4 research outputs found

    Computable Stone spaces

    Full text link
    We investigate computable metrizability of Polish spaces up to homeomorphism. In this paper we focus on Stone spaces. We use Stone duality to construct the first known example of a computable topological Polish space not homeomorphic to any computably metrized space. In fact, in our proof we construct a right-c.e. metrized Stone space which is not homeomorphic to any computably metrized space. Then we introduce a new notion of effective categoricity for effectively compact spaces and prove that effectively categorical Stone spaces are exactly the duals of computably categorical Boolean algebras. Finally, we prove that, for a Stone space XX, the Banach space C(X;R)C(X;\mathbb{R}) has a computable presentation if, and only if, XX is homeomorphic to a computably metrized space. This gives an unexpected positive partial answer to a question recently posed by McNicholl.Comment: 16 page

    Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs

    Get PDF
    We consider zero-sum games on infinite graphs, with objectives specified as sets of infinite words over some alphabet of colors. A well-studied class of objectives is the one of ?-regular objectives, due to its relation to many natural problems in theoretical computer science. We focus on the strategy complexity question: given an objective, how much memory does each player require to play as well as possible? A classical result is that finite-memory strategies suffice for both players when the objective is ?-regular. We show a reciprocal of that statement: when both players can play optimally with a chromatic finite-memory structure (i.e., whose updates can only observe colors) in all infinite game graphs, then the objective must be ?-regular. This provides a game-theoretic characterization of ?-regular objectives, and this characterization can help in obtaining memory bounds. Moreover, a by-product of our characterization is a new one-to-two-player lift: to show that chromatic finite-memory structures suffice to play optimally in two-player games on infinite graphs, it suffices to show it in the simpler case of one-player games on infinite graphs. We illustrate our results with the family of discounted-sum objectives, for which ?-regularity depends on the value of some parameters

    Computable classifications of continuous, transducer, and regular functions

    Full text link
    We develop a systematic algorithmic framework that unites global and local classification problems for functional separable spaces and apply it to attack classification problems concerning the Banach space C[0,1] of real-valued continuous functions on the unit interval. We prove that the classification problem for continuous (binary) regular functions among almost everywhere linear, pointwise linear-time Lipshitz functions is Σ20\Sigma^0_2-complete. We show that a function f ⁣:[0,1]Rf\colon [0,1] \rightarrow \mathbb{R} is (binary) transducer if and only if it is continuous regular; interestingly, this peculiar and nontrivial fact was overlooked by experts in automata theory. As one of many consequences, our Σ20\Sigma^0_2-completeness result covers the class of transducer functions as well. Finally, we show that the Banach space C[0,1]C[0,1] of real-valued continuous functions admits an arithmetical classification among separable Banach spaces. Our proofs combine methods of abstract computability theory, automata theory, and functional analysis.Comment: Revised argument in Section 5; results unchange

    Homogeneity and Homogenizability: Hard Problems for the Logic SNP

    Full text link
    We show that the question whether a given SNP sentence defines a homogenizable class of finite structures is undecidable, even if the sentence comes from the connected Datalog fragment and uses at most binary relation symbols. As a byproduct of our proof, we also get the undecidability of some other properties for Datalog programs, e.g., whether they can be rewritten in MMSNP, whether they solve some finite-domain CSP, or whether they define the age of a reduct of a homogeneous Ramsey structure in a finite relational signature. We subsequently show that the closely related problem of testing the amalgamation property for finitely bounded classes is EXPSPACE-hard or PSPACE-hard, depending on whether the input is specified by a universal sentence or a set of forbidden substructures.Comment: 34 pages, 3 figure
    corecore