49 research outputs found

    Tensor rank is not multiplicative under the tensor product

    Get PDF
    The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an l-tensor. The tensor product of s and t is a (k + l)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection between restrictions and degenerations. A result of our study is that tensor rank is not in general multiplicative under the tensor product. This answers a question of Draisma and Saptharishi. Specifically, if a tensor t has border rank strictly smaller than its rank, then the tensor rank of t is not multiplicative under taking a sufficiently hight tensor product power. The "tensor Kronecker product" from algebraic complexity theory is related to our tensor product but different, namely it multiplies two k-tensors to get a k-tensor. Nonmultiplicativity of the tensor Kronecker product has been known since the work of Strassen. It remains an open question whether border rank and asymptotic rank are multiplicative under the tensor product. Interestingly, lower bounds on border rank obtained from generalised flattenings (including Young flattenings) multiply under the tensor product

    Tensor rank : some lower and upper bounds

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 59-61).The results of Strassen [25] and Raz [19] show that good enough tensor rank lower bounds have implications for algebraic circuit/formula lower bounds. We explore tensor rank lower and upper bounds, focusing on explicit tensors. For odd d, we construct field-independent explicit 0/1 tensors T : [n]d --> F with rank at least 2n td/ 2j + n - [theta](d Ig n). This improves the lower-order terms in known lower bounds for any odd d >/- 3. We also explore a generalization of permutation matrices, which we denote permutation tensors. We show, by applying known counting lower bounds. that there exist order-3 permutation tensors with super-linear rank as well as order-d permutation tensors with high rank. We also explore a natural class of permutation tensors, which we call group tensors. For any group G, we define the group tensor TdG : Gd --> F, by TdG(g1 .....gd) = 1 iff g1 ...gd = 1G. We give two upper bounds for the rank of these tensors. The first uses representation theory and works over "large" fields F, showing (among other things) that rankF(TdG) F that have tensor rank at most dn but have monotone tensor rank exactly nd-1 . This is a nearly optimal separation.by Michael Andrew Forbes.S.M

    Optimization techniques for small matrix multiplication

    Full text link

    On the complexity of matrix multiplication

    Get PDF
    The evaluation of the product of two matrices can be very computationally expensive. The multiplication of two n×n matrices, using the “default” algorithm can take O(n3) field operations in the underlying field k. It is therefore desirable to find algorithms to reduce the “cost” of multiplying two matrices together. If multiplication of two n × n matrices can be obtained in O(nα) operations, the least upper bound for α is called the exponent of matrix multiplication and is denoted by ω. A bound for ω < 3 was found in 1968 by Strassen in his algorithm. He found that multiplication of two 2 × 2 matrices could be obtained in 7 multiplications in the underlying field k, as opposed to the 8 required to do the same multiplication previously. Using recursion, we are able to show that ω ≤ log2 7 < 2.8074, which is better than the value of 3 we had previously. In chapter 1, we look at various techniques that have been found for reducing ω. These include Pan’s Trilinear Aggregation, Bini’s Border Rank and Sch¨onhage’s Asymptotic Sum inequality. In chapter 2, we look in detail at the current best estimate of ω found by Coppersmith and Winograd. We also propose a different method of evaluating the “value” of trilinear forms. Chapters 3 and 4 build on the work of Coppersmith and Winograd and examine how cubing and raising to the fourth power of Coppersmith and Winograd’s “complicated” algorithm affect the value of ω, if at all. Finally, in chapter 5, we look at the Group-Theoretic context proposed by Cohn and Umans, and see how we can derive some of Coppersmith and Winograd’s values using this method, as well as showing how working in this context can perhaps be more conducive to showing ω = 2

    Principal Component Analysis

    Get PDF
    This book is aimed at raising awareness of researchers, scientists and engineers on the benefits of Principal Component Analysis (PCA) in data analysis. In this book, the reader will find the applications of PCA in fields such as taxonomy, biology, pharmacy,finance, agriculture, ecology, health and architecture
    corecore