Cole-Cole 

model is used to describe the behaviour of the 

dielectric properties of the biological tissues with 

frequency.  

 

III. Materials 

The phantoms developed were based on MRI data 

downloaded from a public archive of medical images 

of cancer, The Cancer Imaging Archive (TCIA) [14]. 

In particular, from a “collection” called The Cancer 

Genome Atlas Head-Neck Squamous Cell 

Carcinoma (TCGA-HNSC), hence different scanner 

modalities, manufactures and acquisition protocols 

were available. DICOM files from TCIA were 

visualised and exploited with RadiAnt DICOM 

Viewer software.  A manually created mask for later 

background subtraction was obtained from iSEG® 

software. Software toolkits and toolboxes (e.g. 

Numpy, Scipy, Scikit-learn from Python™, and 

Statistics and Machine Learning in Toolbox™ in 

MATLAB®) were used for the creation of 

unsupervised Machine Learning (ML) algorithms for 

data segmentation, with reported applications in 

medical imaging [15]. Furthermore, 3D Slicer 

software (version 4.10.1) was used to perform image 

registration techniques.  

IV. Methodology and Results 

A. MRI Data Selection 

Exams of five different subjects were examined 

on their ability to fulfil conditions such as: (i) slices 

must be orthogonal to the coordinate axes, (ii) the 

resolution and signal-to-noise ratio must allow a clear 

and easy visual identification of the main biological 

structures. The MRI sequences available include: T1, 

T1 post contrast, T1 FLAIR, T1 Turbo Spin-Echo 

(TSE), FL3D T1 VIBE, T2 STIR and T2 with 

SPAIR. Later, combinations of data, for the chosen 

patient, were also considered. 

B. Pre-processing methodologies 

Data normalisation was the first step in data pre-

processing, which permitted to scale the data values 

in a specific range (in this case, 0.0 to 255.0). We 

have used the Minimum-Maximum normalisation. 

Binary masks were created to eliminate 

background noise. Firstly, a threshold was applied to 

the original images resulting in binary images where 

the original pixels with values below the threshold 

were represented with 0’s and the pixels with values 

above, with 1’s. This threshold was empirically 

determined; only one condition was taken into 

consideration when choosing this value: no pixels 

outside the body region can be included in the mask. 

The resulting mask is tolerable as it could be later 

corrected. The small gaps in the anatomical region 

after the application of the threshold were addressed 

by using Close, a morphological operation that 

allows the filling of small holes. Finally, by applying 

the mask of each slice to the original data we have 

removed the background.  

MRI images are generally prone to Gaussian 

noise and Salt and Pepper noise due to image 

acquisition errors, such as sensor noise and electronic 

circuit nose, and transmission errors [16]. The 

removal of noise, which corrupts the information in 

the image, and the smoothness of other sharp 

transitions (e.g. edges) can be accomplished by using 

filters in the frequency domain. High frequencies are 

responsible for detail, i.e., sharp transitions such as 

noise and edges. If the goal is to remove noise, then 

filters capable of suppressing high frequencies while 

leaving the low frequencies unchanged should be 

applied - the LowPass (LP) filters. In this work we 

have considered the ideal, Butterworth and Gaussian 

filters, which cover the range from very sharp (ideal) 

to very smooth (Gaussian) filter functions. The non-

linear median filter was also tested as it is very 

effective in the presence of Salt and Pepper noise 

[17]. Besides testing each filter individually, some 

filters combinations were also attempted in order to 

obtain the best conjugation of filters characteristics 

which provided better quality images. 

C. Segmentation Algorithms (Data Mining 

Clustering) 

DM is the process of discovering interesting 

patterns and knowledge from massive amounts of 

data. Typically, we use clustering methods, also 

known as unsupervised learning, to discover hidden 

patterns within the data [18] [19]. Hence, it is one of 

the processes in segmentation successfully applied to 

medical image analysis [20]. Clustering is the process 

of grouping a set of data objects into clusters (which 

should correspond to different classes) by 

maximizing intraclass similarity and minimizing 

interclass similarity. Traditional clustering 

techniques are broadly classified into the following 

categories: partitioning methods, hierarchical 

methods, density-based methods, and grid-based 

methods [18]. The proximity measure is an important 

step since it allows the definition of the concept of 
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similarity between data samples [21]. The clustering 

algorithms tested include: Agglomerative 

Hierarchical Cluster Analysis, K-means clustering, 

BIRCH and DBSCAN. 

 

D. Clustering Evaluation 

After applying a clustering algorithm, it is 

important to assess how good the resulting clusters 

are. When the ground truth of a data set is not 

 

 

Fig 2. Intermediate results obained when applying the pipeline 

with processing steps from MRI images to full 3D numerical 

model of the head and neck regions (matching with Fig.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 1. Pipeline with processing steps from MRI images to  

full 3D numerical model of the head and neck regions. 
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available, intrinsic methods which evaluate the 

goodness of a clustering by considering how well the 

clusters are separated are used [18]. Some of the 

intrinsic methods tested in this work included: the 

silhouette coefficient, the David-Bouldin index, and 

the Calinski-Harabasz index, which are detailed 

below.  

The Silhouette coefficient is computed for all 

objects of a data set. Its value varies between 1 and -

1, whether the cluster containing the object is 

compact and the object is far away from other 

clusters, or the object is closer to objects in other 

clusters rather than objects within the same group, 

respectively [18].  

The Davies-Bouldin Index (DBI) takes into 

consideration both errors caused by representing the 

data objects with their cluster centroids (intra cluster 

diversity) and the distance between clusters (inter 

cluster diversity). Values closer to zero indicate a 

better partition of the data [22]. 

The Calinski-Harabasz Index (CHI) expresses the 

ratio of between cluster variance and the overall 

within cluster variance. A higher value of CHI relates 

to a model with better defined clusters [23]. 

E. Post-processing methodologies 

After the application of the segmentation 

algorithms we have encountered some difficulties. 

As the skin tissue was not identified in a particular 

cluster, we have developed an algorithm which 

allowed the introduction of synthetic layer of skin. 

The inputs were the volume of binary masks and the 

thickness of the skin layer, which was fixed to 1.4 

mm. In each slice of the transverse plane, which 

divides the body into superior and inferior parts, this 

algorithm detects changes in the values of the mask. 

Then, a layer of skin is introduced at the surface of 

the body region towards the interior. 

After the application of segmentation algorithms, 

the LNs were not distinguishable from other body 

regions. In order to address this problem, we have 

chosen to proceed with the manual insertion of the 

LNs, following the anatomical description given in 

[24].  

The classification of the LNs into the appropriate 

6 anatomical levels required a thorough study of the 

anatomy. The determination of these frontiers was a 

procedure with several approximations and 

simplifications.  

The methodology from A to E, and resulting 

intermediate results are represented in Fig. 1 and Fig. 

2, respectively, in which we highlighted the optimal 

algorithms for each processing step. 

 

F. Assignment of Dielectric Properties 

The models created within the scope of this paper 

are compatible with future studies that use FDTD 

simulation. As Cole-Cole models offer a suitable 

approach for representing the frequency variation of 

the relative permittivity and conductivity of many 

biological tissues, they will be implemented. In 

particular, the 4-Cole-Cole model, which is 

considered the best fitting technique as it describes 

the four relaxation mechanisms exhibited by 

biological tissues in a frequency range of 10Hz to 100 

GHz [25]. Initially, to assign dielectric properties to 

MRI derived models, four dielectric properties curves 

for permittivity and conductivity were considered: a 

curve for skin, bone, fat and muscle tissue. In order 

to account for the dielectric differences within bone, 

fat and muscle tissue due to physiological processes, 

a dielectric variation of 5% with respect to the 

nominal property was incorporated [26]. Thus, we 

have obtained seven curves of the dielectric 

properties: one for the skin tissue, and two curves 

which limit the lower and upper bond for the bone, 

fat and muscle tissues. Although the curves cover a 

large range of frequency, we have only depicted the 

range of interest in Fig. 3. The 4-Cole-Cole 

parameters for each curve were found in [26]. 

Healthy and malignant lymph nodes were modelled 

according to the values obtained from [27] as the 4-

Cole-Cole parameters for these tissues are not 

available. The parameters used to model the LNs 

refer to the Debye model, which is a simplification of 

the 4-Cole-Cole model, hence we have used the 

Debye parameters to define the 1st pole of the 4-Cole-

Cole model and the 2nd-3rd-4th poles were assumed to 

be null. Fig. 4 depicts the four curves of the dielectric 

properties of the healthy and metastasised LNs, both 

cross-section and surface. As before, this figure only 

covers the frequency range of interest for our 

application. 

The assignment of the dielectric properties results 

in a matrix with the same dimensions as the model, in 

which each voxel contains the dielectric properties 

values, for a user specified frequency, of the 

correspondent voxel of the model. In order to obtain 

this, several steps occur: (1) For each cluster, the 

 

Fig. 3. Dielectric properties curves considered to assign the 

dielectric properties to the tissues in the cervical region, which are 
represented in the developed models and phantom generator. The 

graph on the left depicts the permittivity curves, and the graph on 

the right shows the conductivity curves, for the considered 
biological tissues. Both curves were obtained by using the 4-Cole-

Cole formulation. 
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maximum and the minimum value of the intensity of 

the MRI scan is determined, (2) To these maximum 

and minimum intensity voxels, we associate the 

superior curve and the inferior curve of the tissue, 

respectively, (3) The remaining voxels of the same 

cluster are linearly mapped to a value between the 

curves of that tissue. 

V. Discussion and Conclusions 

In this work, MRI exams of five different patients 

whose clinical data was acquired using different 

protocols, were studied. Our preference was to 

choose images with the higher resolution in all 

anatomical planes. We observed that the differences 

in the resolution of sagittal and coronal planes 

between all the exams were not as significant as the 

differences of resolutions in the axial plane. 

Therefore, T1 FL3D VIBE sequence was chosen over 

the others given its significant higher resolution in the 

axial plane. The combination of the different exams 

was also excluded since we could not infer additional 

anatomical information. 

Both Ideal and Butterworth filters resulted in 

images with several small-sized granularities, which 

compromise 3D-printed phantoms. Median filters 

were proved the best for smoothing edges and 

Gaussian filters were very effective in removing 

noise. The combination of the last two was proven the 

best approach for data pre-processing since it allowed 

the best anatomical information retrieval.  

No useful segmentation was obtained from 

DBSCAN and BIRCH algorithms. In the first case, 

the algorithm was not capable of grouping data points 

in large clusters with anatomical meaning, instead, 

only small and very dispersive clusters were found. 

Hence, we have excluded the DBSCAN algorithm for 

clustering. The results of BIRCH showed severe loss 

of anatomical information for k ≤ 4, and several 

small-sized granularities for k ≥ 5. Neither option is 

appropriate to be used in our model, thus, BIRCH 

algorithm was excluded from the methodology 

pipeline. Although providing clustering with 

anatomical meaning, HCA algorithms showed 

unreasonable computational costs - 8h per slice and 

approximately ~32 days to cluster the initial volume 

(Intel® Core™ i7-3630QM and 16.0 GB). Besides, 

between slice cluster verification was required. 

Finally, K-means clustering was the chosen 

algorithm given its speed and good clustering quality. 

In order to determine the optimal k for each 

algorithm, three different metrics were calculated. 

Results showed that good values of metrics did not 

imply a good anatomical information retrieval – this 

was observed empirically. As a result, visual 

inspection and prior anatomical knowledge were 

used to assess the segmentation quality. To finalise 

the model, skin tissue and CLNs were manually 

inserted followed by the assignment of the dielectric 

properties to the tissues. 

Future work will include the incorporation of this 

model in a realistic anthropomorphic phantom 

generator, which can be later used to develop medical 

MWI systems for screening and diagnosis CLNs. 
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