
On the Complexity of Matrix

Multiplication

Andrew James Stothers

Doctor of Philosophy
University of Edinburgh

2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429705423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In principio erat Verbum,
et Verbum erat apud Deum,

et Deus erat Verbum.
Hoc erat in principio apud Deum.

Omnia per ipsum facta sunt,
et sine ipso factum est nihil, quod factum est;

in ipso vita erat,
et vita erat lux hominum,
et lux in tenebris lucet

et tenebrae eam non comprehenderunt.

3

Declaration

I declare that this thesis was composed by myself and that the work contained therein
is my own, except where explicitly stated otherwise in the text.

(Andrew James Stothers)

4

This thesis is dedicated to my parents, Jim and Lynda.

5

Abstract

The evaluation of the product of two matrices can be very computationally expensive.
The multiplication of two n×n matrices, using the “default” algorithm can take O(n3)
field operations in the underlying field k. It is therefore desirable to find algorithms to
reduce the “cost” of multiplying two matrices together. If multiplication of two n× n
matrices can be obtained in O(nα) operations, the least upper bound for α is called
the exponent of matrix multiplication and is denoted by ω.

A bound for ω < 3 was found in 1968 by Strassen in his algorithm. He found
that multiplication of two 2× 2 matrices could be obtained in 7 multiplications in the
underlying field k, as opposed to the 8 required to do the same multiplication previously.
Using recursion, we are able to show that ω ≤ log2 7 < 2.8074, which is better than the
value of 3 we had previously.

In chapter 1, we look at various techniques that have been found for reducing
ω. These include Pan’s Trilinear Aggregation, Bini’s Border Rank and Schönhage’s
Asymptotic Sum inequality.

In chapter 2, we look in detail at the current best estimate of ω found by Copper-
smith and Winograd. We also propose a different method of evaluating the “value” of
trilinear forms.

Chapters 3 and 4 build on the work of Coppersmith and Winograd and examine how
cubing and raising to the fourth power of Coppersmith and Winograd’s “complicated”
algorithm affect the value of ω, if at all.

Finally, in chapter 5, we look at the Group-Theoretic context proposed by Cohn
and Umans, and see how we can derive some of Coppersmith and Winograd’s values
using this method, as well as showing how working in this context can perhaps be more
conducive to showing ω = 2.

6

Acknowledgements

The most gratitude goes to my supervisor, Sandy Davie, who not only introduced me
to the topic, but also helped me understand it and encouraged me when it almost
became too much. He comes highly recommended as a supervisor. I would also like to
mention Istvan Gyongy, my second supervisor for his encouragement and Jim Wright
for encouraging me to take this on after my Undergraduate degree.

I would also like to thank the secretarial staff, who were a pleasure to work with.
I am indebted to the Engineering and Physical Science Research Council and to the

School of Mathematics for the generous financial support.
I would like to say thanks to my PG colleagues for the irreverent (and often irrel-

evant) discussions at lunchtime and elsewhere. I feel blessed that I am able to work
with such great people.

Outside the department, I would like to thank James Whiteford and John Walker
for the encouraging chat (and occasional Pool) at lunchtimes.

My heartfelt thanks go to the people of St Catherine’s Argyle Church of Scotland
for supporting me prayerfully (and often for feeding me!), especially to those in the 20s
and 30s Group.

God has blessed me with such stong Christian friends, and I am eternally thankful
to Him for this.

I would like to name and thank my flatmates (current and old) James, Edward,
Alasdair, Jaideep, Andrew, William, Luke, Douglas, and Mark, and my good friends
Emma, David, Justin, Steve, Laura, Catherine, Tim, AnnaLauren, Colin, Kirsty and
Philip for praying, listening to me, and putting up with my mood swings.

7

Contents

Abstract 6

Acknowledgements 7

1 Introduction and Background 10
1.1 Introduction . 10
1.2 History of the problem . 10
1.3 The main problem . 11
1.4 Strassen’s Algorithm . 13
1.5 The rank of a Bilinear Map . 14

1.5.1 Properties of the Rank . 15
1.6 Trilinear Aggregation . 19
1.7 Border Rank and Degeneration . 22

2 Coppersmith and Winograd’s Algorithms 31
2.1 Direct Sum Decomposition . 31
2.2 C-tensors . 31
2.3 Strassen’s Construction . 33
2.4 Coppersmith and Winograd’s Algorithms 34

2.4.1 Salem-Spencer sets . 34
2.4.2 Coppersmith and Winograd’s “Easy” algorithm 40

2.5 More Complicated Algorithms . 42
2.6 Coupling the wi . 45
2.7 Values and C-tensors . 54

3 Extending Coppersmith and Winograd to the Third Tensor Power 57
3.1 Trilinear Forms . 57
3.2 Raising the Algorithm to the Third Tensor Power 60
3.3 Finding the Values of the Trilinear Forms 65

4 Extending Coppersmith and Winograd to the Fourth Tensor Power 71
4.1 Trilinear forms . 71
4.2 Raising the Algorithm to the Fourth Tensor Power 77
4.3 Finding the Values of the Trilinear Forms 82

5 Group-Theoretic Methods for Determining ω 90
5.1 Background to Representation Theory 90
5.2 The Triple Product Property . 93

5.2.1 Using USPs to Generate Subsets 99
5.3 Using Group Theory to show ω = 2 . 102

8

5.4 Relationship between ω and Group Algebra multiplication 107

6 Conclusions and Further Work 108
6.1 Conclusions . 108
6.2 Possible Further Work . 108

A Pan’s Trilinear Aggregation Algorithm 110

B Optimisation Methods in Chapters 3 and 4 113
B.1 Optimisation for Chapter 3 . 113
B.2 Optimisation for Chapter 4 . 114

9

Chapter 1

Introduction and Background

1.1 Introduction

This thesis aims to look at the concept of Matrix Multiplication. We consider that
the number of operations over a field k required to multiply two n × n matrices is
O(nω). We look at the ways in which ω may be reduced, leading to faster algorithms
to multiply two matrices of this type together.

In the first chapter, we look at how this problem has been approached historically:
we look at the techniques that have been used and how bounds for ω have been affected
by them.

In the second chapter, we look in detail at the current upper bound for ω found by
Coppersmith and Winograd [12], and how it was obtained.

Chapters 3 and 4 take the algorithm with which Coppersmith and Winograd get
their record bound and raise it to the third and fourth powers respectively. We explain
why these algorithms are more complex and investigate how they change ω.

In chapter 5, we look at Cohn and Umans new Group-Theoretic framework for
matrix multiplication, introduced in [9], placing some of Coppersmith and Winograd’s
discoveries in this context and explaining how proving some combinatorical conjectures
can show that ω = 2.

1.2 History of the problem

in 1968, Winograd [28] made the discovery that, by using a different method of cal-
culating the inner product, one could find the product of two n × n matrices, which,
while using a similar number of overall operations, shifted the emphasis more on addi-
tion than on multiplication. This was important as addition was computationally less
demanding than multiplication.

The same year, Strassen [24] provided an explicit algorithm which could multiply
two 2n × 2n matrices in less than 6.7n operations, where using Winograd or the trivial
algorithm, we would have had approximately 8n operations. Using this, it is shown
that ω ≤ log2(7) < 2.81.

In 1978, Pan [18] (also in [19],[20]) found explicit algorithms to further reduce ω
by means of the technique of trilinear aggregation. This technique uses the fact that
computing the trace of the product of three n×n matrices is equivalent to the problem
of multiplying two n × n matrices (in terms of the total number of multiplications).
By defining a function on the indices of the entries in the matrices A, B and C to
be multiplied, we may define an aggregate to do all the required multiplications, plus

10

some extra terms. We unite terms to remove these extra terms in as few calculations
as possible. Using this technique, Pan shows that we can multiply two 70× 70 matrix
multiplications in 143640 operations. This gives ω ≤ log70 143640 < 2.79512, and
further, we can perform a 46 × 46 matrix multiplication in 41952 operations, giving
ω ≤ 2.78017.

In 1980, Bini et al. [3] showed that the number of operations required to perform
a matrix multiplication could be reduced by considering approximate algorithms. If
we change our underlying field k to be the field of polynomials of λ, a variable which,
if k is R can be assumed to be just a small number (allowing negative powers of λ)
with coefficients in k, we may obtain, using fewer operations, an approximation of
the required matrix multiplication (in the sense that each entry will be “out” by a
power of λ). Using this method (which is similar to trilinear aggregation), they obtain
ω ≤ 2.7799.

In 1981, Schönhage [23] showed that an algorithm which could approximately com-
pute multiple independent matrix multiplications could be used to further reduce ω.
This is the result of his asymptotic sum inequality- using it, he shows that ω ≤ 2.5479.

Using similar techniques, Coppersmith and Winograd [11] showed that one can
take an algorithm (of a certain type) that can perform multiple disjoint matrix multi-
plications and square it. The resulting algorithm will be capable of multiplying larger
matrices than expected. This method gives ω ≤ 2.4955480.

In 1986 Strassen [25],[26] showed that one could start with an algorithm that was
not a matrix product: we have a series of blocks, where the blocks can themselves
be seen as elements of a matrix multiplication, and the blocks themselves are matrix
multiplications. Raising this original algorithm to a large power, we may set some
blocks to zero to obtain a large number of independent matrix products: we then use
Schönhage to find a value for ω. This method yields ω ≤ 2.4785.

In 1987, [12]Coppersmith and Winograd used this method to great effect to provide
the current record for ω. They start with an algorithm, raise it to the Nth power and
show that setting certain variables as being zero will lead to the algorithm calculating
a large number of independent matrix products of a certain size: using Schönhage, we
get that ω ≤ 2.376.

In 2005, Cohn and Umans [9],[10] placed the matrix multiplication in a group the-
oretic context: while they were unable to find new bounds for ω, the group-theoretic
context provides new conjectures, which, if proved, will show that ω = 2.

A related problem is determining the rank of Matrix Multiplication. The rank is
the total number of non-scalar multiplications required to evaluate a Matrix product
(including scalar multiplications this becomes the Multiplicative Complexity).

1.3 The main problem

Matrices have long been the subject of much study by many Mathematicians. However,
the rise of computers in the late 20th century has led to new problems, the main one
being the problem of Matrix Multiplication.

Computers are required to do many Matrix Multiplications at a time, and hence it
is desirable to find algorithms to reduce the number of steps required to multiply two
matrices together. Until 1968, we had only the Trivial Algorithm to multiply matrices
together. This is as follows:

Algorithm 1. If we have two n× n matrices, n ∈ N, A and B, with entries in a field

11

k, such that

A =

 a1,1 a1,2 . . .
a2,1 a2,2 . . .
...

...
. . .

 and B =

 b1,1 b1,2 . . .
b2,1 b2,2 . . .
...

...
. . .

 ,

then

[AB]p,q =
n∑

i=1

ap,ibi,q

where multiplication is defined as in the field k.

We see that this algorithm requires 2n3 − n2 operations in k to multiply two n× n
matrices, of which n3 are multiplications and n3 − n2 are additions.

However in 1968, Winograd [28] showed that one could take the inner product of
two vectors using fewer multiplications, but with more additions.

We consider finding the inner product of two vectors (x1, .., xn) and (y1, .., yn). Set

ξ =
bn/2c∑
j=1

x2j−1x2j

η =
bn/2c∑
i=1

y2j−1y2j .

Then the inner product is given, for even n, by

bn/2c∑
j=1

(x2j−1 + y2j)(x2j + y2j−1)− ξ − η

and for odd n by

bn/2c∑
j=1

(x2j−1 + y2j)(x2j + y2j−1)− ξ − η + xnyn.

Hence the total number of multiplications required is

2bn/2c+ b(n+ 1)/2c

and the number of additions required is

2(bn/2c − 1) + (n+ bn/2c+ 1).

Since matrix multiplication can be regarded as taking multiple inner products, we get
that the total number of multiplications required to multiply an n×n matrix by another
matrix of the same size is about n3/2 and the number of additions required is about
(3/2)n3, improving slightly on the trivial algorithm. Denote by Mk(n) the total number
of operations required by a bilinear algorithm to multiply two n× n matrices over k.

Definition 1. The exponent of matrix multiplication over a field k is defined as

ω(k) := inf{τ ∈ R|Mk(n) = O(nτ)}.

12

We see from the trivial algorithm that ω(k) has an upper limit of 3. Since there
must be an output of n2 entries, there cannot be any fewer operations than this in
total matrix multiplication, so hence ω(k) ∈ [2, 3]. We see that the total number of
operations in Winograd’s algorithm implies that the least upper bound for ω is 3.
However, in the same year, Strassen managed to find an improvement for ω.

1.4 Strassen’s Algorithm

In [24], Strassen demonstrated via a recursive method that ω ≤ log27 = 2.807.... The
improvements arise because it was found to be possible to multiply two 2× 2 matrices
in just 7 multiplications as opposed to 8 using the trivial algorithm.

We suppose we want to multiply two 2 × 2 matrices over a field k, A and B. The
algorithm then works as follows:

Algorithm 2. First we write

A =
(
a1,1 a1,2

a2,1 a2,2

)
,B =

(
b1,1 b1,2

b2,1 b2,2

)
,AB =

(
c1,1 c1,2

c2,1 c2,2

)
.

Compute

• I = (a1,1 + a2,2)(b1,1 + b2,2),

• II = (a2,1 + a2,2)b1,1,

• III = a1,1(b1,2 − b2,2),

• IV = a2,2(−b1,1 + b2,1),

• V = (a1,1 + a1,2)b2,2

• V I = (−a1,1 + a2,1)(b1,1 + b1,2)

• V II = (a1,2 − a2,2)(b2,1 + b2,2)
Then we have

• c1,1 = I + IV − V + V II

• c2,1 = II + IV

• c1,2 = III + V

• c2,2 = I + III − II + V I.

It is easy to check that the expressions obtained here match the ones one would have
obtained using the trivial algorithm. Now, this algorithm becomes more powerful when
we make use of recursion. We will show later on how we reduce the matrix exponent
using this algorithm, but first some important concepts need to be defined.

13

1.5 The rank of a Bilinear Map

We now turn to the more general field of bilinear maps to define the rank of matrix
multiplication.

Definition 2. Let U, V,W be vector spaces over a field k. A Bilinear map is a map
φ : U × V →W satisfying

φ(λ11u1 + λ12u2, λ21v1 + λ22v2) =
∑
i,j≤2

λi,jφ(ui, vj)

for all λij ∈ K,ui ∈ U, vj ∈ V .

From this definition of bilinear maps, it is easy to see that Matrix Multiplication is
a bilinear map.

Definition 3. Let φ : U × V →W be a bilinear map over a field k. For i ∈ [1, .., r] let
fi ∈ U∗, gi ∈ V ∗, wi ∈W be such that

φ(u, v) =
r∑

i=1

fi(u)gi(v)wi

for all u ∈ U , v ∈ V . Then (f1, g1, w1; ...; fr, gr, wr) is called a bilinear computation
(algorithm) of length r for φ.

Definition 4. The length of a shortest bilinear computation for φ is called the bilinear
complexity or the rank of φ and is denoted by R(φ).

We can re-write Strassen’s algorithm in the terms of Definition 3.
Set

• f1 = A11 +A22, g1 = B11 +B22

• f2 = A21 +A22, g2 = B11

• f3 = A11, g3 = B12 −B22

• f4 = A22, g4 = −B11 +B21

• f5 = A11 +A12, g5 = B22

• f6 = −A11 +A21, g6 = B11 +B12

• f7 = A12 −A22, g7 = B21 +B22

w1 =
(

1 0
0 1

)
,w2 =

(
0 0
0 −1

)
,w3 =

(
0 0
1 1

)
,w4 =

(
1 1
0 0

)
,

w5 =
(
−1 0
−1 0

)
,w6 =

(
0 0
0 1

)
,w7 =

(
1 0
0 0

)
.

We thus see that the rank of 2× 2 by 2× 2 matrix multiplication is at most 7. Were
we to do the same thing for the trivial algorithm, we would see that the rank was 8.
We denote the problem of multiplying a m× n matrix by a n× p matrix by 〈m,n, p〉,
and we can thus say that

R(〈2, 2, 2〉) ≤ 7.

14

Waksman [27] also showed this rank was possible by modifying Winograd’s algorithm
slightly.
This concept of rank is important as it is a measure of how efficient an algorithm is.
We explain some of its more important properties.

1.5.1 Properties of the Rank

First, we show that the rank of a concise bilinear map is greater than
max(dim(U), dim(V), dim(W)).

Definition 5. A bilinear map is concise if and only if the left kernel
{u ∈ u|φ(u, v) = 0 ∀ v ∈ V } = 0 and the right kernel {v ∈ V |φ(u, v) = 0 ∀ u ∈ U} = 0
and if the span of φ(U, V) = W .

From this definition it is easy to show that matrix products are concise.

Lemma 1. The rank of a concise bilinear map is greater than or equal to
max(dim(U), dim(V), dim(W)).

Proof. If the rank of a map is less than the dimension of U then the fi do not form a
basis for U∗. Hence, one can always find a non-zero u ∈ U such that fi(u) = 0 for all
fi, and hence φ will have a non-zero kernel, contradiciting conciseness.
An analogous argument holds for V .
If the rank of the bilinear map is less than the dimension of W , then the dimension of
the image of φ(U, V) will be less than the dimension of the space W , contradicting
conciseness.
Therefore, the assertion must hold.

We work with rank (rather than the total number of operations) as it is better
behaved than the total number of operations. From proposition 15.1 of [8], we may
actually define ω in terms of the rank:

Proposition 1. For every field k we have

ω(k) = inf{τ ∈ R|R(〈h, h, h〉) = O(hτ)}.

Proof. (sketch) Using a bilinear algorithm, it may be shown that the total number of
operations Mk(〈mi+1,mi+1,mi+1〉) required to multiply two mi+1 ×mi+1 is

rMk(〈mi,mi,mi〉) + cm2i

for a c which depends on m and r. Solving the recurrence relation yields

Mk(〈mi,mi,mi〉) ≤ αri + βm2i

where α = M(1) +m2c/(r −m2) and β = −m2c/(r −m2)
which yields Mk(〈mi,mi,mi〉) = O(ri). Using manipulation of logs and the definition
of ω, the statement follows.

The above proposition ensures that one can find a bound for the total number of
operations by considering the rank alone.
Other important properties are:
The rank is invariant when permuting the sizes of the matrices, i.e.

R(〈e, h, l〉) = R(〈h, l, e〉) = R(〈l, e, h〉). (1.1)

15

The proof of this requires us to introduce a different notation.

Proposition 2. If U , V , W are vector spaces over a field k, there exists a unique
isomorphism U∗ ⊗ V ∗ ⊗W → Bil(U, V ;W) which sends f ⊗ g⊗w to the bilinear map
(u, v) 7→ f(u)g(v)w.

In other words, instead of an explicit map, we have an equivalent tensor in
U∗ ⊗ V ∗ ⊗W .

Proof. There exists a unique homomorphism σ : U∗ ⊗ V ∗ ⊗W → Bil(U, V ;W) which
sends (f, g, w) to the map (u, v) 7→ f(u)g(v)w. Surjectivity is shown by considering
the bases of U, V,W .

This unique tensor is the structural tensor of φ.
The rank of the structural tensor is the minimum number of triads ui ⊗ vi ⊗ wi such
that t can be represented as

t =
r∑

i=1

ui ⊗ vi ⊗ wi.

Proof. of 1.4. From the tensorial notation, it is clear that the rank of t is invariant
under permutation of the coordinates, hence the rank of φ is also invariant under
permutation.

Thus the sum of the triads of 〈2, 2, 2〉 is

(a1,1b1,1 + a1,2b2,1, a1,1b1,2 + a1,2b2,2, a2,1b1,1 + a2,2b2,1, a2,1b1,2 + a2,2b2,2)

with triads

(1, 0, 0, 1)⊗ (1, 0, 0, 1)⊗ (1, 0, 0, 1)
(0, 0, 1, 1)⊗ (1, 0, 0, 0)⊗ (0, 0, 0,−1)
(1, 0, 0, 0)⊗ (0, 1, 0,−1)⊗ (0, 0, 1, 1)
(0, 0, 0, 1)⊗ (−1, 0, 1, 0)⊗ (1, 1, 0, 0)

(1, 1, 0, 0)⊗ (0, 0, 0, 1)⊗ (−1,−1, 0, 0)
(−1, 0, 1, 0)⊗ (1, 1, 0, 0)⊗ (0, 0, 0, 1)
(0, 1, 0,−1)⊗ (0, 0, 1, 1)⊗ (1, 0, 0, 0).

If U has a basis {ui}, V has a basis {vj} and W a basis {el}, then there exist tijl ∈ k
such that for all i and j we have

φ(ui, vj) =
dim(W)∑

l=1

tijlel.

The entries tijk are called the coordinate tensor of φ. We will revisit this notion in the
next chapter.

R(φ1 ⊕ φ2) ≤ R(φ1) +R(φ2). (1.2)

We prove this for general tensors t1, t2 of bilinear maps φ1, φ2.

16

Proof. Let φ1 : U1 × V1 →W1 and φ2 : U2 × V2 →W2 be bilinear maps.
We consider their associated tensors

t1 =
r∑

i=1

u1i ⊗ v1i ⊗ w1i

and

t2 =
r′∑

i=1

u2i ⊗ v2i ⊗ w2i.

We consider the tensor t1 ⊕ t2. The triads of this tensor will be in a space isomorphic
to

(U1 ⊕ U2)⊗ (V1 ⊕ V2)⊗ (W1 ⊕W2).

Let 0U1 be the zero element of the space U1 (and analogously for other spaces). We
then consider the sum

r∑
i=i

u1i ⊕ 0U2 ⊗ v1i ⊕ 0V2 ⊗ w1i ⊕ 0W2 +
r′∑

j=i

0U1 ⊕ u2j ⊗ 0V1 ⊕ v2j ⊗ 0W1 ⊕ w2j .

This is isomorphic to t1 ⊕ t2 and hence the rank of φ1 ⊕ φ2 is less than or equal to
r + r′.

R(φ1 ⊗ φ2) ≤ R(φ1)R(φ2). (1.3)

Proof. We take t1 and t2 as previously. We consider the tensor product of

r∑
i=1

u1i ⊗ v1i ⊗ w1i

⊗ r′∑
j=1

u2j ⊗ v2j ⊗ w2j

'
r∑

i=1

r′∑
j=1

u1i ⊗ u2j ⊗ v1i ⊗ v2j ⊗ w1i ⊗ w2j .

This shows that the rank of t1 ⊗ t2 is at most r × r′.

If e ≤ e′, h ≤ h′,and l ≤ l′ are all positive integers, then

R(〈e, h, l〉) ≤ R(〈e′, h′, l′〉). (1.4)

Proof. Since e ≤ e′, h ≤ h′,and l ≤ l′, we may embed the smaller bilinear map into
the larger one by padding the functions with zeroes.

Using all these facts, we can now finally show that Strassen’s algorithm is indeed
asymptotically faster than the trivial one.
Using equation 1.4 we have that

R(〈h, h, h〉) ≤ R(〈2dlog2 he, 2dlog2 he, 2dlog2 he〉).

17

By equation 1.3 we get

R(〈2dlog2 he, 2dlog2 he, 2dlog2 he〉) ≤ R(〈2, 2, 2〉)dlog2 he,

and since we already stated that R(〈2, 2, 2〉) ≤ 7 we have that

R(〈h, h, h〉) ≤ 7dlog2 he.

Some manipulation of logs yields that

R(〈h, h, h〉) ≤ 7.hlog2 7

and hence, by proposition 1, ω ≤ log27 < 2.81 as required.
Implicit in this proof is the concept of recursion.
We take the matrices to be multiplied and pad them out with zeroes to make them of
the form 2k × 2k for an appropriately sized k ∈ N. We then divide the matrix up as
follows: (

A B
C D

)
where A,B,C,D are 2k−1 × 2k−1 matrices.We then treat the resulting matrices as
2× 2 matrices, with their elements being themselves 2k−1 × 2k−1 matrices. We then
apply the algorithm: we can multiply 2 2× 2 matrices using 7 multiplications. Each
of these consists of multiplication of a 2k−1 × 2k−1 by 2k−1 × 2k−1 matrix, which can
then be done in 7 multiplications.
Using an inductive argument, it can by shown that multiplication of two 2k × 2k

matrices can be done using 7k multiplications. Thus the rank of multiplying two
2k × 2k matrices together is ≤ 7k. Using these, we still have that ω ≤ 2.81 for all h.
By considering properties of the rank, we may show that Strassen’s algorithm is, in
fact, an optimal bilinear computation in the sense that there is no algorithm of rank
less than 7 which can compute 〈2, 2, 2〉.
It was shown by Brocket and Dobkin [7] that

R(〈n, n, n〉) ≥ 2n2 − 1

therefore, as shown by Hopcroft and Kerr [14], and Winograd [29], the rank of
〈2, 2, 2〉 ≥ 7 and so we see that Strassen’s algorithm is optimal.
In fact, Lafon and Winograd [16] went further by showing that the multiplicative
complexity (including scalar multiplications) of 〈m,n, p〉 matrix multiplications was
greater than or equal to

(m+ p)n+ p− n− 1.

A corollary for this is that multiplicative complexity for symmetric matrix
multiplications is equal to the rank. The current lower bound for the rank of 〈n, n, n〉
matrix multiplication over arbitrary fields, as shown by Bläser [4],[5], is

5
2
n2 − 3n.

Bläser [6] later proves a lower bound of 2mn+ 2n−m− 2 for the rank of 〈n,m, n〉
matrix multiplication, for m,n ≥ 3. This means that the lowest rank we can achieve
for 〈3, 3, 3〉 is 19; however no algorithm for exact rank less than 23 has been found.
It was shown by de Groote [13] that Strassen’s algorithm is unique in the sense that

18

every “optimal” algorithm for 〈2, 2, 2〉 can be shown to be equivalent to it.
We also obtain for the above arguments for general matrix products of size 〈e, h, l〉,
〈h, l, e〉 and 〈l, e, h〉 that, if the rank of all these is equal to r:

R(〈ehl, ehl, ehl〉) = R(〈e, h, l〉 ⊗ 〈h, l, e〉 ⊗ 〈l, e, h〉) ≤ r3

which implies that

(ehl)ω/3 ≤ r. (1.5)

1.6 Trilinear Aggregation

Until Pan in [18], [19] came upon this new method , no-one was able to improve on
Strassen’s algorithm. He found that complexity of matrix multiplication could be
reduced further by remarking that the problem of matrix multiplication was
equivalent (in the sense that they share the same rank) to finding the trace of the
product of three matrices A,B, C of sizes m× n, n× p and p×m respectively
(section 3 of [18]).

Proof. If A is an m× n, B a n× p and C a p×m matrix respectively, then it is
shown that the trace of the product ABC is given by

m∑
i=1

n∑
j=1

p∑
k=1

AijBjkCki.

If we set Cki = 1 and the other entries of C to 0, we find
∑n

j=1AijBjk, that is ABik.
Hence the problem of multiplication of two matrices is contained in this problem of
finding the trace of the product of three matrices: hence the number of
multiplications required to find the matrix product is less than or equal to the
number of multiplications required to find this trace.
To prove this the other way, if the rank of matrix multiplication of two matrices A
and B is r, we have that the product ABC may be written, for some
fi ∈ km×n∗, gi ∈ km×p∗, wi ∈ kp×m:

r∑
i=1

fi(A)gi(B)wiC.

We seek to find the trace of this product. However

Trace
r∑

i=1

fi(A)gi(B)wiC =
r∑

i=1

fi(A)gi(B)Trace(wiC).

The function Trace(wiC) is in the dual of kp×m, so the overall problem of finding the
trace of the product of three matrices is a trilinear map of the form

r∑
i=1

fi(A)gi(B)hi(C)

19

where the hi is found by taking the trace of each product wiC, that is

hi =
m∑

u=1

p∑
v=1

wiuvCvu.

Thus the rank of the two problems is equal.

The trace of this matrix is found by computing

m∑
i=1

n∑
j=1

p∑
k=1

aijbjkcki. (1.6)

This is a Trilinear Map φ : U × V ×W → K. The rank r is the minimal number such
that, for fi ∈ U∗, gi ∈ V ∗, hi ∈W ∗:

φ(u, v, w) =
r∑

i=0

fi(A)gi(B)hi(C).

We use this to present the concept of Trilinear Aggregation. This method is not used
for the main results of this thesis: however it is included because of its influence on
later methods (notably the use of approximation algorithms).
We begin by recalling the trivial algorithm for finding the trace of the product of
three matrices, that is ∑

i,j,k

ai,jbj,kck,i.

We call each term in this sum desirable. Now, we consider the product

(ai,j + ak1,i1)(bj,k + bi1,j1)(ck,i + cj1,k1)

which we find equals

ai,jbj,kck,i + ak1,i1bi1,j1cj1,k1 +
+ak1,i1bi1,j1ck,i + ak1,i1bj,kck,i +
+ai,jbi1,j1cj1,k1 + ai,jbi1,j1ck,i +
+ak1,i1bj,kcj1,k1 + ai,jbj,kcj1,k1 .

Now, the i1, j1, k1 are all functions of i, j, k respectively: we may choose i, j, k and
i1, j1, k1 such that all possible combinations of i, j and k in the required range are
obtained.
A simple example, as shown in algorithm 1 of [18], is to set our initial i, j, k as being
all possible combinations of i, j, k such that i+ j + k is even, and to set
i1 = i+ 1, j1 = j + 1, k1 = k + 1.
The following table shows that∑

i+j+k is even

(ai,jbj,kck,i + ak1,i1bi1,j1cj1,k1) =
∑
i,j,k

ai,jbj,kck,i :

• i is even, j is even, k is even → i1 is odd, j1, is odd, k1 is odd

• i is even, j is odd, k is odd → i1 is odd, j1, is even, k1 is even

20

• i is odd, j is odd, k is even → i1 is even, j1, is even, k1 is odd

• i is odd, j is even, k is odd → i1 is even, j1, is odd, k1 is even.

Thus, the desired result can be obtained using n3/2 scalar multiplications: it remains
to find a way of removing the “undesirable” terms in as few operations as possible.
We find that we can acheive this by grouping similar “undesirable” terms together.
We notice that in our above expansion, we have that both entries in the second row
share their a and c terms. We can therefore rewrite

ak1,i1bi1,j1ck,i + ak1,i1bj,kck,i = ak1,i1(bi1,j1 + bj,k)ck,i.

Thus, if we were to sum this expression over all i, j, k (as we will do shortly), we get∑
i,j,k

(ak1,i1bi1,j1ck,i + ak1,i1bj,kck,i) =
∑
i,k

ak1,i1ck,i

∑
j

(bi1,j1 + bj,k).

We see that this requires only n2 multiplications over the underlying field.
We obtain similar identities for the third and fourth rows- thus we can finally obtain
our algorithm. ∑

i,j,k:i+j+k=0 mod 2

(ai,j + ak1,i1)(bj,k + bi1,j1)(ck,i + cj1,k1) −

∑
i,k

ak1,i1

∑
j:i+j+k=0 mod 2

(bi1,j1 + bj,k)ck,i −

∑
i,j

ai,jbi1,j1

∑
k:i+j+k=0 mod 2

(ck,i + cj1,k1) −

∑
k,j

∑
i:i+j+k=0 mod 2

(ai,j + ak1,i1)bj,kcj1,k1

=
∑
i,j,k

ai,jbj,kck,i.

The total number of field multiplications is n3/2 + 3n2, if we were to find the trace of
the product of three n× n matrices. Using the previous theorem, we get that, on
setting n = 34, this gives ω ≤ 2.84953. Clearly, this algorithm does not beat
Strassen’s, but the techniques used here are used by Pan later on to derive more
significant improvements.
We call terms such as (ai,j + ak1,i1)(bj,k + bi1,j1)(ck,i + cj1,k1) aggregates and the action
of collecting together “undesirable” terms uniting.
We need not sum over all i, j, k such that i+ j + k is even: indeed Pan uses a more
complex subset of {0, .., n− 1}3 to obtain his best result using this method. The
algorithm he finds is too long to reproduce here: it can be found in the appendices.
Pan assumes that we intend to multiply to n× n matrices, where n = 2s is even.
Summing over the set

S1 = {(i, j, k), 0 ≤ 1 ≤ j < k ≤ s− 1} ∪ {(i, j, k), 0 ≤ k < j ≤ i ≤ s− 1}

we can obtain the trace of the product of three matrices ABC in n3−4n
3 + 6n2

operations. Setting n = 70, we get that ω ≤ log70 143640 = 2.79512, less than the
Strassen algorithm.

21

Related to this trilinear aggregating is the idea of degeneration: though it mainly
relies on less complex algorithms and does not give exact answers. Pan ([21] , section
10) speculates that it would take a different approach as to the construction of
algorithms to find an exact algorithm (that is, one that does not rely on an
approximation) which will yield ω << 2.5.

1.7 Border Rank and Degeneration

In 1979, Bini et al. [3] discovered that one could obtain algorithms which required
fewer scalar multiplications to compute, at the cost of being only an (arbitrarily close)
approximation of the “correct” result. Thus, the concept of Border Rank was
introduced.
We start with the trilinear form

r∑
i=1

fiλ(A)giλ(B)hiλ(C) :

however, instead of the constants in the functions fi, gi, hi being in the field k, we set
them as being in the extension k[λ].
Here, k[λ] is the set of all polynomials in λ (but we may also add negative powers of
λ). The choice of λ will depend on what field we work in, but if k = R, we may
simply take λ as being a very small number. We judiciously choose our functions
fiλ, giλ, hiλ so that

r∑
i=1

fiλ(A)giλ(B)hiλ(C) = Trace(ABC) + λG(λ)

where G(λ) is a polynomial in λ. As an example of this, we look at example 2.3 of
[23]: we look at the trilinear version (as opposed to the bilinear one contained
therein). This provides a method of finding an approximation of multiplication of two
3× 3 matrices. It is known that there exists an exact algorithm which has rank 23
(see [15]), but this method can find an approximate one in 21 multiplications:

22

F1(λ) = (a11 + λ2a12)(λ2b11 + b21)c11
+ (a21 + λ2a22)(λ2b12 + b22)c22
+ (a31 + λ2a32)(λ2b13 + b23)c33
− a11(b21 + b31)(c11 + c12 + c13)
− a21(b22 + b32)(c21 + c22 + c23)
− a31(b23 + b33)(c31 + c32 + c33)
+ (a11 + λ2a22)(b21 − λb12)c12
+ (a21 + λ2a12)(b22 − λb11)c21
+ (a11 + λ2a32)(b21 − λb13)c13
+ (a31 + λ2a12)(b23 − λb11)c31
+ (a21 + λ2a32)(b22 − λb13)c23
+ (a31 + λ2a22)(b23 − λb12)c32
+ (a11 + λ2a23)(b31 + λb12)(c12 + λc21)
+ (a21 + λ2a13)(b32 + λb11)(c21 + λc12)
+ (a11 + λ2a33)(b31 + λb13)(c13 + λc31)
+ (a31 + λ2a13)(b33 + λb12)(c31 + λc13)
+ (a21 + λ2a33)(b32 + λb13)(c23 + λc32)
+ (a31 + λ2a23)(b33 + λb12)(c32 + λc23)
+ (a11 + λ2a13)b31(c11 − λc31 − λc21)
+ (a21 + λ2a23)b32(c22 − λc32 − λc12)
+ (a31 + λ2a33)b33(c33 − λc13 − λc23)
= λ2(Trace(ABC) + λG(λ)).

Hence it is possible to find an approximation of this matrix multiplication in fewer
multiplications than it takes to find the exact answer.
We can still associate this with a tensor t: however, each summand ui ⊗ vi ⊗ wi is
contained in ui(λ)⊗ vi(λ)⊗ wi(λ) where each ui ∈ Uk[λ] = k[λ]dim(U),
vi ∈ V k[λ] =∈ k[λ]dim(V), wi ∈W k[λ] =∈ k[λ]dim(W).

Definition 6. The set 〈r〉 is the equivalence class of bilinear maps whose rank is
equal to r.

Definition 7. We say that t is a degeneration of order q of 〈r〉 iff there exist vectors
ui(λ) ∈ k[λ]dim(U), vi(λ) ∈ k[λ]dim(V), wi(λ) ∈ k[λ]dim(W) for 1 ≤ i ≤ r such that

λq−1t+ λqt′(λ) =
r∑

i=1

ui(λ)⊗ vi(λ)⊗ wi(λ)

for some t′(λ), a tensor of aa polynomial in λ. We write this as tEq 〈r〉.The least
number r over all q is called the Border Rank of t (or of φ, if we work in the
non-tensorial notation).

If we consider explicit maps, we say that φ is a degeneration of order q of φ′ iff there
is a ψ : Uk[λ] × V k[λ] →W k[λ] such that

λq−1φ+ λqψ = φ′.

23

Here, φ′ is an algorithm whose entries are polynomials in λ.
We see from above that Trace(ABC) E3 〈21〉.
How does Border Rank relate to the Exact Rank? This was shown by Bini [2]: we
rewrite

ui(λ) =
∑

µ

u
(µ)
i λµ, vi(λ) =

∑
ν

v
(ν)
i λν , wi(λ) =

∑
λ

w
(λ)
i λλ.

By multiplying out, we obtain that the coefficient of λq−1 is equal to

t =
r∑

i=1

∑
µ,ν,λ

u
(µ)
i ⊗ v

(ν)
i ⊗ w

(λ)
i

with µ+ ν + λ = q − 1 and µ, ν, λ > 0. There are q(q + 1)/2 such values of µ, ν, λ, so
we have that

tEq 〈r〉 ⇒ R(t) ≤ (q(q + 1)/2)r ≤ q2r. (1.7)

Since q ≥ 1 (although if q = 1, the extra calculations are somewhat redundant), we
find that the Border Rank is always less than or equal to the Exact Rank. For our
example, the border rank of 21 and the fact that q = 3 implies that the rank is less
than or equal to 189. However, we know that it is at most 23: the gains come through
the use of recursion.

Theorem 2. If t1 Eq 〈r1〉 and t2 Eq′ 〈r′〉 then

t1 ⊗ t2 Eq+q′−1 〈rr′〉.

We may use this fact to show how it is affected when one raises the tensor t1 to the
N th power for some N ∈ N

⊗N
i=1t1 E(q−1)N+1 〈rN 〉.

Proof. Taking the products, on the left hand side we have

(λq−1)(λq′−1)t1t2 + λq−1λq′(t1t′2(λ)) + λqλq′−1(t′1(λ)t2) + λq+q′t′1(λ)t′2(λ)

which can be written as

λq+q′−2t1t2 + λq+q′−1((t1t′2(λ) + t′1(λ)t2)) + λt′1(λ)t′2(λ)).

as desired. Using our previous assertion that the rank of the product of two bilinear
maps is less than or equal to the product of the ranks, we have that the right hand
side has rank less than or equal to r1r2, hence the statement follows.
The second statement will follow directly.

We can now show how our algorithm helps reduce the upper bound of ω. Recall that
if R〈e, h, l〉 ≤ r, then (ehl)ω/3 ≤ r. Using this and the fact that 〈3, 3, 3〉 ≤ 23, we
obtain ω ≤ log3(23) = 2.854...
However, we have that 〈3, 3, 3〉E3 〈21〉. We raise this expression to the Nth power, to
obtain

〈3N , 3N , 3N 〉E2N+1 〈21N 〉.

24

Then, using our estimate of the rank from the border rank, we obtain

R(〈3N , 3N , 3N 〉) ≤ (2N + 1)221N .

Using equation 1.5, we obtain

3ωN ≤ (2N + 1)221N

which, on taking logs, implies

ω ≤ 2 log(2N + 1) +N log(21)
N log(3)

.

On letting N go to infinity, we get

ω ≤ log(21)
log(3)

= 2.7712...

Thus Border Rank does indeed yield improvements on the exact rank, if only
asymptotically. Bini et al. [3] showed (though not explicity, [8] provides a more
explicit reasoning) that it was the case that one could replace the exact rank in
equation 1.5 with the Border Rank:

Theorem 3. If R(〈e, h, l〉) ≤ r for positive integers e, h, l, r, then we have
(ehl)ω/3 ≤ r.

Proof. Since we may symmetrize, we show this for e = h = l = n. By definition we
have that

〈n, n, n〉Eq 〈r〉

for some q. We raise this expression to the Nth power. By theorem 2, we have

〈nN , nN , nN 〉E(q−1)N+1 〈rN 〉.

By 1.7 we have
R(〈nN , nN , nN 〉) ≤ ((q − 1)N + 1)2rN

By theorem 1.5
nωN ≤ ((q − 1)N + 1)2rN ,

from which letting N grow and taking Nth roots yields the desired result.

In fact, a lower bound the Border Rank can immediately be obtained by looking at
the dimensions of the spaces U , V and W .

Theorem 4. Let the matrix product φ : U × V →W be a degeneration of order q of
φ′ with border rank R. Then

R ≥ max{dim(U), dim(V), dim(W)}.

Proof. We have that φEq φ
′, and the border rank of φ is R. Raising φ to the Nth

power, we find the border rank of φN is an integer RN . Using Theorem 2 and the
estimate for obtaining exact rank from border rank, we get that the exact rank of φN

is at most ((q − 1)N + 1)2RN . Since, from Lemma 1, the rank of a bilinear map is
greater than the maximum of the sizes of all dimensions, we obtain

25

max{dim(U)N , dim(V)N , dim(W)N} ≤ ((q − 1)N + 1)2RN .

We let N go to infinity and take Nth roots to obtain the desired statement.

The Border Rank was shown in [23] to be non-additive (that is
R(φ1 + φ2) 6= R(φ1) +R(φ2)) To demonstrate, we consider the two matrix products
〈e, 1, l〉 and 〈1, h, 1〉 where h = (e− 1)(l− 1). These matrix products are disjoint, that
is, they share no variables. We see that we can compute these two matrix products
simultaneously in the (trilinear) algorithm

φ =
e∑

i=1

l∑
j=1

aibjcj,i +
h∑

i=1

XiYiZ

where the ai, bi, ci, Xi, Yi, Z are all indeterminates over k.
From the previous theorem, we see that the border rank of 〈e, 1, l〉 is at least el and
the border rank of 〈1, h, 1〉 is at least (e− 1)(l − 1). We show that there exists an
algorithm such that we can compute both of these products simultaneously with a
border rank of el + 1.

Theorem 5. Border rank is not additive.

Proof. Consider the simultaneous computation of the two matrix products above. We
rewrite this as

φ =
e∑

i=1

l∑
j=1

aibjcj,i +
e−1∑
i=1

l−1∑
j=1

Xi,jYi,jZ

(which will make our algorithm easier notationally- we are still performing the same
calculations).
We define

Xi,l = 0

Xe,j = −
e−1∑
i=1

Xi,j

Yi,l = −
l−1∑
j=1

Yi,j

Ye,j = 0;

doing so makes notation easier and also enables cancellation. Finally, consider the
algorithm

F ′ =
e∑

i=1

l∑
j=1

(ai + εXi,j)(bj + εYi,j)(ε2cj,i + Z)

− (
e∑

i=1

ai)(
l∑

j=1

bj)Z

= ε2φ+ ε3G

26

for some G. We therefore have that

〈e, 1, l〉 ⊕ 〈1, h, 1〉E3 〈el + 1〉.

Hence the border rank is not additive.

We will use this example to derive a bound for ω. We have the Additivity Conjecture
for the Exact Rank which states that

R(
n⊕

i=1

〈ai, bi, ci〉) =
n∑

i=1

R(〈ai, bi, ci〉)

which remains unproven, but which Schönhage (Theorem 6.3 of [23]) uses to derive a
bound for ω (which will be later shown to be obtainable without resorting to
conjecture).

Theorem 6. The exponent of matrix multiplication ω ≤ 2.548, if the additivity
conjecture holds.

Proof. We start by noting that raising 〈e, 1, l〉 ⊕ 〈1, h, 1〉 to the Nth power yields

N⊕
s=0

(
N

s

)
� 〈es, hN−s, ls〉

where the � means that we have multiple instances of ⊕: that is all the different
products that share the same value of s are gathered together. Using properties of
border rank as defined above, we have

R(
N⊕

s=0

(
N

s

)
� 〈es, hN−s, ls〉) ≤ (1 + 2N)2(el + 1)N .

At this point we bring in the additivity conjecture to obtain

N∑
s=0

(
N

s

)
R(〈es, hN−s, ls〉) ≤ (1 + 2N)2(el + 1)N .

Using equation 1.5, we obtain

N∑
s=0

(
N

s

)
(el)sω/3h(N−s)ω/3 ≤ (1 + 2N)2(el + 1)N ,

which, on taking sth roots and letting s→∞, leaves us with

elω/3 + hω/3 ≤ kn+ 1.

On taking e = l = 4 (and hence h = 9) we get the desired result.

However, as previously stated, Schönhage [23] found it possible to obtain the same
result without resorting to conjecture: his Asymptotic Sum Inequality proved that it
was sufficient to know the border rank and the matrix products being simulated in
order to derive a value for ω. We state and prove this theorem below.

27

Theorem 7. (Schönhage’s Asymptotic Sum Inequality) Suppose we have s matrix
products 〈ei, hi, li〉, and we can evaluate them all simultaneously using an algorithm φ
whose border rank is r. Then

s∑
i=1

(eihili)ω/3 ≤ r.

Proof. We start by noting that

s⊕
i=1

〈ei, hi, li〉Eq 〈r〉

for some q ∈ N. We raise this to the Nth power, obtaining

(
s⊕

i=1

〈ei, hi, li〉)N E(q−1)N+1 〈rN 〉

and equation 1.7 implies that

R((
s⊕

i=1

〈ei, hi, li〉)N)) ≤ ((q − 1)N + 1)2rN

Performing the expansion, we get that, where µ = (µ1, .., µs) is a vector such that∑
i µi = N ,

R(
⊕

µ

(
(
N

µ

)
�

s∏
i=1

〈ei, hi, li〉µi)) ≤ ((q − 1)N + 1)2rN

from which we can conclude that

R(
(
N

µ

)
�

s∏
i=1

〈ei, hi, li〉µi) ≤ ((q − 1)N + 1)2rN .

Recall that there exists for every ε > 0 a constant cε ∈ N such that for all n

R(〈n, n, n〉) ≤ cεn
ω+ε

Therefore we can set a number P = (
(
N
µ

)
)

1
ω+ε so that we get

R(〈P, P, P 〉) ≤ (cε

(
N

µ

)
)

We use this definition to show that we can perform the multiplication

〈P
s∏

i=1

eµi
i , P

s∏
i=1

hµi
i , P

s∏
i=1

lµi
i 〉

in ≤ cε((q − 1)N + 1)2rN operations in k.
For the “U” matrix, we regard the elements as being

∏s
i=1 e

µi
i ×

∏s
i=1 e

µi
i matrices.

For the “V ” matrix, we regard the elements as being
∏s

i=1 h
µi
i ×

∏s
i=1 h

µi
i matrices.

Finally, the elements of the resulting “W” matrix will be
∏s

i=1 l
µi
i ×

∏s
i=1 l

µi
i matrices.

Since we showed that multiplication of P × P matrices requires cε
(
N
µ

)
multiplications

in the underlying field, we see that this number of
∏s

i=1〈ei, hi, li〉µi matrix products is

28

required. Since this number of multiplications of this type can be done in
((q − 1)N + 1)2rN operations in k, we have that

R(〈P
s∏

i=1

eµi
i , P

s∏
i=1

hµi
i , P

s∏
i=1

lµi
i 〉) ≤ cε((q − 1)N + 1)2rN .

Using equation 1.5, we see that

(P 3(
s∏

i=1

eµi
i)(

s∏
i=1

hµi
i)(

s∏
i=1

lµi
i))ω/3 ≤ cε((q − 1)N + 1)2rN .

We multiply both sides by
(
N
µ

) ε
ω+ε and use the facts that

(
N
µ

)
≤ sN and that

a/2 ≤ bac to obtain(
N

µ

) s∏
i=1

(eihili)ω/3 ≤ 2ωs
Nε

ω+ε cε((q − 1)N + 1)2rN .

If we sum all possible distributions of µ, we get

(
s∑

i=1

(eihili)ω/3)N ≤
(
N + s− 1
s− 1

)
2ωs

Nε
ω+ε cε((q − 1)N + 1)2rN .

Finally, we take Nth roots and let N go to infinity. This gives us the result

s∑
i=1

(eihili)ω/3 ≤ s
ε

ω+ε r,

which, on letting ε→ 0, gives us our desired result.

So we see that the additivity conjecture need not be proved. Using Schönhage’s
example:

R(〈e, 1, l〉 ⊕ 〈1, h, 1〉) ≤ el + 1

implies

(el)ω/3 + ((e− 1)(l − 1))ω/3 ≤ el + 1,

which, on setting e = l = 4, yields ω ≤ 2.5479, as required.
This “Asymptotic sum inequality” is used to great advantage by Coppersmith and
Winograd [12] to obtain further reductions in ω. We will outline how this was done in
the next chapter.
Prior to this, the same authors [11] discovered that they could make greater use of
Schönhage’s example:

Definition 8. Let B be a direct sum of matrix multiplications, and let
a = (f1, .., fr, g1, ..., gr, w1, .., wr) be an algorithm which can approximately compute
(that is, compute the matrix product, with some error λ) 〈1, R, 1〉 ⊕ B. Then 〈1, R, 1〉
is isolated relative to a if

〈1, R, 1〉 =
R∑

i=1

uivi =
r∑

j=1

cjfj(u)gj(v)

for some {cj} in k(λ). If all the cj 6= 0 then we say that 〈1, R, 1〉 is full relative to a

29

We then have the following theorem (proof omitted):

Theorem 8. If a is an algorithm of rank r which can approximately compute
〈1, R, 1〉 ⊕ B, and 〈1, R, 1〉 is full and isolated relative to a then there exists and
algorithm a′ which can approximately compute 〈1, R∗, 1〉 ⊕ B where the rank of a′ is
equal to the rank of a and R∗ = r− dim(U)− dim(V) where U and V are the domain
of B.

The usefulness of this theorem is borne out when we raise the algorithms to the nth
tensor power: each time we do so, there will always be a 〈1, Rn, 1〉 term which will be
full and isolated relative to a. We do not uses this theorem for the main results- it is
included to show the notion that rFaising algorithms to higher powers may be used to
reduce ω. To demonstrate, we start with Schönhage’s construction, setting e = l = 3.
We get that the product

〈1, 4, 1〉 ⊕ 〈3, 1, 3〉

has border rank 10. Hence, using theorem 7, we obtain

ω ≤ 2.5938833

If we square this construction, we get that the product

〈1, 16, 1〉 ⊕ 2� 〈3, 4, 3〉 ⊕ 〈9, 1, 9〉

has border rank 100. However, applying theorem 8, we get that the U part of B has
dimension

2× (3× 4) + 9× 1 = 33

which is the same as the V part.
This means, by theorem 8, that there exists another algorithm of border rank 100
which can compute

〈1, 100− 33− 33 = 34, 1〉 ⊕ 2� 〈3, 4, 3〉 ⊕ 〈9, 1, 9〉.

Using theorem 7, we obtain ω ≤ 2.5198543, which is an improvement. We may
continue to do this and perform small modifications of this construction to ultimately
obtain ω ≤ 2.4966271.
Though the methodology is different, Coppersmith and Winograd [12] use this
method of creating new algorithms from old to obtain the current best result. We will
look at this in the next chapter.

30

Chapter 2

Coppersmith and Winograd’s
Algorithms

In this chapter, we introduce a new construction which Strassen [25], [26] uses to
improve on his previous algorithm, and introduce the idea of Salem-Spencer sets
which Coppersmith and Winograd use to find asymptotically quicker algorithms.

2.1 Direct Sum Decomposition

When considering a bilinear map φ (with associated structural tensor t), it will be
convenient (in the case where φ works out multiple matrix products) to consider the
spaces U , V and W themselves as direct sums of smaller spaces. For example, the
space U can be written as

U =
⊕
i∈I

Ui

where I = {1, ..,m} for some m. We let D represent the decompostion of U , V and
W , that is

D : U =
⊕
i∈I

Ui, V =
⊕
j∈J

Vj ,W =
⊕
l∈L

Wl

Now, we have that the support of t suppD(t) is the set (i, j, l) such that tijl 6= 0, where
the ti,j,l are the components of t with respect to D.
We may choose I such that |I| 6= dim(U) (and analogously for J , K). This has the
effect that we may construct an object which has the structure of a matrix product,
but whose “multiplications” are in fact, themselves matrix products. We discuss this
idea further in the next section.

2.2 C-tensors

In his 1986 paper [25] (put into more detail in [26]), Strassen discovered that a
trilinear form needed not be a matrix product in order to be able to compute a fast
matrix multiplication algorithm. We acheive this by taking an algorithm for
multiplying a small matrix product (for example, the scalar product of a 1× 2 vector
by a 2× 1 vector, which we shall see below), raising it to the Nth power (in a tensor
multiplication sense) and “choosing” a set of independent matrix multiplication

31

tensors from this (in the sense that there is not a great deal of choice) and applying
theorem 7 to it.
Central to this is the idea of C-tensors, which are informally defined as follows:
If b is a matrix multiplication of the form 〈e, h, l〉, and C is the set of all matrix
products satisfying a particular property (for example, those multiplications 〈m,n, p〉
with mnp = qN for some q,N), we have that t is a C-tensor over 〈e, h, l〉 iff t possesses
a direct sum decompostion D such that suppDt ' supp〈e, h, l〉 and such that all
D − components of t are isomorphic to matrix tensors in C. From this definition, we
obtain the following result:

Proposition 3. Let e, h, l,m, n, p, q ∈ N, and let C be the set of matrix products
〈m,n, p〉 with the property that mnp = q. If the tensor t is a C-tensor over 〈e, h, l〉
then (ehl)2qω ≤ R(t)3.

The proof requires the following lemma:

Lemma 9. Let t be an N ×N matrix product. t can approximately (in the λ-sense)
of calculate d3N2/4e independent scalar products.

Proof. Represent 〈N,N,N〉 as

N∑
i=1

N∑
j=1

N∑
k=1

xi,jyj,kzk,i.

Les g 3 N and multiply each variable by an appropriate integer power of λ to get

N∑
i=1

N∑
j=1

N∑
k=1

(xi,jλ
i2+2ij)(yj,kλ

j2+2j(k−g))(zk,iλ
(k−g)2+2(k−g)i)

=
∑

i+j+k=g

xi,jyj,kzk,i +O(λ)

since the exponent of λ

i2 + 2ij + j2 + 2j(k − g) + (k − g)2 + 2(k − g)i = (i+ j + k − g)2

is zero when i+ j + k = g and positive otherwise. We have that any two indices (i, j)
uniquely determine the third k, each variable xi,j is involved in at most one product.
There are about d3N2/4e triples (i, j, k) with 1 ≤ i, j, k ≤ N with i+ j + k = g, thus
proving the assertion.

We denote the set of independent scalar products provided by a matrix product as ∆,
and the set of independent matrix products obtained from raising it to the Nth power
as ∆N .

Proof. Let π denote the cyclic permutation (123), and let N ∈ N. The tensor
tN := (t⊗ πt⊗ π2t)⊗N inherits the direct sum decompostion
DN := (D ⊗ πD ⊗ π2D)⊗N from D. We have that

suppDN
tN ' (suppDt⊗ suppπDπt⊗ suppπ2Dπ

2t)N

' supp〈(ehl)N , (ehl)N , (ehl)N 〉

32

We know that the D-components of tN are isomorphic to matrix tensors 〈m,n, p〉
satisfying mnp = q3N The lemma 9 shows that there is a set of independent matrix
products of size d3(ehl)2N/4e which is a degeneration of suppDN

tN . We use
Proposition 15.30 of [8] which implies⊕

i,j,l∈∆N

tN (i, j, l) E tN

and so by the asymptotic sum inequality (theorem 7)we have

|∆N |qNω ≤ R(tN) ≤ R(t)3N

thus by taking Nth roots and letting N →∞ we get the desired statement.

2.3 Strassen’s Construction

To demonstrate the statements of the previous section, consider the algorithm from
[25]:

q∑
i=1

(x[2]
0 + λx

[1]
i)(y[1]

0 + λy
[2]
i)(ziλ−1) + (x[2]

0)(y[1]
0)(−

q∑
i=1

ziλ
−1)

=
q∑

i=1

(x[1]
i y

[1]
0 zi + x

[2]
0 y

[2]
i zi) +O(λ) . (2.1)

We see that this is a C-tensor over 〈1, 2, 1〉, where C is the set of matrix products
〈m,n, p〉 with mnp = q (the first block is a 〈q, 1, 1〉 and the second is a 〈1, 1, q〉), and
that all this can be acheived in q + 1 non-scalar multiplications. Hence by theorem 7:

e = 1, h = 2, l = 1,mnp = q ⇒ 22qω ≤ (q + 1)3

which, when q = 5 yields ω ' 2.4785.
This is worked out as follows: if we tensor multiply the original algorithm with its
cyclic permutations i.e. multiply 〈1, 1, 2〉, 〈1, 2, 1〉 and 〈2, 1, 1〉, we get, in (q + 1)3

multiplications, a 〈2, 2, 2〉 matrix product

q∑
i,j,k=1

(x[1,1]
i,j,0y

[1,1]
0,j,kz

[1,1]
i,0,k + x

[2,1]
i,j,ky

[1,1]
0,j,kz

[2,1]
i,0,0

+x[1,1]
i,j,0y

[1,2]
0,0,kz

[2,1]
i,j,k + x

[2,1]
i,j,ky

[1,2]
0,0,kz

[2,2]
i,j,0

+x[1,2]
0,j,0y

[2,1]
i,j,kz

[1,1]
i,0,k + x

[2,2]
0,j,ky

[2,1]
i,j,kz

[1,2]
i,0,0

+x[1,2]
0,j,0y

[2,2]
i,0,kz

[2,1]
i,j,k + x

[2,2]
0,j,ky

[2,2]
i,0,kz

[2,2]
i,j,0)

+ O(ε)

where each block is a smaller matrix product of size 〈m,n, p〉 where mnp = q3N . For
example, the sixth block is of size 〈1, q2, q〉:

33

q∑
i,j,k=1

x0,j,kyi,j,kzi,0,0

where 0 is the I-index, (j, k) is the J-index and i is the K-index.
Take the Nth tensor power of this algorithm. We obtain a 2N × 2N matrix product,
whose blocks are also matrix products 〈m,n, p〉 where mnp = q3N . Using lemma 9, we
find that within these blocks we have 3/4(2N)2 independent matrix products, of size
〈m,n, p〉 where mnp = q3N . Using theorem 7 we get

(q + 1)3N = (3/4)22N (q3N)τ

which becomes, if we take Nth roots and let N grow,

(q + 1)3 = 22q3τ

which, for q = 5, yields τ ' 0.82616667 which gives ω ' 2.4785, which is what we
obtained before. Thus, when we encounter a C-tensor, using the proposition will have
the same effect as tensoring permutations of the original tensor together.

2.4 Coppersmith and Winograd’s Algorithms

The algorithms described by Coppersmith and Winograd [12] use a further relaxation
of ground rules: they start with an algorithm that is not a matrix product or even a
C-tensor (and hence Strassen’s theorem above does not apply). We tensor this
algorithm with itself N times for some large N , which yields a number of blocks.
From these blocks we can choose a set ∆ of independent matrix products, and
therefore can use theorem 7 to find an estimate of τ . We use a theorem of Salem and
Spencer [22] to prove the existence of such sets.

2.4.1 Salem-Spencer sets

In [22] Salem-Spencer set is defined as follows:
A set of integers B is Salem-Spencer if and only if we have that for all a, b, c ∈M ,

a+ b = 2c⇒ a = b = c.

We will find the following theorem of Salem and Spencer (proof found in [22]) useful:

Theorem 10. Given ε > 0, there exists Mε ' 2c/ε2 such that for all M > Mε there is
a Salem-Spencer set B of M ′ > M1−ε distinct integers {b1, .., bM ′} with

0 < b1 < b2 < ... < bM ′ < M/2.

Behrend [1] gives a better (i.e.higher) estimate than [22] does for the size of a
progression-free set: however, the Salem-Spencer bound is sufficient for our needs.
In this case, we consider only the ring ZM of integers mod M , and since elements in
the set B satisfy 0 < bi < M/2, it still follows that no three form an arithmetic
progression:

for bi, bj , bk ∈ B, bi + bj = 2bk mod M iff bi = bj = bk

34

An application

We use this theorem to prove the following lemma.

Lemma 11. Suppose we have a set S where |S| = 3N and we wish to divide the
elements of S into three sets A,B,C by the following rules:

• |A| = |B| = |C| = N

• A ∩B = A ∩ C = B ∩ C = ∅.

Let Spart be the set of all possible partitions of S satisfying the above conditions.
Then, given ε, one can find an N0 such that there is a subset
∆ = {{A1, B1, C1}, .., {A|∆|, B|∆|, C|∆|}} ⊂ Spart such that, for all partitions
{A,B,C} ∈ ∆

• if partitions {A,B,C}, {A′, B′, C} ∈ ∆, then A = A′ and B = B′, similarly, if
two partitions share a A or B block, then they must be the same partition.

• for all {Ai, Bi, Ci} ∈ ∆, if Ai ∪Bj ∪ Ck = S, then i = j = k.

such that |∆| ≥ (27
4)N(1−ε) for all N > N0.

Properties of Uniform Random Variables

In order to show these (and following) estimates, it is necessary to assert some
properties of uniform random variables wi over {0, ..,M − 1} mod M . By nature of
the uniform random variable, P(wi = k) = 1

M for all k ∈ {0, ..,M − 1}.

Lemma 12. If 1 < µ < M and µ ∈ N is coprime to M , then µwi mod M is also a
uniform random variable.

Proof. We have that the probability that µwi = k mod M is the same as the
probability that wi = k

µ mod M . Since µ is coprime to M , division by µ is
well-defined, and so the probability that µwi = k mod M is 1

M for all k, hence
uniformity.

Lemma 13. The sum mod M of N independent uniform random variables over
{0, ..,M − 1} is also a uniform random variable over {0, ..,M − 1}.

Proof. First, we show that if w1 is a random variable (not necessarily uniform) over
{0, ..M − 1}, and w2 is a uniform random variable over {0, ..,M − 1}, then w1 + w2

mod M is also a uniform random variable over {0, ..,M − 1}. Then

P(w1 + w2 = m ∈ {0, ..,M − 1} mod M) =∑
k

P(w1 = k)P(w2 = m− k mod M)

=
1
M

∑
k

P(w1 = k)

=
1
M
.

This holds for any m and hence w1 + w2 is a uniform distribution over {0, ..,M − 1}.
Further, the random variables w1 and w1 + w2 are independent:

35

Choose a k and an m ∈ {0, ..,M − 1}.

P(w1 = k ∧ w1 + w2 = m mod M) = P(w1 = k ∧ w2 = m− k mod M)
= P(w1 = k)P(w2 = m− k)

= P(w1 = k)× 1
M

= P(w1 = k)P(w1 + w2 = m mod M)

and hence independence follows.
Since the sum of two independent uniform random variables is also a uniform random
variable, we can rewrite

w1 + w2 + ...+ wN mod M
= (w1 + w2) + ...+ wN mod M
= ((w1 + w2) + w3) + ...+ wN mod M

and thus the sum of N independent uniform random variables is also a uniform
random variable over {0, ..,M − 1} mod M .

From the two above lemmas, we can thus assert that, if 1 ≤ µi ∈ N < M is coprime to
M , and wi are independent uniform random variables, then

µ1w1 + µ2w2 + ...+ µnwn

is also a uniform random variable over over {0, ..,M − 1} mod M .

Lemma 14. Let A = {a1, .., an} and B = {b1, .., bn} be vectors of size n, where the
entries are either 0,1 or are coprime to M , and there exist i, k with ai 6= 0 and
aibk − akbi non-zero and coprime to M . Then the two random variables

bA =
n∑

i=1

aiwi mod M and

bB =
n∑

j=1

bjwj mod M

are independent.

Proof. We wish to assert independence: that is we wish to show that

P(bA = r mod M ∧ bB = s mod M) = P(bA = r)P(bB = s).

We define a map T : Zn
M → Z2

M by T (w) = (bA, bB). Then we have that bA and bB are
independent if T is surjective. Thus, for any pair (r, s), we have a w′ such that
T (w′) = (r, s). Thus, the probability that T (w) = (r, s) is the probability that
T (w − w′) = (0, 0), which is a problem independent of w′ (see earlier assertions).
Thus we need to show that for any (r, s), there is a w such that T (w) = (r, s).
Let ai be an ai such that aibk − akbi is non-zero and coprime to M for some k. Define

36

U = aiwi +
∑
j 6=i

ajwj mod M(= bA)

V =
∑
j 6=i

(aibj − ajbi)wj mod M.

We see that bA = r and bB = s when U = r and V = ais− bir. Since there is a k such
that (aibk − akbi) is not 0 and coprime to M , we may choose wi and wk to make U
and V equal to our desired values, irrespective of the other values of wj . Therefore,
b(A) and b(B) are independent.

Lemma 15. Let A = {a1, .., an}, B = {b1, .., bn}, C = {c1, .., cn} be linearly
independent vectors of size n, where the entries are either 0,1 or are coprime to M
and

∑
i ai 6= 0 mod M ,

∑
i bi mod M =

∑
i ci mod M . We choose M so that

possible values of aibk − biak are coprime to M . Then the three random variables

bA =
n∑

i=1

aiwi mod M,

bB = w0 +
n∑

j=1

bjwj mod M and

bC = w0 +
n∑

k=1

ckwk mod M

are independent.

Proof. We have that the three variables are independent if the function
T (w) = (bA, bB, bC) is surjective. If M is prime, then ZM is a field, and since the
three vectors are linearly independent, the image of T will span Z3

M , so we have
independence.
Since we know that these three vectors are pairwise independent, we show that they
are all independent by considering whether bA is independent of the pair bB, bC . If we
set µi = Bi − Ci mod M , it is enough to show that there is a w with

∑
i aiwi = r

mod M and
∑

i µiwi = s mod M . We have
∑

i ai 6= 0 mod M and
∑

i µi = 0
mod M . This means that we may find i, k with aiµk − akµi 6= 0, which, from previous
assertions, we know to mean that bA and bB − bC are independent, since it will be
coprime to M .

We use the theorem of Salem and Spencer to prove our assertion.

Proof. (of Lemma 11) We begin by noting that there are
(
3N
N

)(
2N
N

)
elements in Spart.

Choose M = 2
(
2N
N

)
+ 1. Using the Salem-Spencer theorem, we know that, given ε > 0

if we choose large enough N (and hence, by definition, M) there exists a
Salem-Spencer set H such that |H| > M1−ε. We thus choose such a H. We select
|S|+ 1 random integers wj , 0 ≤ j ≤ |S| such that they are selected uniformly at
random from {0, ..,M − 1}.

37

If we enumerate the elements of S as {s1, .., s|S|}, we can define the following
functions on the subsets A,B,C of S:

bA(A) =
3N∑

si∈A

wi mod M

bB(B) = w0 +
3N∑

si∈B

wi mod M

bC(C) =
1
2
(w0 +

∑
si∈A∪B

wi) mod M.

It is immediately clear that for all partitions, bA(A) + bB(B) = 2bC(C). However, we
desire only a set of partitions that satisfy the criteria stated in the lemma. It is here
that we use the theorem of Salem and Spencer. We take S = 3N with N large, and
define M in terms of N . So we take N large enough such that M > Mε. According to
theorem 10, there exists a Salem-Spencer set H with size |H| > M1−ε. If a block A,B
or C does not map into an element h ∈ H then we remove all partitions containing
that block.
Since bA(A), bB(B), bC(C) ∈ H in all partitions we have left, and
bA(A) + bB(B) = 2bC(C) for all partitions, it must follow from the Salem-Spencer
theorem that for all remaining partitions bA(A) = bB(B) = bC(C).
We wish to apply the above criteria to all the remaining sets. We note that if two
remaining blocks share an A,B or C block, then they will have the same value of
bA(A). It will also follow that if one can choose A,B,C from three remaining
partitions to form a different partition, then this different partition will also remain,
and the three original partitions will all share a common value of h ∈ H. Hence we
draw up |H| > M1−ε lists, each of which contains triples which map to h ∈ H. We
then eliminate an appropriate number of triples in each list in order to satisfy the
criteria. Finally, we add up the number of remaining triples in order to get our final
answer.
We recall the assertions previously made about uniform random variables. Since
bA(A) and bB(B) are linear sums of independent random variables, they themselves
are random variables over the same space. They are also independent: each has
associated with it a vector of length N , but due to no two blocks in the same
partition having the same vector, we must have that, due to the third lemma, these
two random variables are indeed independent. Thus we have that for a given h ∈ H,
the probability that bA(A) = bB(B) = h is 1

M2 .
Hence the expected number of partitions such that bA(A) = bB(B) = h is

1
M2

(
3N
N

)(
2N
N

)
.

We obtain |H| > M1−ε lists (one for each element of B), each of which we expect to
contain 1

M2

(
3N
N

)(
2N
N

)
different partitions. Removing partitions with blocks that do not

map into H ensures that any remaining blocks will satisfy this criterion.
Now, we must ensure that no two partitions share A,B or C. We know that there are

1
2

(
3N
N

)(
2N
N

)
(
(

2N
N

)
− 1)

38

unordered pairs sharing A. We also know that bA(A), bB(B) are independent within a
partition. It remains to show that if two blocks share an A-block, then bA(A), bB(B)
and bB(B′) are independent: again this arises because they will all have different
blocks associated with them, and the fourth lemma states that bA(A), bB(B) and
bB(B′) will therefore be independent. Therefore we have that the expected number of
pairs such that bAA = bBB = bBB

′ = h (where B′ is the B-block from a different
partition sharing A) is

1
2

(
3N
N

)(
2N
N

)
(
(

2N
N

)
− 1)M−3,

similarly for those sharing B. The expected number of pairs sharing C is worked out
slightly differently, since bC is worked out by what is not in C rather than what is in
it: a block C will be included if it is in a partition with an A and a B such that
bA(A) = bB = b ∈ B. Two triples will share C if A ∪B is equal in both. Hence,a
block C will be shared by a pair if A ∪B = A′ ∪B′ and bA(A) = bB(B) = bA′ = bB′ .
There are

(
2N
N

)
triples containing a particular block C, and since bA(A)and bB(B) are

independent, we have the probability that this triple makes it into one of our lists is
1

M2 . We have that A ∪B = A′ ∪B′, so we must have that bA(A′) + bB(B′) = 2h
mod M ∈ H. There are

(
2N
N

)
− 1 other ways of arranging A′ and B′. By the above

lemmas, B′ is independent of both A and B, so therefore the probability that
{A′, B′, C} is in our new list as well as {A,B,C} is 1

M . Therefore, we get the same
estimate as above.
If two triples {A,B,C}, {A,B′, C ′} share an A-block, we remove all those triples
containing B. This not only eliminates the pair {A,B,C}, {A,B′, C ′}, but also any
pairs containing this block B. Since if we remove L blocks containing B, we remove
at least

(
L
2

)
+ 1 pairs containing B. Since

(
L
2

)
+ 1 ≥ L, we have that if we remove at

least 1
2

(
3N
N

)(
2N
N

)
(
(
2N
N

)
− 1)M−3 blocks (and hence at least as many sets), we will

remove at least as many pairs of triples.
Vitally, using this method, if we have {A,B,C},{A′, B′, C ′}, {A′′, B′′, C ′′},
{A,B′, C ′′} left in our list (the latter is guaranteed to be in the list if the first three
are), then eliminating all blocks containing B, for example, will ensure that the last
criterion is fulfilled.
Eliminating the required blocks yields that the number of triples remaining is at least

1
M2

(
3N
N

)(
2N
N

)
− 3

2

(
3N
N

)(
2N
N

)
(
(

2N
N

)
− 1)M−3

≥ 1
4

(
3N
N

)(
2N
N

)
M−2

and hence the expected total number of partitions remaining, by the Salem-Spencer
theorem, is at least

1
4
M1−ε

(
3N
N

)(
2N
N

)
M−2.

This means that there is a choice of wi such that more than this number of triples
remain: fix this choice of wi and we get that for each value of h ∈ H (of which, for
large enough M given ε, there are more than M1−ε by the Salem-Spencer theorem),
there are at least

39

1
4

(
3N
N

)(
2N
N

)
M−2

triples.
Since then we have that, for increasingly large N , the above term becomes

M−ε

4M

(
3N
N

)(
2N
N

)
It follows from Stirling’s formula that

M−ε

4M

(
3N
N

)(
2N
N

)
' 4−Nε

4
(
27
4

)N .

We find that, for N > log 4
ε(log(27)−2 log(4) that this is greater than (27

4)N(1−ε).

2.4.2 Coppersmith and Winograd’s “Easy” algorithm

An immediate consequence of the previous theorem is that we can use a starting
algorithm that is not a matrix product or a C-tensor to obtain an estimate for ω. We
start by using q + 2 multiplications to obtain Coppersmith and Winograd’s [12]
“Easy” algorithms:

q∑
i=i

λ−2(x[0]
0 + λx

[1]
i)(y[0]

0 + λy
[1]
i)(z[0]

0 + λz
[1]
i)

−λ−3(x[0]
0 + λ2

∑
x

[1]
i)(y[0]

0 + λ2
∑

y
[1]
i)(z[0]

0 + λ2
∑

z
[1]
i)

+(λ−3 − qλ−2)(x[0]
0)(y[0]

0)(z[0]
0)

=
q∑

i=1

(x[0]
0 y

[1]
i z

[1]
i + x

[1]
i y

[0]
0 z

[1]
i + x

[1]
i y

[1]
i z

[0]
0) +O(λ). (2.2)

We see that this does not represent a matrix multiplication or a C-tensor, and
therefore Strassen’s theorem does not apply. However, each block does denote a
matrix product, so we may raise this algorithm to the 3Nth power and set certain
blocks to zero, leaving a number of independent matrix products remaining. We will
show that this number is large enough to reduce the value of ω.
To use the language of the start of this chapter, we have that

t :=
q∑

i=1

(e0ii + ei0i + eii0)

The direct sum decomposition is

U0 = V0 = W0 = k(1, 0, .., 0)
U1 = V1 = W1 = {ξ ∈ kq+1 : ξ0 = 0}

and the support of t is

suppDt = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}

the individual elements of the support correspond to matrix multiplication as follows:

40

• t(0, 1, 1) ' 〈1, 1, q〉

• t(1, 0, 1) ' 〈q, 1, 1〉

• t(1, 1, 0) ' 〈1, q, 1〉

Finally, we have that R = q + 2.

Theorem 16. The exponent of matrix multiplication ω ≤ 2.40364.

Proof. Raise the expression (2.2) to the 3Nth tensor power. We have a number of
blocks of the form

Xx1,x2,x3,..,x3NYy1,y2,y3..,y3NZz1,z2,z3..,z3N .

Each of these blocks can be represented by a triple of vectors I, J,K, each in {0, 1}3N

where Ii = 0 when xi = 0 and Ii = 1 when xi = {1, .., q}, and analogously for J (with
the Y subscripts) and K (with the Z-subscripts). Thus, given I, J,K, we can work
out what kind of matrix product we have. After raising the algorithm to the 3Nth
power, we are left with a number of blocks, each of which have associated with them a
triple of vectors I, J,K. We wish to retain only those matrix products of the form
〈qN , qN , qN 〉. This happens when each of the I, J,K blocks contains exactly N zeroes,
and when each of Ii + Ji +Ki = 2. We retain these triples and set the others to zero:
that is if we have an X-block with a vector I that does not have the desired form, we
simply set all the xi it contains to being zero, and similarly with Y -blocks and
Z-blocks.
We are left with

(
3N
N

)(
2N
N

)
blocks, all of which are matrix multiplications of the form

〈qN , qN , qN 〉. We now choose a subset ∆ of these blocks which has the following
conditions

• if we have in ∆ two blocks represented by vectors I, J,K and I, J ′,K ′, then it
must follow that J = J ′ and K = K ′, and likewise if two distinct blocks share J
or K

• if I, J,K, I ′, J ′,K ′ and I ′′, J ′′,K ′′ are all elements of ∆ and I, J ′,K ′′ is also a
partition then I = I ′ = I ′′, J = J ′ = J ′′ and K = K ′ = K ′′.

This problem is equivalent to the problem described in the Lemma above: instead of
dividing objects into three sets the task is to determine which points in the vectors
have zeroes in the I, J and K positions respectively.
We set M = 2

(
2N
N

)
+ 1, construct a Salem-Spencer set B of size greater than M1−ε

and choose uniform random variables w0, .., w3N over {0, ..M − 1}. We now define
three functions on I, J,K:

bX(I) =
3N∑
i=1

Iiwi mod M

bY (J) = w0 +
3N∑
i=1

Jiwi mod M

bZ(K) =
1
2
(w0 +

3N∑
i=1

(2−Ki)wi).

41

For each triple, the probability that bX(I) = bY (J) = b ∈ B is 1
M2 due to the

independence arguments above. Those blocks that do not map into any b ∈ B, we set
to zero. We expect to have about (

3N
N

)(
2N
N

)
1
M2

triples remaining for each b ∈ B.
The expected number of pairs that share an X-block is

1
2

(
3N
N

)(
2N
N

)
(
(

2N
N

)
− 1)M−3

and similarly for Y -blocks. The argument for Z-blocks is analogous to that for
C-blocks in the lemma above. If two triples share a block, we set to zero one of the
other blocks in one of the triples. Again this means that we eliminate at least as
many pairs as blocks: we are left with(

3N
N

)(
2N
N

)
1
M2

− 3
2

(
3N
N

)(
2N
N

)
(
(

2N
N

)
− 1)M−3

Thus, the total number of triples remaining is approximately

M−ε

4M

(
3N
N

)(
2N
N

)
.

This “setting to zero” method means that the set ∆ of remaining matrix products is
in fact a direct sum: none of the matrix products obtained will share any variables (as
ensured by the first bullet point criterion) and hence the overall sum will be
isomoprhic to a direct sum of matrix multiplications.
Lemma 11 shows that,for large enough N , |∆| ≥ (27

4)N(1−ε), and hence using theorem
7 we have that

(q + 2)3N ≥ (
27
4

)N(1−ε)q3Nτ .

Letting N grow, we get that |∆| becomes arbitrarilly close to 27
4

N and taking Nth
roots we obtain

(q + 2)3 ≥ 27
4
q3τ

and setting q = 8 yields ω ≤ 2.40364.

2.5 More Complicated Algorithms

Having established that it is possible to start with algorithms that are not in
themselves matrix products, Coppersmith and Winograd [12] move on to more
complicated starting algorithms. If we start with the algorithm

42

q∑
i=i

µ−2(x[0]
0 + µx

[1]
i)(y[0]

0 + µy
[1]
i)(z[0]

0 + µz
[1]
i)

−µ−3(x[0]
0 + µ2

∑
x

[1]
i)(y[0]

0 + µ2
∑

y
[1]
i)(z[0]

0 + µ2
∑

z
[1]
i)

+(µ−3 − qµ−2)(x[0]
0 + µ3x

[2]
q+1)(y

[0]
0 + µ3y

[2]
q+1)(z

[0]
0 + µ3z

[2]
q+1)

=
q∑

i=1

(x[0]
0 y

[1]
i z

[1]
i + x

[1]
i y

[0]
0 z

[1]
i + x

[1]
i y

[1]
i z

[0]
0)

+x[0]
0 y

[0]
0 z

[2]
q+1 + x

[0]
0 y

[2]
q+1z

[0]
0 + x

[2]
q+1y

[0]
0 z

[0]
0 +O(µ)

Using the language of the start of this chapter, we have

t :=
q∑

i=1

(e0ii + ei0i + eii0) + e0,0,q+1 + e0,q+1,0 + eq+1,0,0

The direct sum decomposition is

U0 = V0 = W0 = k(1, 0, .., 0)
U1 = V1 = W1 = {ξ ∈ kq+2 : ξ0 = 0, ξq+2 = 0}
U2 = V2 = W2 = k(0, .., 0, 1)

and the support of t is

suppDt = {(0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 0, 2), (0, 2, 0), (2, 0, 0)}

the individual elements of the support correspond to matrix multiplication as follows:

• t(0, 1, 1) ' 〈1, 1, q〉

• t(1, 0, 1) ' 〈q, 1, 1〉

• t(1, 1, 0) ' 〈1, q, 1〉

• t(0, 0, 2) ' 〈1, 1, 1〉

• t(0, 2, 0) ' 〈1, 1, 1〉

• t(2, 0, 0) ' 〈1, 1, 1〉

As before, we raise the original algorithm to the 3Nth power. Each resulting block
can be uniquely identified by a triple of vectors I, J,K ∈ {0, 1, 2}3N . If Ii = 0 then
xi = 0, if Ii = 1 then xi ∈ {1, ..q} and if Ii = 2 then xi = q + 1, and analogously for J
(with Y blocks) and K (with Z blocks).
As before, we wish to have the following criteria in our final set of triples. This will
ensure the independence of all variables, and hence that the sum of the matrix
products is in fact isomoprhic to a direct sum.

• if we have in ∆ two blocks represented by vectors I, J,K and I, J ′,K ′, then it
must follow that J = J ′ and K = K ′, and likewise if two distinct blocks share J
or K

43

• if I, J,K, I ′, J ′,K ′ and I ′′, J ′′,K ′′ are all elements of ∆ and I, J ′,K ′′ is also a
partition then I = I ′ = I ′′, J = J ′ = J ′′ and K = K ′ = K ′′.

We let L = βN for some β ∈ [0, 1] to be determined later. We retain only those blocks
with N + L indices of 0, 2N + 2L indices of 1 and L indices of 2, setting others to
zero. Thus, the number of triples remaining is(

3N
L,N + L, 2N − 2L

)(
N + L

L,L,N − L

)(
2N − 2L

N − L,N − L

)
.

These are different (but not, as yet, independent) matrix products of size
〈qN−L, qN−L, qN−L〉. Now set

M = 6
(

N + L

L,L,N − L

)(
2N − 2L

N − L,N − L

)
+ 1,

choose a Salem-Spencer set B and define random variables w0, .., w3N as before. We
need to alter the random arguments slightly: we define

bX(I) =
3N∑
i=1

Iiwi mod M

bY (J) = w0 +
3N∑
j=1

Jiwi mod M

bZ(K) =
1
2
(w0 +

3N∑
i=1

(2−Ki)wi) mod M.

We need to draw on the independence statements from earlier : within a partition
bX(I) and bY (J) are independent and if two partitions share an X-block, then bX(I),
bY (J) and bY (J ′) are independent.
We proceed as before: the expected number of triples that satisfy
bX(I) = bY (J) = b ∈ B is

1
M2

(
3N

L,N + L, 2N − 2L

)(
N + L

L,L,N − L

)(
2N − 2L

N − L,N − L

)
.

We set any blocks that do not map onto a b ∈ B to zero.
The expected number of pairs sharing a block i.e. bX(I) = bY (J) = bY (J ′) = b ∈ B
for different J ,J ′ is

1
M3

(
3N

L,N + L, 2N − 2L

)
(
(

N + L

L,L,N − L

)
×

×
(

2N − 2L
N − L,N − L

)
)(

(
N + L

L,L,N − L

)(
2N − 2L

N − L,N − L

)
− 1)

and similarly for those sharing J . The K case is slightly different, but the same
probabilities arise (as above) and we get the same result. As before, eliminating this
number of blocks will eliminate at least this number of pairs.
We thus have that the expected number of blocks remaining in each list is at least

44

1
36M2

(
3N

L,N + L, 2N − 2L

)(
N + L

L,L,N − L

)(
2N − 2L

N − L,N − L

)
.

Since for large M , |B| > M1−ε we have that the total expected number of remaining
blocks is at least

M−ε

36

(
3N

L,N + L, 2N − 2L

)
possible blocks. Hence, the remaining blocks form a direct sum of matrix products.
Thus, theorem 7 states that

(q + 2)3N ≥ M−ε

36

(
3N

L,N + L, 2N − 2L

)
q3(N−L)τ .

Using Stirling’s Formula,letting ε go to zero, taking Nth roots and letting N grow, we
get

(q + 2)3 ≥ 27
ββ(1 + β)(1+β)(2− 2β)(2−2β)

q3(1−β)τ .

Finally, setting q = 6, β = 0.048 we find that ω ≤ 2.38719.

2.6 Coupling the wi

In this section, we use the same starting algorithm as before, but this time, for all the
wi, we have that w2j−1 = w2j . The consequence of this is that we can square the
starting algorithm and regard that as our starting algorithm instead. Here, we need
to introduce the concept of “value” ,as is done in [12] and what it achieves.
We suppose that we have a trilinear form A. The “value” of A is obtained as follows:
if A is a matrix product 〈m,n, p〉then the “value” is simply (mnp)τ ;
or else if A is not a matrix product we must use a more complex method. If π is the
cyclic permutation of variables x, y, z in A, then we tensor the permutations of x, y, z
together to obtain

(A⊗ πA⊗ π2A).

We then raise this expression to the Nth power, which yields a number of (not
necessarily independent) matrix products. As before, we set individual blocks to zero
(this eliminating a number of these matrix products) so that we are left with a
number of independent matrix products 〈mh, nh, ph〉.
The value Vτ (A) of A is the limit as N →∞ of the supremum of

(
∑

h

(mhnhph)τ)1/3N

over all possible values of mh, nh, ph.
If we let Vτ,N be the supremum of the above function at N (rather than letting
N →∞), then a later theorem will show that

Vτ,kN ≥ Vτ,N

(since Vτ,kN relates to raising the algorithm previously raised to the Nth power to the
kNth power).
If M ≥ N then VM

τ,M ≥ V N
N . Setting M = kN + r for some k, r ∈ N, we get

45

VM
τ,M ≥ V kN

τ,kN ≥ V kN
τ,N

which implies

Vτ,M ≥ V
kN/(kN+r)
τ,N .

Thus
Vτ,N ≤ lim

M→∞
inf Vτ,M .

Since Vτ,M is bounded above, this shows that Vτ (A) is a limit point.
In the calculations in this and subsequent chapters, the “value” is a two-fold
expression which highlights both the size of Matrix Multiplications and the number
thereof.

Properties of Value

Value is supermultiplicative:

Vτ (A⊗B) ≥ Vτ (A)× Vτ (B)

Proof. We multiply A⊗B ⊗ π(A⊗B)⊗ π2(A⊗B) and take the Nth tensor power.
We may view the resulting trilinear form as being one similar to (A⊗ πA⊗ π2A)N

whose entries are trilinear forms of type (B ⊗ πB ⊗ π2B)N .
We suppose that A, when raised to the Nth power, is capable of producing matrix
products {〈mh, nh, ph〉} and that B, raised to the Nth power is capable of producing
matrix products {〈m′

h′ , n
′
h′ , p

′
h′〉}

We then have that we have independent matrix multiplications of the form

〈mim
′
j , nin

′
j , pip

′
j〉

where i = 1, .., h, j = 1, .., h′.
The expression ∑

h

(m′′
hn

′′
hp

′′
h)τ

can be written as ∑
h,h′

(mim
′
knin

′
kpip

′
k)

τ

which is equal to
(
∑

h

∑
h′

(mhnhph)τ (mh′nh′ph′)τ).

We get ∑
h

(mhnhph)τ ×
∑
h′

(mh′nh′ph′)τ .

Thus (Vτ,N (A⊗B))3N ≥ (Vτ,N (A))3N × (Vτ,N (B))3N

We need to take 3Nth roots, let N →∞ and find the supremum. Since the
supremum of the product of two sequences is greater than or equal to the product of
the two suprema, we may take the suprema of both expressions to obtain

Vτ (A⊗B) ≥ Vτ (A)× Vτ (B)

46

A corollary of this is that Vτ (A) = Vτ (π(A)) = Vτ (π2(A)).
The value is also super-additive:

Vτ (A⊕B) ≥ Vτ (A) + Vτ (B).

Proof. We start by considering the expression

(A⊕B)⊗ π(A⊕B)⊗ π2(A⊕B). (2.3)

We raise this expression to the Nth power. We obtain expressions of the form

Ak1 ⊗ π(A)k2 ⊗ π2(A)k3 ⊗Bk4 ⊗ π(B)k5 ⊗ π2(B)k6

where k1, .., k6 ≥ 0 and
∑

i ki = 3N . We consider only the terms with
k1 = k2 = k3 = k and k4 = k5 = k6 = N − k. For a particular k, there are

(
(
N

k

)
)3

terms.
These will be isomorphic to Ak ⊗ π(A)k ⊗ π2(A)k ⊗BN−k ⊗ π(B)N−k ⊗ π2(B)N−K .
If Ak ⊗ π(A)k ⊗ π2(A)k is capable of producing a direct sum of matrix products
{〈mh, nh, ph〉} and BN−k ⊗ π(B)N−k ⊗ π2(B)Nk is capable of producing a direct sum
of matrix products {〈m′

h′ , n
′
h′ , p

′
h′〉}, then we obtain that the total for

Ak ⊗ π(A)k ⊗ π2(A)k ⊗BN−k ⊗ π(B)N−k ⊗ π2(B)N−K is at least

(
∑

h

(mhnhph)τ)(
∑
h′

(m′
h′n

′
h′p

′
h′)

τ).

Thus we have, for a given k, that the value is

(
(
N

k

)
)3(

∑
h

(mhnhph)τ)(
∑
h′

(m′
h′n

′
h′p

′
h′)

τ).

= (
(
N

k

)
)3Vτ,k(A)3kVτ,N−k(B)3(N−k)

We choose k to maximise this expression. We find that

k =
Vτ,k(A)N

Vτ,k(A) + Vτ,N−k(B)

will maximise it at approximately

(Vτ,k(A) + Vτ,N−k(B))3N

Hence, taking 3Nth roots and letting N (and hence k, N − k) go to infinity, we may
obtain

Vτ (A⊕B) ≥ Vτ (A) + Vτ (B)

as required.

47

Now, we take the tensor square of the original construction, and we relabel the
superscripts. We get that, in (q + 2)2 multiplications, we obtain the algorithm

q∑
i,k=1

(x[0]
0,0y

[2]
i,kz

[2]
i,k + x

[1]
0,ky

[1]
i,0z

[2]
i,k + x

[1]
0,ky

[2]
i,kz

[1]
i,0

+x[1]
i,0y

[1]
0,kz

[2]
i,k + x

[2]
i,ky

[0]
0,0z

[2]
i,k + x

[2]
i,ky

[1]
0,kz

[1]
i,0

+x[1]
i,0y

[2]
i,kz

[1]
0,k + x

[2]
i,ky

[1]
i,0z

[1]
0,k + x

[2]
i,ky

[2]
i,kz

[0]
0,0)

+
q∑

i=1

(x[2]
0,q+1y

[1]
i,0z

[1]
i,0 + x

[0]
0,0y

[3]
i,q+1z

[1]
i,0 + x

[0]
0,0y

[1]
i,0z

[3]
i,q+1

+x[3]
i,q+1y

[0]
0,0z

[1]
i,0 + x

[1]
i,0y

[2]
0,q+1z

[1]
i,0 + x

[1]
i,0y

[0]
0,0z

[3]
i,q+1

+x[3]
i,q+1y

[1]
i,0z

[0]
0,0 + x

[1]
i,0y

[3]
i,q+1z

[0]
0,0 + x

[1]
i,0y

[1]
i,0z

[2]
0,q+1)

+
q∑

k=1

(x[2]
q+1,0y

[1]
0,kz

[1]
0,k + x

[3]
q+1,ky

[0]
0,0z

[1]
0,k + x

[3]
q+1,ky

[1]
0,kz

[0]
0,0

+x[0]
0,0y

[3]
q+1,kz

[1]
0,k + x

[1]
0,ky

[2]
q+1,0z

[1]
0,k + x

[1]
0,ky

[3]
q+1,kz

[0]
0,0

+x[0]
0,0y

[1]
0,kz

[3]
q+1,k + x

[1]
0,ky

[0]
0,0z

[3]
q+1,k + x

[1]
0,ky

[1]
0,kz

[2]
q+1,0)

+(x[4]
q+1,q+1y

[0]
0,0z

[0]
0,0 + x

[2]
q+1,0y

[2]
0,q+1z

[0]
0,0 + x

[2]
q+1,0y

[0]
0,0z

[2]
0,q+1 + x

[2]
0,q+1y

[2]
q+1,0z

[0]
0,0

+x[0]
0,0y

[4]
q+1,q+1z

[0]
0,0 + x

[0]
0,0y

[2]
q+1,0z

[2]
0,q+1 + x

[2]
0,q+1y

[0]
0,0z

[2]
q+1,0 + x

[0]
0,0y

[0]
0,0z

[4]
q+1,q+1).

Again, this is not a matrix product, but we can use theorem 7 to use this algorithm to
find a value of ω.
As stated, the variables divide into five blocks:

X [0] = {x0,0}, a scalar

X [1] = {xi,0, x0,k}, a vector of length 2q

X [2] = {xq+1,0, xi,k, x0,q+1}, a vector of length q2 + 2

X [3] = {xq+1,k, xi,q+1}, a vector of length 2q

X [4] = {xq+1,q+1}, a scalar.

We note that this algorithm splits into four different types of trilinear form. Three of
these are matrix products: the fourth is not, and we use the notion of “value” to
estimate the size of matrix products it can simulate as N gets larger.
The first is simply a scalar multiplication:

X [0]Y [0]Z [4] = x
[0]
0,0y

[0]
0,0z

[4]
q+1,q+1

Scalar multiplications are matrix products of size 〈1, 1, 1〉 and hence the “value” of
this trilinear form is 1. There are three such trilinear forms:

X [0]Y [0]Z [4], X [0]Y [4]Z [0], X [4]Y [0]Z [0]

48

The second is a multiplication of a vector by a scalar:

X [0]Y [1]Z [3] =
q∑

i=1

x
[0]
0,0y

[1]
i,0z

[3]
i,q+1 +

q∑
k=1

x
[0]
0,0y

[1]
0,kz

[3]
q+1,k

that is, a scalar x0,0 times a vector 〈yi,0, y0,k〉. It has size 〈1, 1, 2q〉, and hence value
(2q)τ . There are six such trilinear forms:

X [0]Y [1]Z [3], X [0]Y [3]Z [1], X [1]Y [0]Z [3], X [1]Y [3]Z [0], X [3]Y [1]Z [0], X [3]Y [0]Z [1].

The third is a multiplication of a vector of a different size by a scalar:

X [0]Y [2]Z [2] = x
[0]
0,0y

[2]
q+1,0z

[2]
0,q+1 + x

[0]
0,0y

[2]
0,q+1z

[2]
q+1,0 +

q∑
i,k=1

x
[0]
0,0y

[2]
i,kz

[2]
i,k

that is, a scalar x0,0 times a vector 〈yq+1,0, y0,q+1yi,k〉. It has size 〈1, 1, (q2 + 2)〉 and
hence has value (q2 + 2)τ .
There are three such trilinear forms:

X [0]Y [2]Z [2], X [2]Y [0]Z [2], X [0]Y [2]Z [2].

The final trilinear form

X [1]Y [1]Z [2] =
q∑

i=1

x
[1]
i,0y

[1]
i,0z

[2]
0,q+1 +

q∑
k=1

x
[1]
0,ky

[1]
0,kz

[2]
q+1,0

+
q∑

i,k=1

x
[1]
i,0y

[1]
0,kz

[2]
i,k +

q∑
i,k=1

x
[1]
0,ky

[1]
i,0z

[2]
i,k

is not a matrix product at all, and needs to be dealt with differently. This is where
the notion of “value” is most useful, and this will be demonstrated in a lemma in the
next section, which will show its “value” for q > 3 is at least

22/3qτ (q3τ + 2)1/3.

As discussed above, this number represents both the size and number of independent
matrix products that the trilinear form is capable of producing when it is raised to a
large power.
We now take the Nth tensor power of the square of the algorithm, with N divisible
by 3. Let αl, 0 ≤ l ≤ 4 be be positive real numbers such that

4∑
l=0

αl = 1,
4∑

l=0

lαl = 4/3

and let Al be integer approximations to αlN such that

4∑
l=0

Al = N,

4∑
l=0

lAl = 4N/3.

and retain only those blocks of variables (X [I]Y [J]Z [K]) such that

49

#{i|1 ≤ j ≤ N, Ii = l} = Al

#{j|1 ≤ j ≤ N, Jj = l} = Al

#{k|1 ≤ j ≤ N,Kk = l} = Al.

Informally, when we set the αl we say that we will retain only those X-blocks which
contain α0 entries of 0, α1 entries of 1 and so on. The additional restriction

4∑
l=0

lαl = 4/3

arises from the fact that Ii + Ji +Ki = 4 for all i, and hence
∑N

i=1 Ii + Ji +Ki = 4N .
By definition of the Al we have that

∑N
i=1 Ii =

∑4
l=0Al, and if we set the same

possible partitioning on J and K, it follows that 3
∑4

l=0 lAl = 4N . We discard any
blocks that do not have the above restriction.
A particular set {A0, A1, A2, A3, A4} means that there are(

N

A0

)(
N −A0

A1

)(
N −A0 −A1

A2

)(
N −A0 −A1 −A2

A3

)
possible X-blocks remaining. We will represent this (and similar expressions) as(

N

A0, A1, A2, A3, A4

)
for convenience.
We suppose that for a given block X [I]Y [J]Z [K] that ηl,m,n is the number of times
that (Ii, Jj ,Kk) = (l,m, n). Some restrictions on the ηl,m,n immediately arise:

∑
m,n

ηl,m,n = Al∑
l,n

ηl,m,n = Am∑
l,m

ηl,m,n = An∑
l,m,n

ηl,m,n = 1.

It should be noted that these blocks are not in themselves matrix products. Rather,
they represent the sum of several independent matrix products. We have that the
each block has a “value”: this is represented by

(2q)(η1,0,3+η1,3,0+η3,0,1+η3,1,0+η0,1,3+η0,3,1)τ (q2 + 2)(η2,2,0+η2,0,2+η0,2,2)τ ×
×(22/3qτ (q3τ + 2)1/3)(η2,1,1+η1,2,1+η1,1,2)τ .

This value is the sum
∑

h(mhnhph)τ of all the independent matrix products generated
by this combination of the ηl,m,n.
For a given partition {ηl,m,n}, the number of nonzero triples containing a given block

50

X [I] is (
A0

η0,m,n

)(
A1

η1,m,n

)(
A2

η2,m,n

)(
A3

η3,m,n

)(
A4

η4,0,0

)
where η0,m,n = {η0,0,4, η0,4,0, η0,1,3, η0,3,1, η0,2,2} and analogously for other ηl,m,n.
This is equal to ∏

0≤l≤4Al!∏
l+m+n=4 ηl,m,n!

hence the total number of nonzero triples containing a given X-block is

M ′′ =
∑

ηl,m,n

∏
0≤l≤4Al!∏

l+m+n=4 ηl,m,n!
.

and we say that this summand is maximized at

ηl,m,n = γl,m,n

γ0,0,4 = γ0,4,0 = γ4,0,0 = â

γ0,1,3 = γ0,3,1 = γ1,0,3 = γ1,3,0 = γ3,0,1 = γ3,1,0 = b̂

γ0,2,2 = γ2,0,2 = γ2,2,0 = ĉ

γ1,1,2 = γ1,2,1 = γ2,1,1 = d̂

A0 = 2â+ 2b̂+ ĉ

A1 = 2b̂+ 2d̂
A2 = 2ĉ+ d̂

A3 = 2b̂
A4 = â.

The symmetry arises from the fact that, if we fix k,

Ak =
∑
m,n

ηk,m,n =
∑
l,m

ηl,m,k =
∑
l,n

ηl,k,n.

If we set k = 4 we automatically get γ0,0,4 = γ0,4,0 = γ4,0,0 = â. For k = 3, we also get
that η3,1,0 = A3 − η3,0,1, η1,3,0 = A3 − η0,3,1, η1,0,3 = A3 − η0,1,3. Using the fact that
η0,2,2 = A0 − 2A6 − η0,3,1 − η0,1,3 (and similar expressions for η2,0,2 and η2,2,0), and
η2,1,1 = A2 − η2,2,0 − η2,0,2 (and similar expressions for η1,2,1 and η1,1,2), we find that,
given A0, .., A6, that setting η3,0,1, η0,3,1, η0,1,3 will force all the other values of ηl,m,n.
If we rewrite all the terms of

F =

∏
0≤l≤4Al!∏

l+m+n=4 ηl,m,n!

in terms of these three variables, approximate using Stirling’s formula, and take logs,
we find that

51

∂F

∂η1,0,3
= log(η1,0,3)− log(η0,1,3) + log(η0,2,2)− log(η2,0,2) +

+ log(η2,1,1)− log(η1,2,1)
∂F

∂η0,3,1
= log(η1,3,0)− log(η0,3,1)− log(η0,2,2) + log(η2,0,2)−

− log(η2,1,1) + log(η1,1,2)
∂F

∂η3,0,1
= log(η3,0,1)− log(η3,1,0) + log(η2,2,0)− log(η2,0,2) +

+ log(η1,1,2)− log(η1,2,1).

We find that setting η3,1,0 = η3,0,1 = η1,3,0 = η0,3,1 = η1,0,3 = η0,1,3 = A3
2 will cause all

the ηl,m,n of the same type (that is, the ones of which the l,m, n are cyclic
permutations of each other) to be equal, and this will set all derivatives to zero as
required. The convexity of log(F) (due to the convexity of x log(x)) will show that
this is a maximum.
We proceed via the Salem-Spencer method as before: Set M = 300030M ′′ + 1,
construct a Salem-Spencer set B of size greater than M1−ε (as we can, for large
enough N) and choose random weights wj , 0 ≤ j ≤ N from the set {0, ..,M − 1}. We
define our functions as before with a slight modification:

bX(I) =
N∑

i=1

Iiwi mod M

bY (J) = w0 +
N∑

i=1

Jiwi mod M

bZ(K) =
1
2
(w0 +

N∑
i=1

(4−Ki)wi) mod M.

Since M is odd and coprime to 300030 (and hence division mod M by all integers
up to 15 is well defined), we have that all Ijwj are independent uniform random
variables, and thus by arguments as above, we have that bX(I) are independent of all
possible bY (J) and that all bY (J) are independent of each other.
We proceed as before: we choose an element from B and compute the expected
number of triples such that bX(I) = bY (J) = bZ(K) = b ∈ B. If any block I or J does
not map into any b ∈ B, we set it to zero.
This number is

M ′′

M2

(
N

A0, A1, A2, A3, A4

)
We then find the expected number of pairs with bX(I) = bY (J) = bY (J ′) = b ∈ B: if
we find that two triples share an X-block (for example) then we set one of the
Y -blocks to zero. This means we subtract about

3(M ′′)(M ′′ − 1)
M3

(
N

A0, A1, A2, A3, A4

)

52

triples. Thus we have more than

M1−ε

cM

(
N

A0, A1, A2, A3, A4

)
triples remaining, where c > 0 is a constant.
The Salem-Spencer method has only accounted for the number of X-blocks
containing 0,1 etc. and not individual distributions of ηl,m,n: we must choose values of
ηl,m,n such that we maximise the right hand side of theorem 7.
Recall that the value of each triple of blocks is about

Vtot = (2q)(η1,0,3+η1,3,0+η3,0,1+η3,1,0+η0,1,3+η0,3,1)τ ×
× (q2 + 2)(η2,2,0+η2,0,2+η0,2,2)τ (22/3qτ (q3τ + 2)1/3)(η2,1,1+η1,2,1+η1,1,2)τ .

There are
(

N
A0,A1,A2,A3,A4

)
blocks remaining. We wish to determine how many of these

contain a particular set of {ηl,m,n}. If we let Mηl,m,n
be the number of Y -blocks that,

given a block X, cause {ηl,m,n} to arise, we have that, since there are(
N

A0, A1, A2, A3, A4

)
blocks in total,that we must have about(

N

A0, A1, A2, A3, A4

)
Mηl,m,n

M ′′

of a particular type.
We approximate M ′′ by its largest term M ′′

max(which was shown earlier to be attained
when γl,m,n were symmetric) times a polynomial N3. This arises because, given
A0, .., A6, M ′′ has three degrees of freedom: these can take values between 0 and N , so
N3M ′′

max is therefore an approximation of M ′′. This means that, since the “value” of
each block represents the sum of independent matrix products, by theorem 7, we have

(q + 2)2 ≥ 1
Np

(
N

A0, A1, A2, A3, A4

)
Mηl,m,n

M ′′
max

Vtot.

Since M ′′
max is determined by the values of A0, .., A4, we must find the maximal value

of the numerator given A0, .., A4. Recalling the symmetry that is forced upon the
ηl,m,n, we discover that only the η1,0,3 terms (and permutations thereof) are not
forced by the A0, .., A4. A similar calculation shows that the numerator is maximised
when all these terms are equal: thus the Mηl,m,n

/M ′′
max term becomes 1, and the

“value” of each block becomes

(2q)6τ b̂(q2 + 2)3τ ĉ[4q3τ (q3τ + 2)]d̂

and the auxiliary equation is therefore

(q + 2)2N ≥ N−p

(
N

A0, A1, A2, A3, A4

)
(2q)6τ b̂(q2 + 2)3τ ĉ[4q3τ (q3τ + 2)]d̂.

We choose â, b̂, ĉ, d̂ to maximize the right hand side. If we let â
N = a and so on, we

get, using Striling’s Formula, letting N grow and taking Nth roots, that

53

(q + 2)2 =
(2q)6τb(q2 + 2)3τc[4q3τ (q3τ + 2)]d

(2a+ 2b+ c)(2a+2b+c)(2b+ 2d)(2b+2d)(2c− d)(2c−d)(2b)(2b)(a)(a)

we find that for

a = 0.000233
b = 0.012506
c = 0.102546
d = 0.205542

q = 6

ω < 2.375477.

2.7 Values and C-tensors

In his paper [26], Strassen describes the notion of C-tensors,and Coppersmith and
Winograd [12] make use of them to estimate the “value” of the X [1]Y [1]Z [2] trilinear
form. However, we can avoid their use and still get the same “value” by using the fact
that the notion of value is symmetrized. We will demonstrate this in the following
lemma:

Lemma 17. The “value” of the trilinear form

X [1]Y [1]Z [2] =
q∑

i=1

x
[1,0]
i,0 y

[1,0]
i,0 z

[0,2]
0,q+1 +

q∑
k=1

x
[0,1]
0,k y

[0,1]
0,k z

[2,0]
q+1,0

+
q∑

i,k=1

x
[1,0]
i,0 y

[0,1]
0,k z

[1,1]
i,k +

q∑
i,k=1

x
[0,1]
0,k y

[1,0]
i,0 z

[1,1]
i,k

is at least

(22/3)qτ (q3τ + 2)1/3.

Proof. We have, from the definition of “value” that the value of this trilinear form is
at least

Vτ (X [1]Y [1]Z [2]) ≥ (
∑

h

(mhnhph)τ)1/3N .

where the 〈mh, nh, ph〉 are the independent matrix products generated by raising each
of (X [1]Y [1]Z [2], X [1]Y [2]Z [1], X [2]Y [1]Z [1]) to the Nth power, and tensor multiplying
the resulting blocks together.
We raise each of the cyclic permutations of X [1]Y [1]Z [2] to the 2Nth power, and
tensor the resulting trilinear forms together. We have that each block has X, Y and
Z blocks which have superscripts in the set

{[1, 0], [0, 1], [1, 1], [0, 2], [2, 0]}6N .

In the X [1]Y [1]Z [2] and X [1]Y [2]Z [1] sections of the vectors, we retain only those
X-blocks that have N indices of (0, 1) and N indices of (1, 0). In the X [2]Y [1]Z [1]

54

section, we retain those blocks that have L indices of (2, 0), L indices of (0, 2) and 2G
indices of (1, 1).
In the X [1]Y [1]Z [2] and X [2]Y [1]Z [1] sections of the vectors, we retain only those
Y -blocks that have N indices of (0, 1) and N indices of (1, 0). In the X [1]Y [2]Z [1]

section, we retain those blocks that have L indices of (2, 0), L indices of (0, 2) and 2G
indices of (1, 1).
Finally, in the X [2]Y [1]Z [1] and X [1]Y [2]Z [1] sections of the vectors, we retain only
those Z-blocks that have N indices of (0, 1) and N indices of (1, 0). In the
X [1]Y [1]Z [2] section, we retain those blocks that have L indices of (2, 0), L indices of
(0, 2) and 2G indices of (1, 1).
The number of possible X-blocks is(

2N
N

)2(2N
L,L, 2G

)
and the number of blocks containing a given X-block is(

N

L

)4(2G
G

)
which is the same for Y and Z-blocks.
Set M = 6

(
2G
G,G

)(
N

G,L

)4
+ 1, and random weights {w01, w02, .., w6N 1, w6N 2}. We then

define our Salem-Spencer functions:

bX(I) =
6N∑
i=1

(Ii1wi1 + Ii2wi2)

bY (J) = w0 +
6N∑
i=1

(Ji1wi1 + Ji2wi2)

bZ(K) =
1
2
(
∑
6N

(4−Ki1 −Ki2)wi).

The expected number of triples such that bX(I) = bY (J) = b ∈ B is(
2N
N

)2(2N
L,L, 2G

)(
N

L

)4(2G
G

)
1
M2

.

We set to zero any blocks that do not map into any b ∈ B.
The expected number of pairs sharing an X-block is(

2N
N

)2(2N
L,L, 2G

)(
N

L

)4(2G
G

)
(
(
N

L

)4(2G
G

)
− 1)

1
M3

.

and similarly for Y and Z-blocks. We set appropriate blocks to zero to eliminate
these pairs.
We are left with more than

M1−ε

M

(
2N
N

)2(2N
L,L, 2G

)
triples remaining. Each block represents matrix products of size 〈m,n, p〉 with
mnp = q24G+12L. Hence the auxiliary equation is

55

V 6N
τ '

(
2N
N

)2(2N
L,L, 2G

)
q(12G+6L)τ

' (2N)2N (2N)2N (2N)2N

(N)N (N)N (N)N (N)N (L)L(L)L(2G)2G
q(12G+6L)τ

' 26NN2N

(L)2L22GG2G
q(12G+6L)τ

' 24N+2L

(
N

L

)2

q(12G+6L)τ

' 24Nq6Nτ

(
N

L

)2

22L(q3τ)2G.

We find that this expression is maximised at

L =
2N

q3τ + 2
, G =

q3τN

q3τ + 2
.

which yields the maximum of 24Nq6Nτ (q3τ + 2)2N . We let N grow and take 6Nth
roots and we thus obtain

Vτ ≥ 22/3qτ (q3τ + 2)1/3

which is the same as the value obtained in [12]

The paper mentions two other possibilities: they suggest setting

w3j−2 = w3j−1 = w3j ,

which we will investigate in the next chapter. The other alternative

w2j−1 = −2w2j

yields different trilinear forms, but does not seem to provide a better estimate for ω.

56

Chapter 3

Extending Coppersmith and
Winograd to the Third Tensor
Power

Further to Coppersmith and Winograd’s “coupling the weights”’ ([12],section 8) we
now investigate the dependence w3j = w3j−1 = w3j−2. We use the same notion of
“value” Vτ as before.
Now, we start with the tensor cube of Construction (10) in the Coppersmith and
Winograd paper [12] (which is too long to produce here). This is neither a matrix
product, nor a C-tensor, but we proceed as before, albeit with some differences
regarding the final optimization.
Now, we divide the (q + 2)3 x-variables into seven blocks:

X [0] = {x[0]
0,0,0}

X [1] = {x[1]
i,0,0, x

[1]
0,j,0, x

[1]
0,0,k}

X [2] = {x[2]
i,j,0, x

[2]
i,0,k, x

[2]
0,j,k, x

[2]
q+1,0,0, x

[2]
0,q+1,0, x

[2]
0,0,q+1}

X [3] = {x[3]
i,j,k, x

[3]
q+1,j,0, x

[3]
q+1,0,k, x

[3]
i,q+1,0, x

[3]
i,0,q+1, x

[3]
0,q+1,k, x

[3]
0,j,q+1}

X [4] = {x[4]
i,j,q+1, x

[4]
i,q+1,k, x

[4]
q+1,j,k, x

[4]
q+1,q+1,0, x

[4]
q+1,0,q+1, x

[4]
0,q+1,q+1}

X [5] = {x[5]
q+1,q+1,k, x

[5]
q+1,j,q+1, x

[5]
i,q+1,q+1}

X [6] = {x[6]
q+1,q+1,q+1}

We note that if X [I]Y [J]Z [K] appears in a trilinear form, then I + J +K = 6, and
hence the trilinear form can be written in block form as∑

I+J+K=6

X [I]Y [J]Z [K].

3.1 Trilinear Forms

There are seven types of terms in this trilinear form. The first

X [0]Y [0]Z [6] = x
[0]
0,0,0y

[0]
0,0,0z

[6]
q+1,q+1,q+1.

is a matrix product of size 〈1, 1, 1〉, that is, a scalar x0,0,0 times another scalar y0,0,0,

57

whose “value” is 1. There are three such terms:

X [0]Y [0]Z [6], X [0]Y [6]Z [0], X [6]Y [0]Z [0].

The second term

X [0]Y [1]Z [5] =
q∑

i=1

x
[0]
0,0,0y

[1]
i,0,0z

[5]
i,q+1,q+1 +

+
q∑

j=1

x
[0]
0,0,0y

[1]
0,j,0z

[5]
q+1,j,q+1 +

q∑
k=1

x
[0]
0,0,0y

[1]
0,0,kz

[5]
q+1,q+1,k.

is a matrix product of size 〈1, 1, 3q〉, a scalar x0,0,0 times a vector

〈yi,0,0, y0,j,0, y0,0,k〉

whose “value” is (3q)τ . There are six such terms:

X [0]Y [1]Z [5] X [0]Y [5]Z [1] X [1]Y [0]Z [5]

X [1]Y [5]Z [0] X [5]Y [1]Z [0] X [5]Y [0]Z [1].

The third term

X [0]Y [2]Z [4] =
q∑

i,j=1

x
[0]
0,0,0y

[2]
i,j,0z

[4]
i,j,q+1 +

q∑
j,k=1

x
[0]
0,0,0y

[2]
0,j,kz

[4]
q+1,j,k +

+
q∑

i,k=1

x
[0]
0,0,0y

[2]
i,0,kz

[4]
i,q+1,k +

+ x
[0]
0,0,0y

[2]
q+1,0,0z

[4]
0,q+1,q+1 + x

[0]
0,0,0y

[2]
0,q+1,0z

[4]
q+1,0,q+1 +

+ x
[0]
0,0,0y

[2]
0,0,q+1z

[4]
q+1,q+1,0

This is a matrix product of size
〈
1, 1, 3q2 + 3

〉
, a scalar x0,0,0 times a vector

〈yi,j,0, y0,j,k, yi,0,k, yq+1,0,0, y0,q+1,0, y0,0,q+1〉

, with “value” (3q2 + 3)τ . There are six such terms:

X [0]Y [2]Z [4] X [0]Y [4]Z [2] X [2]Y [0]Z [4]

X [2]Y [4]Z [0] X [4]Y [2]Z [0] X [4]Y [0]Z [2].

58

The fourth term

X [0]Y [3]Z [3] =
q∑

i,j,k=1

x
[0]
0,0,0y

[3]
i,j,kz

[3]
i,j,k +

q∑
i=1

x
[0]
0,0,0y

[3]
i,q+1,0z

[3]
i,0,q+1 +

+
q∑

i=1

x
[0]
0,0,0y

[3]
i,0,q+1z

[3]
i,q+1,0 + +

q∑
j=1

x
[0]
0,0,0y

[3]
q+1,j,0z

[3]
i,q+1,0 +

+
q∑

j=1

x
[0]
0,0,0y

[3]
0,j,q+1z

[3]
q+1,j,0 +

q∑
k=1

x
[0]
0,0,0y

[3]
0,q+1,kz

[3]
q+1,0,k +

+
q∑

k=1

x
[0]
0,0,0y

[3]
q+1,0,kz

[3]
0,q+1,k

This is a scalar x0,0,0 times a vector of length q3 + 6q

〈yi,j,k, yi,q+1,0, yi,0,q+1, yq+1,j,0, y0,j,q+1, y0,q+1,k, yq+1,0,k〉

that is a matrix product of size
〈
1, 1, q3 + 6q

〉
, with “value” (q3 + 6q)τ . There are

three such terms:

X [0]Y [3]Z [3] X [3]Y [0]Z [3] X [3]Y [3]Z [0].

The remaining trilinear forms are neither matrix products nor are they C-tensors. We
deal with them in a similar way to how we dealt with the X [1]Y [1]Z [2] form in the
previous chapter: we raise them to a large power and set appropriate blocks to zero in
the resulting trilinear form, and we use both the size and number of the remaining
triples to come up with an estimate for ”value“ of these trilinear forms, which will be
realised when N is large.
The X [1]Y [1]Z [4] term contains nine blocks:

q∑
i,j=1

x
[1]
i,0,0y

1
0,j,0z

[4]
i,j,q+1 +

∑q
i,j=1 x

[1]
0,j,0y

1
i,0,0z

[4]
i,j,q+1 +

q∑
j,k=1

x
[1]
0,j,0y

1
0,0,kz

[4]
q+1,j,k +

q∑
j,k=1

x
[1]
0,0,ky

1
0,j,0z

[4]
q+1,j,k +

∑q
i,k=1 x

[1]
i,0,0y

1
0,0,kz

[4]
i,q+1,k +

q∑
i,k=1

x
[1]
0,0,ky

1
i,0,0z

[4]
i,q+1,k +

q∑
i=1

x
[1]
i,0,0y

1
i,0,0z

[4]
0,q+1,q+1 +

∑q
j=1 x

[1]
0,j,0y

1
0,j,0z

[4]
q+1,0,q+1 +

q∑
k=1

x
[1]
0,0,ky

1
0,0,kz

[4]
q+1,q+1,0

and it will be shown in lemma 18 that the ”value“ is at least 3qτ (1 + q3τ)1/3. There
are three such terms:

X [1]Y [1]Z [4] X [4]Y [1]Z [1] X [1]Y [4]Z [1].

59

The X [1]Y [2]Z [3] term contains fifteen blocks:
q∑

i,j,k=1

x
[1]
i,0,0y

[2]
0,j,kz

[3]
i,j,k +

∑q
i,j,k=1 x

[1]
0,j,0y

[2]
i,0,kz

[3]
i,j,k +

q∑
i,j,k=1

x
[1]
0,0,ky

[2]
i,j,0z

[3]
i,j,k +

q∑
i,j=1

x
[1]
0,j,0y

[2]
i,j,0z

[3]
i,0,q+1 +

∑q
i,j=1 x

[1]
i,0,0y

[2]
i,j,0z

[3]
i,0,q+1 +

q∑
j,k=1

x
[1]
0,j,0y

[2]
0,j,kz

[3]
q+1,0,k +

q∑
j,k=1

x
[1]
0,0,ky

[2]
0,j,kz

[3]
q+1,j,0 +

∑q
i,k=1 x

[1]
0,0,ky

[2]
i,0,kz

[3]
i,q+1,0 +

q∑
i,k=1

x
[1]
i,0,0y

[2]
i,0,kz

[3]
0,q+1,k +

q∑
i=1

x
[1]
i,0,0y

[2]
0,q+1,0z

[3]
i,0,q+1 +

∑q
i=1 x

[1]
i,0,0y

[2]
0,0,q+1z

[3]
i,q+1,0 +

q∑
j=1

x
[1]
0,j,0y

[2]
q+1,0,0z

[3]
0,j,q+1 +

q∑
j=1

x
[1]
0,j,0y

[2]
0,0,q+1z

[3]
q+1,j,0 +

∑q
k=1 x

[1]
0,0,ky

[2]
0,q+1,0z

[3]
q+1,0,k +

q∑
k=1

x
[1]
0,0,ky

[2]
q+1,0,0z

[3]
0,q+1,k.

and there are six such terms:

X [1]Y [2]Z [3] X [1]Y [3]Z [2] X [2]Y [1]Z [3]

X [2]Y [3]Z [1] X [3]Y [1]Z [2] X [3]Y [2]Z [1].

We will show in lemma 19 that the ”value“ of this trilinear form is at least
32/3qτ (1 + q3τ)1/3(6 + q3τ)1/3.
The final X [2]Y [2]Z [2] term contains twenty-one blocks, and there is only one such
term (since the only superscript is 2 in this case, superscripts are omitted):

q∑
i,j,k=1

xi,j,0y0,j,kzi,0,k +
q∑

i,j,k=1

xi,j,0yi,0,kz0,j,k +
q∑

i,j,k=1

x0,j,kyi,j,0zi,0,k +

q∑
i,j,k=1

xi,0,kyi,j,0z0,j,k +
q∑

i,j,k=1

x0,j,kyi,0,kzi,j,0 +
q∑

i,j,k=1

xi,0,ky0,j,kzi,j,0 +

q∑
i,j=1

xi,j,0yi,j,0z0,0,q+1 +
q∑

i,j=1

xi,j,0y0,0,q+1zi,j,0 +
q∑

i,j=1

x0,0,q+1yi,j,0zi,j,0 +

q∑
i,k=1

x0,q+1,0yi,0,kzi,0,k +
q∑

i,k=1

xi,0,ky0,q+1,0zi,0,k +
q∑

i,k=1

xi,0,kyi,0,kz0,q+1,0 +

q∑
j,k=1

xq+1,0,0y0,j,kz0,j,k +
q∑

j,k=1

x0,j,kyq+1,0,0z0,j,k +
q∑

j,k=1

x0,j,ky0,j,kzq+1,0,0 +

xq+1,0,0y0,q+1,0z0,0,q+1 + xq+1,0,0y0,0,q+1z0,q+1,0 + x0,q+1,0yq+1,0,0z0,0,q+1 +
x0,q+1,0y0,0,q+1zq+1,0,0 + x0,0,q+1yq+1,0,0z0,q+1,0 + x0,0,q+1y0,q+1,0zq+1,0,0.

We will show in lemma 20 that the ”value“ is at least 3(1 + q3τ).

3.2 Raising the Algorithm to the Third Tensor Power

Take the Nth tensor power of the cube of construction 10 in Coppermsith and
Winograd, where N is divisible by 3. Let αl, 0 ≤ l ≤ 6, be positive real numbers such

60

that

6∑
l=0

αl = 1,
6∑

l=0

lαl = 2.

Let Al be integer approximations to αlN such that

6∑
l=0

Al = N,

6∑
l=0

lAl = 2N.

Retain only those blocks of variables such that

#{j|1 ≤ j ≤ N, Ij = l} = Al,

setting the others to zero, where as before Ij picks out the jth index position.
Let M ′′ be the number of nonzero triples (X [I], Y [J], Z [K]) containing a given block
X [I]. We have

M ′′ =
∑

{ηl,m,n}

∏
0≤l≤6Al!∏

l+m+n=6 ηl,m,n!

where {ηl,m,n} range over partitions of N such that∑
m,n

ηl,m,n = Al,
∑
l,n

ηl,m,n = Am,
∑
l,m

ηl,m,n = An

and the only nonzero values of ηl,m,n occur with l +m+ n = 6, 0 ≤ l,m, n ≤ 6. We
wish to approximate M ′′ with its largest term times a polynomial Np for some p. We
first demonstrate that at the maximal term, all the ηl,m,n are symmetric, i.e. that
ηl,m,n = ηl,n,m = ηm,l,n = ηm,n,l = ηn,m,l = ηn,l,m for all l,m, n.
We write M ′′ as

M ′′ =
(

A0

η0,0,6, η0,6,0, η0,1,5, η0,5,1, η0,4,2, η0,2,4, η0,3,3

)(
A1

η1,0,4, ...

)
× ...

then we consider that the number of triples containing a given Y block is

M ′′
Y =

(
A0

η0,0,6, η6,0,0, η1,0,5, η5,0,1, η4,0,2, η2,0,4, η3,0,3

)(
A1

η0,1,5, ...

)
× ...

and the number of triples containing a Z-block is

M ′′
Z =

(
A0

η0,6,0, η6,0,0, η1,5,0, η5,1,0, η4,2,0, η2,4,0, η3,3,0

)(
A1

η4,0,1, ...

)
× ...

Now, we suppose that we relabel the variables in M ′′ as x1, ..., xn where n is the
number of variables in M ′′. We discover that each variable in {x1, .., xn} can be
relabelled in such a way so as to create M ′′, M ′′

Y and M ′′
Z . Hence a stationary point in

any of these will also be a stationary point for the other two. We wish for the ηl,m,n

terms in M ′′, M ′′
Y and M ′′

Z to be equal. Since it appears in three different places in
the three functions, it must follow that the xi terms corresponding to these places
must all be equal.It will then follow that all the permutations of ηl,m,n will be equal
and so symmetry is proved.
We say that the summand is maximised at

61

ηl,m,n = γl,m,n

γ0,0,6 = γ0,6,0 = γ6,0,0 = â

γ0,1,5 = γ0,5,1 = γ1,0,5 = γ1,5,0 = γ5,1,0 = γ5,0,1 = b̂
γ0,2,4 = γ0,4,2 = γ2,0,4 = γ2,4,0 = γ4,2,0 = γ4,0,2 = ĉ

γ0,3,3 = γ3,3,0 = γ3,0,3 = d̂
γ1,1,4 = γ1,4,1 = γ4,1,1 = ê

γ1,2,3 = γ1,3,2 = γ2,1,3 = γ2,3,1 = γ3,2,1 = γ3,1,2 = f̂
γ2,2,2 = ĝ

A0 = 2â+ 2b̂+ 2ĉ+ d̂
A1 = 2b̂+ 2ê+ 2f̂
A2 = 2ĉ+ 2f̂ + ĝ
A3 = 2d̂+ 2f̂
A4 = 2ĉ+ ê
A5 = 2b̂
A6 = â.

M ′′ will be approximated by its largest term, times a polynomial Np. Set
M = cM ′′ + 1. The constant c will be suitably chosen in order to enable the
independence arguments of chapter 2 to hold. Construct the salem-spencer set B.
Choose random weights wj , 0 ≤ j ≤ N . The c in the definition of M ensures that the
independence arguments from the previous chapter follow (it will ensure that M is
coprime to any values that the variables may take). We define functions as follows:

bX(I) ≡
N∑

j=1

Ijwj mod M

bY (J) ≡ w0 +
N∑

j=1

Jjwj mod M

bZ(K) ≡

w0 +
N∑

j=1

(6−Kj)wj

 /2 mod M.

We have (due to independence) that the expected number of triples such that
bX(I) = bY (J) = b ∈ B is

1
M2

(
N

A0, A1, A2, A3, A4, A5, A6

)
M ′′

' 1
cM

(
N

A0, A1, A2, A3, A4, A5, A6

)
and the expected number of pairs of triples sharing an X-block such that
bX(I) = bY (J) = bY (J ′) = b ∈ B is

1
M3

(
N

A0, A1, A2, A3, A4, A5, A6

)
M ′′(M ′′ − 1)

≤ 1
c2M

(
N

A0, A1, A2, A3, A4, A5, A6

)
.

62

Thus the expected number of compatible triples remaining such that
bX(I) = bY (J) = b ∈ B and independence is not comprimised is at least, for a
constant c′ > 0

1
c′M

(
N

A0, A1, A2, A3, A4, A5, A6

)
.

The Salem-Spencer theorem states that for large enough N , the size of the
Salem-Spencer set B is greater than M1−ε. Therefore, the total number of remaining
triples is greater than

3M1−ε

100

(
N

A0, A1, A2, A3, A4, A5, A6

)
.

These, however, include all possible values of ηl,m,n. In order to maximise the
auxiliary equation at the end, it is necessary to pick out an appropriate distribution
of the ηl,m,n. Previously, due to the 1:1 relationship with the Al and the γl,m,n, this
was not necessary, but now choosing the Al does not force all of the ηl,m,n- only b̂ and
â are forced, with the remainder being subject to a single degree of freedom.
Thus, since we have approximately

M1−ε

M

(
N

A0, A1, A2, A3, A4, A5, A6

)
a fraction of these will have a particular distribution {ηl,m,n}- we wish to find the
distribution of {ηl,m,n} which maximizes the overall auxiliary equation. By similar
arguments to before, it can be shown that, for all ηl,m,n with l +m+ n = 6, the
overall auxiliary equation is maximised at {γ′l,m,n} with

γ′0,2,4 = γ′2,4,0 = γ′4,0,2 = γ′0,4,2 = γ′2,0,4 = γ′4,2,0 = ĉ′

and so on (we remember that the â and b̂ values are forced by the choice of Al so we
need not redefine them here). The proportion of remaining triples that has this
distribution will be

1
M ′′

(
A0

â′, â′, b̂′, b̂′, ĉ′, ĉ′, d̂′

)
× ... =

M ′

M ′′

Therefore, we have more than(
N

A0, A1, A2, A3, A4, A5, A6

)
M ′

M ′′

blocks with “value”

(3q)6τ b̂(3q2 + 3)6τ ĉ′(q3 + 6q)3τ d̂′ ×

×3qτ (1 + q3τ)ê′(32/3qτ (1 + q3τ)1/3(6 + q3τ)1/3)6f̂ ′3(1 + q3τ)ĝ′ .

remaining and our auxiliary equation is therefore

63

(q + 2)3N ≥ M1−ε

M

(
N

A0, A1, A2, A3, A4, A5, A6

)
M ′

M ′′ ×

× (3q)6τ b̂(3q2 + 3)6τ ĉ′(q3 + 6q)3τ d̂′ ×

× 3qτ (1 + q3τ)ê′(32/3qτ (1 + q3τ)1/3(6 + q3τ)1/3)6f̂ ′3(1 + q3τ)ĝ′ .

We find that if we allow ĉ to vary, the maximal term of M ′′, given A0, ..A6 occurs
when ĉ = d̂êĝ

f̂2
. Thus, we choose values b̂, d̂, ê, f̂ , ĝ, forcing the value of â (due to the

restriction that 3â+ 6b̂+ 6ĉ+ 3d̂+ 3ê+ 6f̂ + ĝ = N) , ĉ and all the Al.Multiplying
this by a polynomial Np gives us an approximation for M ′′. We call this choice Mmax.
The auxiliary equation becomes

(q + 2)3N ≥ N−p

(
N

A0, A1, A2, A3, A4, A5, A6

)
M ′

Mmax
×

× (3q)6τ b̂(3q2 + 3)6τ ĉ′(q3 + 6q)3τ d̂′ ×

× 3qτ (1 + q3τ)ê′(32/3qτ (1 + q3τ)1/3(6 + q3τ)1/3)6f̂ ′3(1 + q3τ)ĝ′ .

Using these values for Al, we then allow ĉ′ to vary in the numerator, allowing us to
choose a ĉ′ which maximises the numerator. Thus, the right hand side is a function of
six variables. We set a = â/N and similarly for b̂, ĉ, etc.. We also set c′ = ĉ′/N and
similarly for d̂′, ê′ etc. Taking Nth roots and letting N grow, we find that the right
hand side is maximised at

a = 0.0000515
b = 0.000319
c = 0.006855
d = 0.03722085
e = 0.009132
f = 0.101608
g = 0.208233618
c′ = 0.0069335
d
′ = 0.03705988500
e′ = 0.0089710
f
′ = 0.101769
g′ = 0.2077550
q = 6.

setting ω = 2.375477 gives the right hand side a value of 507.85, so this algorithm will
not provide an improvement for the value of ω.
An alternative way of doing this is to regard the blocks as a product of the original
algorithm times its square- this takes advantage of the improvements already gained
from squaring the algorithm, and increases the right hand side slightly, but not
enough to reduce the value of ω.
As an example, we take the X [1]Y [1]Z [4] term. We may regard this as

64

X0Y [0]Z [4] ⊗X [1]Y [1]Z [0] ⊕X1Y [1]Z [2] ⊗X [0]Y [0]Z [2] ⊕X0Y [1]Z [3] ⊗X [1]Y [0]Z [1].

The first block has “value” qτ , the second has “value” 22/3qτ (1 + q3τ)1/3, and the
third has “value” (2q2)τ .
We use a similar technique as below to evaluate the overall “values” of these trilinear
forms. On setting q = 6, τ = 2.375477/3, we obtain the numerical value of this
trilinear form as being greater than 54.57, while the numerical value of the one shown
below is greater than 51.46. We find that all the trilinear forms with non-zero terms
have values greater than their equivalents in the method we show below: however, as
stated, this does not affect the value of ω. However, this method will become useful in
the next chapter when we investigate the dependency

w4j−3 = w4j−2 = w4j−1 = w4j .

Why does this algorithm not provide a better estimate for ω? It is probable that the
gains from squaring Coppersmith and Winograd’s original algorithm are negated by
introducing the weaker original algorithm again. Thus, taking the square of the
square (i.e. the fourth tensor power) of the original algorithm may be more condusive
to obtaining a lower estimate of ω since we retain the gains from squaring the original
algorithm, and square them again, thus possibly making further gains. We investigate
this in the next chapter.

3.3 Finding the Values of the Trilinear Forms

Lemma 18. The value of the trilinear form (rewritten to demonstrate component
parts)

q∑
i,j=1

x
[100]
i,0,0 y

[010]
0,j,0 z

[112]
i,j,q+1 +

q∑
i,j=1

x
[010]
0,j,0y

[010]
i,0,0 z

[112]
i,j,q+1 +

q∑
i,k=1

x
[100]
i,0,0 y

[001]
0,0,kz

[121]
i,q+1,k +

+
q∑

i,k=1

x
[001]
0,0,ky

[100]
i,0,0 z

[121]
i,q+1,k +

q∑
j,k=1

x
[010]
0,j,0y

[001]
0,0,kz

[211]
q+1,j,k +

q∑
j,k=1

x
[001]
0,0,ky

[010]
0,j,0 z

[211]
q+1,j,k +

+
q∑

i=1

x
[100]
i,0,0 y

[100]
i,0,0 z

[022]
0,q+1,q+1 +

q∑
j=1

x
[010]
0,j,0y

[010]
0,j,0 z

[202]
q+1,0,q+1 +

q∑
k=1

x
[001]
0,0,ky

[001]
0,0,kz

[220]
q+1,q+1,0

is at least 3qτ (1 + q3τ)
1
3 .

Proof. Take the 3Nth tensor power. Retain only those X-blocks with exactly N
indices of [100], N of [010] and N of [001]. Similarly for Y blocks. Retain those Z-
blocks with exactly 2L indices of [112], [211] and [121] and G of [022], [202] and [220].
Now, we do analogous things to 141 and 411 and tensor these together with the 114
case.
Hence the total number of X-blocks (and also Y and Z-blocks) is(

3N
N,N,N

)2(3N
2L, 2L, 2L,G,G,G

)
.

The number of nonzero triples containing a given X-block is

65

H =
(

N

L,L,G

)6(2L
L

)3

We set M = 2H + 1. We set 9N + 1 random weights

{w0, (w1)1, (w1)2, (w1)3, ..(w3N)1, (w3N)2, (w3N)3},

selected uniformly from {0, ..M − 1}. Each block will have assigned to it three vectors
in {[100], [010], [001], [211], [121], [112], [022], [202], [220]}3N .
Define three hash functions:

bX(I) =
3N∑
i=1

3∑
j=1

(Ii)j(wi)j mod M

bY (J) = w0 +
3N∑
i=1

3∑
j=1

(Ji)j(wi)j mod M

bZ(K) = (w0 +
3N∑
i=1

3∑
j=1

(2− (Ki)j)(wi)j)/2 mod M

where (Ii)j denotes the jth entry in the ith entry of I, which contains values in
{0, 1, 2}. Due to independence, the expected number of blocks such that
bX(I) = bY (J) = b ∈ B is equal to(

3N
N,N,N

)2(3N
2L, 2L, 2L,G,G,G

)(
N

L,L,G

)6(2L
L

)3

× 1
M2

which is about (
3N

N,N,N

)2(3N
2L, 2L, 2L,G,G,G

)
× 1

210M

The expected number of pairs of triples that share an X-block, and that
bX(I) = bY (J) = bY (J ′) = b ∈ B is

(
3N

N,N,N

)2(3N
2L, 2L, 2L,G,G,G

)
(
(

N

L,L,G

)6(2L
L

)3

)×

×(
(

N

L,L,G

)6(2L
L

)3

− 1)× 1
M3

which is less than (
3N

N,N,N

)2(3N
2L, 2L, 2L,G,G,G

)
× 1

2102M
.

We have that the number remaining is approximately equal to

23
4900

(
3N

N,N,N

)2(3N
2L, 2L, 2L,G,G,G

)
.

Thus the auxiliary equation is

66

V 9N
τ ≈ 23

4900

(
3N

N,N,N

)2(3N
2L, 2L, 2L,G,G,G

)
q(36L+9G)τ

≈ 39N

(
N

2L

)3

q(36L+9G)τ ≈ 39Nq9Nτ [
(
N

2L

)
q6Lτ]3

Setting G
N = q3τ

1+q3τ and 2L
N = 1

1+q3τ yields

V 9N
τ ≈ 39Nq9Nτ (1 + q3τ)3N

and hence taking 9Nth roots yields the required value.

Lemma 19. The value of the trilinear form

q∑
i,j,k=1

x
[100]
i,0,0 y

[011]
0,j,k z

[111]
i,j,k +

q∑
i,j,k=1

x
[010]
0,j,0y

[101]
i,0,k z

[111]
i,j,k +

q∑
i,j,k=1

x
[001]
0,0,ky

[110]
i,j,0 z

[111]
i,j,k +

+
q∑

i,j=1

x
[010]
0,j,0y

[110]
i,j,0 z

[102]
i,0,q+1 +

q∑
i,j=1

x
[100]
i,0,0 y

[110]
i,j,0 z

[012]
0,j,q+1 +

q∑
j,k=1

x
[010]
0,j,0y

[011]
0,j,k z

[201]
q+1,0,k +

+
q∑

j,k=1

x
[001]
0,0,ky

[011]
0,j,k z

[210]
q+1,j,0 +

q∑
i,k=1

x
[001]
0,0,ky

[101]
i,0,k z

[120]
i,q+1,0 +

q∑
i,k=1

x
[100]
i,0,0 y

[101]
i,0,k z

[021]
0,q+1,k +

+
q∑

i=1

x
[100]
i,0,0 y

[020]
0,q+1,0z

[102]
i,0,q+1 +

q∑
i=1

x
[100]
i,0,0 y

[002]
0,0,q+1z

[120]
i,q+1,0 +

q∑
j=1

x
[010]
0,j,0y

[200]
q+1,0,0z

[012]
0,j,q+1 +

+
q∑

j=1

x
[010]
0,j,0y

[002]
0,0,q+1z

[210]
q+1,j,0 +

q∑
k=1

x
[001]
0,0,ky

[020]
0,q+1,0z

[201]
q+1,0,k +

q∑
k=1

x
[001]
0,0,ky

[200]
q+1,0,0z

[021]
0,q+1,k

is at least 32/3qτ (1 + q3τ)1/3(6 + q3τ)1/3.

Proof. We proceed with a similar method to before. We take the X [1]Y [2]Z [3],
X [3]Y [1]Z [2] and X [2]Y [3]Z [1] and raise each to the 6Nth tensor power. For The
expression X [1]Y [2]Z [3], we retain only those triples which contain 2N instances of
each of [100], [010] and [001]. For X [3]Y [1]Z [2], we retain only those triples whose
X-blocks contain 6K instances of [111] and G+ L instances each of [120],
[102],[210],[201],[012] and [012] respectively. Finally, for X [2]Y [3]Z [1], we retain only
those triples whose X-blocks contain 2L+ 2K instances of each of [101],[110] and
[011] and 2G instances of each of [200],[020] and [002].
We thus have that N = G+ L+K, and that, if we choose the number of Y -blocks in
each appropriately, we can find that the number and size of matrix products (that is,
the product mnp) to be simulated will be the same for all three permutations.
Tensoring these three permutations together, we find that the number of X-blocks in
this new algorithm is

(
6N

2N, 2N, 2N

)(
6N

2L+ 2K, 2L+ 2K, 2L+ 2K, 2G, 2G, 2G

)
×

×
(

6N
6K,G+ L,G+ L,G+ L,G+ L,G+ L,G+ L

)
.

67

and the number of Y -blocks containing a given X-block is

MY =
(

2N
2K,L,L,G,G

)3(2L+ 2K
L,L, 2K

)3(2G
G,G

)3(6K
2K, 2K, 2K

)(
G+ L

G,L

)6

.

We then set M = 2MY + 1, which ensures that all the independence arguments
follow. We then choose uniform random variables w0, ..w18N over {0, ..,M − 1},
construct a Salem-Spencer set B of size close to M and define our three functions on
the blocks as above:

bX(I) =
3N∑
i=1

3∑
j=1

(Ii)j(wi)j mod M

bY (J) = w0 +
3N∑
i=1

3∑
j=1

(Ji)j(wi)j mod M

bZ(K) = (w0 +
3N∑
i=1

3∑
j=1

(2− (Ki)j)(wi)j)/2 mod M

After finding the expected number of triples such that bX(I) = bY (J) = b ∈ B and
subtracting expected number of pairs of triples such that share an X-block, Y -block
or Z-block which both map into b ∈ B, and collecting the lists for each b ∈ B
together, we find we are left with approximately

(
6N

2N, 2N, 2N

)(
6N

2L+ 2K, 2L+ 2K, 2L+ 2K, 2G, 2G, 2G

)
×

×
(

6N
6K,G+ L,G+ L,G+ L,G+ L,G+ L,G+ L

)
triples remaining. Each of these triples represents a matrix product of size 〈m,n, p〉
with

mnp = (q3)18K(q2)18L(q)18G = q56K+26L+18G.

Therefore, the “value” Vτ is such that

V 18
τ =

(
6N

2N, 2N, 2N

)(
6N

2L+ 2K, 2L+ 2K, 2L+ 2K, 2G, 2G, 2G

)
×

×
(

6N
6K,G+ L,G+ L,G+ L,G+ L,G+ L,G+ L

)
q56K+26L+18G.

Using Striling’s Formula, which approximates a! by aa, this is approximately equal to

312Nq18N (
(

N

L+K,G

)
q3(K+L)τ)6(

(
N

G+ L,K

)
q3Kτ6G+L)6

We set G = N
1+q3τ , L+K = q3τ N

1+q3τ , K = 6N
6+q3τ and G+ L = q3τ N

6+q3τ , and in doing so we
obtain that the above expression is approximately equal to

312Nq18N (1 + q3τ)6N (6 + q3τ)6N

and taking 18Nth roots, we obtain the desired expression.

68

Lemma 20. Finally, the value of the trilinear form∑
i,j,k=1

xi,j,0y0,j,kzi,0,k +
∑

i,j,k=1 xi,j,0yi,0,kz0,j,k +
∑

i,j,k=1

x0,j,kyi,j,0zi,0,k +

∑
i,j,k=1

xi,0,kyi,j,0z0,j,k +
∑

i,j,k=1 x0,j,kyi,0,kzi,j,0 +
∑

i,j,k=1

xi,0,ky0,j,kzi,j,0 +

∑
i,j=1

xi,j,0yi,j,0z0,0,q+1 +
∑

i,j=1 xi,j,0y0,0,q+1zi,j,0 +
∑
i,j=1

x0,0,q+1yi,j,0zi,j,0 +

∑
i,k=1

x0,q+1,0yi,0,kzi,0,k +
∑

i,k=1 xi,0,ky0,q+1,0zi,0,k +
∑
i,k=1

xi,0,kyi,0,kz0,q+1,0 +

∑
j,k=1

xq+1,0,0y0,j,kz0,j,k +
∑

j,k=1 x0,j,kyq+1,0,0z0,j,k +
∑

j,k=1

x0,j,ky0,j,kzq+1,0,0 +

xq+1,0,0y0,q+1,0z0,0,q+1 +xq+1,0,0y0,0,q+1z0,q+1,0 +x0,q+1,0yq+1,0,0z0,0,q+1 +
x0,q+1,0y0,0,q+1zq+1,0,0 +x0,0,q+1yq+1,0,0z0,q+1,0 +x0,0,q+1y0,q+1,0zq+1,0,0.

is at least 3(1 + q3τ).

Proof. Since X2Y 2Z2 is already a symmetric trilinear form, there is no need to
symmetrize. We raise it to the 3Nth tensor power. Each resulting block will have
associated with it three vectors in I, J,K in

{[1, 1, 0], [1, 0, 1], [0, 1, 1], [0, 0, 2], [0, 2, 0], [2, 0, 0]}3N .

We set to zero all those X-blocks which do not have α occurences of each of [1, 1, 0],
[1, 0, 1] and [0, 1, 1] and β occurences each of [0, 0, 2], [0, 2, 0] and [2, 0, 0]. We do the
same for Y and Z-blocks.The number of X-blocks is thus(

3N
α,α, α, β, β, β

)
We then have that the number of blocks containing a given X, Y or Z block is

M ′′ =
∑

L,G,K

(
α

L,L,G,G

)3(β

G,K,K

)
where we sum over all possible distributions of L,G,K. We thus have that
N = 2L+ 3G+ 2K. We set M = 2M ′′ + 1, and define random variables w0, .., w3N

over {0, ..,M − 1}. We define our hash functions

bX(I) =
3N∑
i=1

3∑
j=1

(Ii)j(wi)j mod M

bY (J) = w0 +
3N∑
i=1

3∑
j=1

(Ji)j(wi)j mod M

bZ(K) = (w0 +
3N∑
i=1

3∑
j=1

(2− (Ki)j)(wi)j)/2 mod M

69

Given M , we construct a Salem-Spencer set B of size greater than M1−ε. We set to
zero any blocks which do not map onto a b ∈ B. If two triples share an X-block, we
set to zero one of the Y -blocks contained in one of these triples (and we perform
analogous actions for triples sharing a Y or Z block). We then have about

M1−ε

M

(
3N

α,α, α, β, β, β

)
We have that these triples are matrix products of size 〈m,n, p〉 where
mnp = q18L+18G = q9α.If we choose a distribution L,G,K, we have that the overall
value of the resulting trilinear form is

M1−ε

M

(
3N

α,α, α, β, β, β

)
ML,G,K

M ′′ q9ατ .

Since the size of the matrix product is affected only by the values of α and β, we
choose L,G,K such that it matches the maximal term of M ′′, which we also
approximate by its largest term, times N . This makes the ML,G,K

M ′′ term approximately
equal to 1

N . If we let N grow and ε go to zero, we get that the value is approximately
equal to

1
N

33N [
(
N

α, β

)
q3ατ]3.

Setting α = q3τ N
1+q3τ and β = N

1+q3τ makes this expression approximately equal to

1
N

33N [1 + q3τ]3N .

Letting N grow and taking 3Nth roots, we obtain the desired estimate.

70

Chapter 4

Extending Coppersmith and
Winograd to the Fourth Tensor
Power

Raising the original Coppermsith and Winograd algorithm [12] to the third power did
not yield a reduction in the upper bound for the value of ω. However, it has provided
the framework for the method we will now use to derive an improvement.

4.1 Trilinear forms

We proceed by raising the original algorithm to the fourth tensor power, yielding 1296
different blocks. These split into ten different kinds of trilinear forms. In order to
reduce the overall number of blocks and to take advantage of the improvements
obtained by squaring the original algorithm , we regard this algorithm as the square
of the square for particular trilinear forms (as in the X [1]Y [1]Z [2] case).
These trilinear forms are as follows:

X [0]Y [0]Z [8] = x
[0]
0,0,0,0y

[0]
0,0,0,0z

[8]
q+1,q+1,q+1,q+1.

is a multiplication of two scalars, a matrix product of size 〈1, 1, 1〉 whose value is 1.
There are three such terms:

X [0]Y [0]Z [8], X [0]Y [8]Z [0], X [8]Y [0]Z [0]

The second:

X [0]Y [1]Z [7] = x
[0]
0,0,0,0y

[1]
i,0,0,0z

[7]
i,q+1,q+1,q+1 + x

[0]
0,0,0,0y

[1]
0,j,0,0z

[7]
q+1,j,q+1,q+1

+x[0]
0,0,0,0y

[1]
0,0,k,0z

[7]
q+1,q+1,k,q+1 + x

[0]
0,0,0,0y

[1]
0,0,0,lz

[7]
q+1,q+1,q+1,l.

is a matrix product of size 〈1, 1, 4q〉, that is a scalar times a vector

〈yi,0,0,0, y0,j,0,0, y0,0,k,0, y0,0,0,l〉

Its ”value” is (4q)τ . There are six such terms:

X [0]Y [1]Z [7], X [0]Y [7]Z [1], X [1]Y [0]Z [7], X [1]Y [7]Z [0], X [7]Y [1]Z [0], X [7]Y [0]Z [1]

71

The trilinear form
X [0]Y [2]Z [6]

has two parts. The first is of the form

x0,0,0,0yq+1,0,0,0z0,q+1,q+1,q+1 + x0,0,0,0y0,q+1,0,0zq+1,0,q+1,q+1

+x0,0,0,0y0,0,q+1,0zq+1,q+1,0,q+1 + x0,0,0,0y0,0,0,q+1zq+1,q+1,q+1,0

and the second is of the form

q∑
i=1

q∑
j=1

x0,0,0,0yi,j,0,0zi,j,q+1,q+1 +
q∑

i=1

q∑
k=1

x0,0,0,0yi,0,k,0zi,q+1,k,q+1

+
q∑

i=1

q∑
l=1

x0,0,0,0yi,0,0,lzi,q+1,q+1,l +
q∑

j=1

q∑
k=1

x0,0,0,0y0,j,k,0zq+1,j,k,q+1

+
q∑

j=1

q∑
l=1

x0,0,0,0y0,j,0,lzq+1,j,q+1,l +
q∑

k=1

q∑
l=1

x0,0,0,0y0,0,k,lzq+1,q+1,k,l.

Combining these yields a trilinear form which represents a scalar x0,0,0,0 times a vector

〈 yq+1,0,0,0, y0,q+1,0,0, y0,0,q+1,0, y0,0,0,q+1,

yi,j,0,0, yi,0,k,0, yi,0,0,l, y0,j,k,0, y0,j,0,l, y0,0,k,l 〉

which is a matrix product of size 〈1, 1, (4 + 6q2)〉 and hence the overall value of this
trilinear form is (4 + 6q2)τ .
We have six permutations of the blocks in the trilinear form:

X [0]Y [2]Z [6], X [0]Y [6]Z [2], X [2]Y [0]Z [6], X [2]Y [6]Z [0], X [6]Y [2]Z [0], X [6]Y [0]Z [2].

The trilinear form
X [0]Y [3]Z [5]

again has two parts.
We have

q∑
i=1

q∑
j=1

q∑
k=1

x0,0,0,0yi,j,k,0zi,j,k,q+1 +
q∑

i=1

q∑
j=1

q∑
l=1

x0,0,0,0yi,j,0,lzi,j,q+1,l

+
q∑

i=1

q∑
k=1

q∑
l=1

x0,0,0,0yi,0,k,lzi,q+1,k,l +
q∑

j=1

q∑
k=1

q∑
l=1

x0,0,0,0y0,j,k,lzq+1,j,k,l

and

q∑
i=1

x0,0,0,0yi,q+1,0,0zi,0,q+1,q+1 +
q∑

i=1

x0,0,0,0yi,0,q+1,0zi,q+1,0,q+1

+
q∑

i=1

x0,0,0,0yi,0,0,q+1zi,q+1,q+1,0 +
q∑

j=1

x0,0,0,0yq+1,j,0,0z0,j,q+1,q+1

72

+
q∑

j=1

x0,0,0,0y0,j,q+1,0zq+1,j,0,q+1 +
q∑

j=1

x0,0,0,0y0,j,0,q+1zq+1,j,q+1,0

+
q∑

k=1

x0,0,0,0yq+1,0,k,0z0,q+1,k,q+1 +
q∑

k=1

x0,0,0,0y0,q+1,k,0zq+1,0,k,q+1

+
q∑

k=1

x0,0,0,0y0,0,k,q+1zq+1,q+1,k,0 +
q∑

l=1

x0,0,0,0yq+1,0,0,lz0,q+1,q+1,l

+
q∑

l=1

x0,0,0,0y0,q+1,0,lzq+1,0,q+1,l +
q∑

k=1

x0,0,0,0y0,0,q+1,lzq+1,q+1,0,l.

This represents a scalar x0000 times a vector

〈yi,j,k,0, yi,j,0,l, yi,0,k,l, y0,j,k,l, yi,q+1,0,0, yi,0,q+1,0, yi,0,0,q+1, yq+1,j,0,0 ,

y0,j,q+1,0, y0,j,0,q+1, yq+1,0,k,0, y0,q+1,k,0, y0,0,k,q+1, yq+1,0,0,l, y0,q+1,0,l , y0,0,q+1,l〉

which is a matrix product of size 〈1, 1, 4q3 + 12q〉, and has value (4q3 + 12q)τ .
The trilinear form

X [0]Y [4]Z [4]

has three parts:
q∑

i=1

q∑
j=1

q∑
k=1

q∑
l=1

x0,0,0,0yi,j,k,lzi,j,k,l

is unique.
The second part is

x0,0,0,0yq+1,q+1,0,0z0,0,q+1,q+1 + x0,0,0,0yq+1,0,q+1,0z0,q+1,0,q+1 +
+x0,0,0,0yq+1,0,0,q+1z0,q+1,q+1,0 + x0,0,0,0y0,q+1,q+1,0zq+1,0,0,q+1 +
+x0,0,0,0y0,q+1,0,q+1zq+1,0,q+1,0 + x0,0,0,0y0,0,q+1,q+1zq+1,q+1,0,0.

Finally
q∑

i=1

q∑
j=1

x0,0,0,0yi,j,q+1,0zi,j,0,q+1 +
q∑

i=1

q∑
j=1

x0,0,0,0yi,j,0,q+1zi,j,q+1,0

+
q∑

i=1

q∑
k=1

x0,0,0,0yi,q+1,k,0zi,0,k,q+1 +
q∑

i=1

q∑
j=1

x0,0,0,0yi,0,k,q+1zi,q+1,k,0

+
q∑

i=1

q∑
l=1

x0,0,0,0yi,q+1,0,lzi,0,q+1,l +
q∑

i=1

q∑
l=1

x0,0,0,0yi,0,q+1,lzi,q+1,0,l

+
q∑

j=1

q∑
k=1

x0,0,0,0yq+1,j,k,0z0,j,k,q+1 +
q∑

j=1

q∑
k=1

x0,0,0,0y0,j,k,q+1zq+1,j,k,0

+
q∑

j=1

q∑
l=1

x0,0,0,0yq+1,j,0,lz0,j,q+1,l +
q∑

j=1

q∑
l=1

x0,0,0,0y0,j,q+1,lzq+1,j,0,l

73

+
q∑

k=1

q∑
l=1

x0,0,0,0yq+1,0,k,lz0,q+1,k,l +
q∑

k=1

q∑
l=1

x0,0,0,0y0,q+1,k,lzq+1,0,k,l.

Overall, this trilinear form represents a scalar x0000 times a vector

〈yi,j,k,l, yq+1,q+1,0,0, yq+1,0,q+1,0, yq+1,0,0,q+1, y0,q+1,q+1,0,

, y0,q+1,0,q+1, y0,0,q+1,q+1, yi,j,q+1,0, yi,j,0,q+1, yi,q+1,k,0,

, yi,0,k,q+1, yi,q+1,0,l, yi,0,q+1,l, , yq+1,j,k,0, y0,j,k,q+1,

, yq+1,j,0,l, y0,j,q+1,l, yq+1,0,k,l, y0,q+1,k,l〉.

or a matrix product of type 〈1, 1, (q4 + 12q2 + 6)〉 which has value (q4 + 12q2 + 6)τ .
There are three such forms:

X [0]Y [4]Z [4], X [4]Y [0]Z [4], X [4]Y [4]Z [0].

The remaining trilinear forms are more complex and do not represent matrix
multiplications, and hence we will need to use the methods from previous sections to
find suitable “values” for them.
The X [1]Y [1]Z [6] trilinear form has four parts:

q∑
i=1

xi,0,0,0yi,0,0,0z0,q+1,q+1,q+1 +
q∑

j=1

x0,j,0,0y0,j,0,0zq+1,0,q+1,q+1

+
q∑

i,j=1

xi,0,0,0y0,j,0,0zi,j,q+1,q+1 +
q∑

i,j=1

x0,j,0,0yi,0,0,0zi,j,q+1,q+1

which is equal to X [1]Y [1]Z [2] ⊗X [0]Y [0]Z [4];

q∑
k=1

x0,0,k,0y0,0,k,0zq+1,q+1,0,q+1 +
q∑

l=1

x0,0,0,ly0,0,0,lzq+1,q+1,q+1,0

+
q∑

k,l=1

x0,0,k,0y0,0,0,lzq+1,q+1,k,l +
q∑

i,j=1

x0,0,0,ly0,0,k,0zq+1,q+1,k,l

which is equal to X [0]Y [0]Z [4] ⊗X [1]Y [1]Z [2];

q∑
i,k=1

x0,0,k,0yi,0,0,0zi,q+1,k,q+1 +
q∑

l=1

x0,0,k,0y0,j,0,0zq+1,j,k,q+1

q∑
i,l=1

x0,0,0,lyi,0,0,0zi,q+1,q+1,l +
q∑

k,l=1

x0,0,0,ly0,0,k,0zq+1,q+1,k,l

which is equal to X [0]Y [1]Z [3] ⊗X [1]Y [0]Z [3];
and

q∑
i,k=1

xi,0,0,0y0,0,k,0zi,q+1,k,q+1 +
q∑

j,k=1

x0,j,0,0y0,0,k,0zq+1,j,k,q+1

74

q∑
i,l=1

xi,0,0,0y0,0,0,lzi,q+1,q+1,l +
q∑

j,l=1

x0,j,0,0y0,0,0,lzq+1,j,q+1,l

which is equal to X [1]Y [0]Z [3] ⊗X [0]Y [1]Z [3].
Using the fact that Vτ (A⊗B) ≥ Vτ (A)× Vτ (B), we see that the value of the indivual
blocks is greater than

22/3qτ (q3τ + 2)1/3 × 1

for the first two blocks, and

(2q)τ × (2q)τ = (4q2)τ

for the last two.
Lemma 21 will show that the value of this term (that is, the sum of the four
preceding parts), is at least

22/3(8q3τ (q3τ + 2) + (2q)6τ)1/3.

We will denote this number as V116.
Using a similar method, we find that

X [2]Y [2]Z [4] = (X [2]Y [2]Z [0] ⊗X [0]Y [0]Z [4])⊕ (X [0]Y [0]Z [4] ⊗X [2]Y [2]Z [0])

⊕(X [2]Y [0]Z [2] ⊗X [0]Y [2]Z [2])⊕ (X [0]Y [2]Z [2] ⊗X [2]Y [0]Z [4])

⊕(X [1]Y [1]Z [2] ⊗X [1]Y [1]Z [2])

⊕(X [1]Y [2]Z [1] ⊗X [1]Y [0]Z [3])⊕ (X [1]Y [0]Z [3] ⊗X [1]Y [2]Z [1])

⊕(X [2]Y [1]Z [1] ⊗X [0]Y [1]Z [3])⊕ (X [0]Y [1]Z [3] ⊗X [2]Y [1]Z [1]).

The blocks in the first row will have value greater than 22/3qτ (q3τ + 2)(1/3) × 1.
The blocks in the second row have value greater than (q2 + 2)τ × (q2 + 2)τ .
The block in the third row has value greater than
22/3qτ (q3τ + 2)(1/3) × 22/3qτ (q3τ + 2)(1/3). The blocks in the fourth and fifth rows have
value greater than 22/3qτ (q3τ + 2)(1/3) × (2q)τ .
It will be shown in Lemma 25 that the overall value of this trilinear form exceeds

V224 =
(4q3τ (q3τ + 2) + 2(q2 + 2)3τ)2/3(2(2q)3τ + (q2 + 2)3τ + 2)1/3

(q2 + 2)τ
.

Similarly,

X [1]Y [3]Z [4] = (X [1]Y [2]Z [1] ⊗X [0]Y [1]Z [3])⊕ (X [0]Y [1]Z [3] ⊗X [1]Y [2]Z [1])

⊕(X [1]Y [3]Z [0] ⊗X [0]Y [0]Z [4])⊕ (X [0]Y [0]Z [4] ⊗X [1]Y [3]Z [0])

75

⊕(X [1]Y [0]Z [3] ⊗X [0]Y [3]Z [1])⊕ (X [0]Y [3]Z [1] ⊗X [1]Y [0]Z [3])

⊕(X [1]Y [1]Z [2] ⊗X [0]Y [2]Z [2])⊕ (X [0]Y [2]Z [2] ⊗X [1]Y [1]Z [2])

contains four kinds of block. The blocks in the first row contribute
(2q)τ × 22/3qτ (q3τ + 2)(1/3), the second row blocks contribute (2q)τ × 1, the third row
(2q)τ × (2q)τ and the final row 22/3qτ (q3τ + 2)(1/3) × (q2 + 2)τ .
It will be proven in Lemma 23 that the overall value of this trilinear form exceeds

V134 = 22/3(4q3τ (q3τ + 2) + (2q)3τ)1/3(2(2q)3τ + (q2 + 2)3τ + 2)1/3

Five kinds of block are present in

X [2]Y [3]Z [3] = (X [2]Y [1]Z [1] ⊗X [0]Y [2]Z [2])⊕ (X [0]Y [2]Z [2] ⊗X [2]Y [1]Z [1])

⊕(X [2]Y [0]Z [2] ⊗X [0]Y [3]Z [1])⊕ (X [0]Y [3]Z [1] ⊗X [2]Y [0]Z [2])

⊕(X [2]Y [2]Z [0] ⊗X [0]Y [1]Z [3])⊕ (X [0]Y [1]Z [3] ⊗X [2]Y [2]Z [0])

⊕(X [1]Y [1]Z [2] ⊗X [1]Y [2]Z [1])⊕ (X [1]Y [2]Z [1] ⊗X [1]Y [1]Z [2])

⊕(X [1]Y [3]Z [0] ⊗X [1]Y [0]Z [3])⊕ (X [1]Y [0]Z [3] ⊗X [1]Y [3]Z [0]).

The blocks in the first row contribute 22/3qτ (q3τ + 2)(1/3) × (q2 + 2)τ , the blocks in
the second and third rows (q2 + 2)τ × (2q)τ , the fourth row
22/3qτ (q3τ + 2)(1/3) × 22/3qτ (q3τ + 2)n(1/3) and the fifth row (2q)τ × (2q)τ .
It will be shown in Lemma 24 that the overall value of this trilinear form is

V233 =
(2(q2 + 2)3τ + 4q3τq3τ (q3τ + 2))1/3(4(q3τ + 2) + (2q)3τ)2/3

qτ (q3τ + 2)1/3
.

Finally,

X [1]Y [2]Z [5] = (X [1]Y [1]Z [2] ⊗X [0]Y [1]Z [3])⊕ (X [0]Y [1]Z [3] ⊗X [1]Y [1]Z [2])

⊕(X [1]Y [2]Z [1] ⊗X [0]Y [0]Z [4])⊕ (X [0]Y [0]Z [4] ⊗X [1]Y [2]Z [1])

⊕(X [1]Y [0]Z [3] ⊗X [0]Y [2]Z [2])⊕ (X [0]Y [2]Z [2] ⊗X [1]Y [0]Z [3]).

The blocks in the first row have value 22/3qτ (q3τ + 2)(1/3) × (2q)τ , the second row
blocks have value 22/3qτ (q3τ + 2)(1/3) × 1 and the last blocks have value
(2q)τ × (q2 + 2)τ .
It will be shown in Lemma 22 that the overall value of this trilinear form is at least

V125 = 22/3(4q3τ (q3τ + 2) + 2(q2 + 2)3τ)1/3(
4q3τ (q3τ + 2)

(q2 + 2)3τ
+ (2q)3τ)1/3

76

4.2 Raising the Algorithm to the Fourth Tensor Power

Take the Nth tensor power of the original algorithm raised to the fourth power, where
N is divisible by 3. Let αl, 0 ≤ l ≤ 8 be positive real numbers snuch that

8∑
l=0

αl = 1

and
8∑

l=0

lαl = 8/3,

and let Al be integer approximations to αlN such that

8∑
l=0

Al = N

and
8∑

l=0

lAl = 8N/3

Retain only those blocks of variables such that

|{j|1 ≤ j ≤ N, Ij = l}| = Al,

setting the others to zero, where Ij picks out the jth index position.
Let M ′′ be the number of nonzero triples containing a given block X [I]. We have that

M ′′ =
∑

ηl,m,n

∏
0≤l≤8Al!∏

l+m+n=8 ηl,m,n!
.

We say that M ′′ is maximized at

ηl,m,n = γl,m,n

γ008 = γ080 = γ800 = â

γ017 = γ071 = γ107 = γ170 = γ701 = γ710 = b̂

γ026 = γ062 = γ206 = γ260 = γ602 = γ620 = ĉ

γ035 = γ053 = γ503 = γ305 = γ530 = γ350 = d̂

γ044 = γ440 = γ404 = ê

γ116 = γ161 = γ611 = f̂

γ125 = γ152 = γ215 = γ251 = γ512 = γ521 = ĝ

γ134 = γ143 = γ341 = γ314 = γ413 = γ431 = ĥ

γ233 = γ323 = γ332 = î

γ224 = γ242 = γ422 = ĵ.

This symmetry arises from the fact that the number of triples containing a given X
block is M ′′, the number of triples containing a given Y -block is also M ′′ (via a

77

relabelling of variables) and similarly for the number of triples containing a Z block.
Now, we suppose we wish to find the value of γl,m,n where the maximal term of M ′′

arises. Finding ∂M ′′

∂ηl,m,n
, ∂M ′′

∂ηn,l,m
and ∂M ′′

∂ηm,n,l
for each of these three functions yields three

sets of three equations, each of which is identical except for relabelling- we find that
we should set ηl,m,n = ηm,n,l = ηn,l,m which will find a zero common to all three
functions. This follows for all the η and so symmetry is found.

A0 = 2â+ 2b̂+ 2ĉ+ 2d̂+ ê

A1 = 2b̂+ 2f̂ + 2ĝ + 2ĥ

A2 = 2ĉ+ 2ĝ + î+ 2ĵ

A3 = 2d̂+ 2ĥ+ 2̂i

A4 = 2ê+ 2ĥ+ ĵ

A5 = 2d̂+ 2ĝ

A6 = 2ĉ+ f̂

A7 = 2b̂

A8 = â.

In later calculations, we will approximate M ′′ by its largest term, times a polynomial
Np. We will call this maximal term Mmax, and it occurs at â, b̂, ...ĵ. We suppose that
the A0, ..., A8 are fixed. This will fix the value of â(= A8) and b̂(= A7/2). Fixing the
A0, ..., A8 will not fix the other values, however. Since there were two conditions
imposed on the nine A0...A8 variables and only one on the ten â, .., ĵ variables, we
have two degrees of freedom among the â, .., ĵ given A0, ..., A8.
As in the previous chapter, this affects how we do our calculations. The usual
Salem-Spencer pruning will only remove those blocks that share an X, Y or Z-block-
it will not take into account distributions of trilinear forms. We therefore need to
augment our method.
Performing the usual Salem-Spencer pruning will give us a set ∆ of blocks which do
not share X, Y or Z blocks. These blocks all represent independent matrix products,
but of all distributions of â, .., ĵ given A0, .., A8. Therefore, if we seek how much of a
particular distribution of â, ..ĵ remains after this pruning, we must consider only a
proportion of ∆. If M ′ is the term which contains a particular distribution â′, .., ĵ′,
the proportion remaining will be |∆|M ′

M ′′ .
As stated before, we will find it easier in future calculations to approximate M ′′ by
N2 times its largest term Mmax. Since there are two degrees of freedom among the
â, .., ĵ, we select ĉ and d̂, and derive their relationships with the remaining â, .., ĵ at
Mmax. We obtain

78

ê = A0 − 2â− 2b̂− 2ĉ− 2d̂
f̂ = A6 − 2ĉ

ĝ =
1
2
(A5 − 2ĝ)

ĥ =
1
2
(A1 − 2b̂− 2f̂ − 2ĝ)

î =
1
2
(A3 − 2d̂− 2ĥ)

ĵ = A4 − 2ê− 2ĥ.

Placing these into

F =
∏

lAl!

(â!)3(b̂!)6(ĉ!)6(d̂!)6(ê!)3(f̂ !)3(ĝ!)6(ĥ!)6(̂i!)3(ĵ!)3
.

We approximate the factorials using Stirling’s formula, take logs and differentiate
with respect to ĉ and d̂ to obtain

∂F

∂ĉ
= 6 log(ĉ)− 6 log(ê)− 6 log(f̂) + 12 log(ĥ)− 6 log(̂i)

∂F

∂d̂
= 6 log(d̂)− 6 log(ê)− 6 log(ĝ) + 6 log(ĥ)− 6 log(̂i)− 6 log(ĵ).

We therefore have that both of these equal zero when

ĉ =
êf̂ î

ĥ2
, d̂ =

êĝî

ĥĵ
.

This will give a global maximum, since the function x log(x) is convex for x > 0
means that the function F is also convex for ĉ, d̂, ê, ..., ĵ > 0.
Given this, if we choose values of â, b̂, ê, f̂ , ĝ, ĥ, î and ĵ, we may put these values into
our ĉ and d̂ formulae, which will give us values of A0, .., A8 (with its maximal term
already known).
If we choose a particular distribution â′, .., ĵ′ to keep, we get our auxiliary equation as
being

|∆| M ′

N2Mmax
[1]3â[V017]6b̂[V026]6ĉ′ ×

× [V035]6d̂′ [V044]3ê′ [V116]3f̂ ′ [V125]6ĝ′ [V134]6ĥ′ [V233]3̂i′ [V224]6ĵ′ .

That is, we have |∆| M ′

N2Mmax
independent matrix products of value

[1]3â[V017]6b̂[V026]6ĉ′ [V035]6d̂′ [V044]3ê′ [V116]3f̂ ′ [V125]6ĝ′ [V134]6ĥ′ [V233]3̂i′ [V224]6ĵ′ .

Our task, therefore is to find values of A0, .., A8 and ĉ′, .., ĵ′ to satisfy maximise this
overall equation (and hence find as low a value of τ as possible). We acheive this by
choosing values of â, b̂, d̂, .., ĵ, and using them to find values of A0, .., A8 as described
above. We then allow ĉ′ and d̂′ to vary. Overall, the auxiliary equation is a function of
nine variables. The values obtained below were obtained using a Newton Raphson

79

argument in Maple.
As before, we set our M = cM ′′ + 1 where c is a constant which ensures that all the
independence arguments from chapter 2 hold. Construct the Salem-Spencer set of size
M1−ε. Choose random weights wj , 0 ≤ j ≤ N . Define the three hash functions:

bX(I) =
N∑

i=1

Iiwi mod M

bY (J) = w0 +
∑
i=1N

Jiwi mod M

bZ(K) =
1
2
(w0 +

N∑
i=1

(8−Kj)) mod M.

We set to zero any blocks that do not hash into a b ∈ B. We also judiciously set to
zero any blocks that appear in more than one triple, and we find that the number of
blocks remaining is proportional to

M1−ε

M

(
N

A0, A1, A2, A3, A4, A5, A6, A7, A8

)
.

Now, for a portion of these triples, which is at least

Mηl,m,n

MmaxN2

of the total, the N indices j = 1, 2, .., N will contain about ηl,m,n instances of
X [l]Y [m]Z [N]. We say that the overall auxiliary equation is maximized when

ηl,m,n = γ′l,m,n

γ′008 = γ′080 = γ′800 = â

γ′017 = γ′071 = γ′107 = γ′170 = γ′701 = γ′710 = b̂

γ′026 = γ′062 = γ′206 = γ′260 = γ′602 = γ′620 = ĉ′

γ′035 = γ′053 = γ′503 = γ′305 = γ′530 = γ′350 = d̂′

γ′044 = γ′440 = γ′404 = ê′

γ′116 = γ′161 = γ′611 = f̂ ′

γ′125 = γ′152 = γ′215 = γ′251 = γ′512 = γ′521 = ĝ′

γ′134 = γ′143 = γ′341 = γ′314 = γ′413 = γ′431 = ĥ′

γ′233 = γ′323 = γ′332 = î′

γ′224 = γ′242 = γ′422 = ĵ′.

The relationship of these values with the An is entirely analogous to the ĉ, .., ĵ values.
The symmetry is shown using similar arguments to above. The value of each triple of
blocks is therfore about

[1]3â[V017]6b̂[V026]6ĉ′ [V035]6d̂′ [V044]3ê′ [V116]3f̂ ′ [V125]6ĝ′ [V134]6ĥ′ [V233]3̂i′ [V224]6ĵ′

= Voverall.

80

The auxiliary equation is thus

(q + 2)4N ≥
(

N

A0, A1, A2, A3, A4, A5, A6, A7, A8

) Mγ′l,m,n

MmaxN2
Voverall.

We want to choose â, b̂, ĉ′, d̂′, ê′, f̂ ′, ĝ′, ĥ′, î′, ĵ′ to maximize the RHS, subject to

3â+ 6b̂+ 6ĉ′ + 6d̂′ + 3ê′ + 3f̂ ′ + 6ĝ′ + 6ĥ′ + 3̂i′ + 3ĵ′ = N.

Setting â = aN and so on, letting N grow and taking Nth roots, we get

(q + 2)4 =
V 6b

017V
6c′
026V

6d
′

035V
3e′
044V

3f
′

116 V
6g′

125V
6h

′

134 V
3i
′

233V
6j

′

224

A0
A0A1

A1A2
A2A3

A3A4
A4A5

A5A6
A6A7

A7A8
A8

×

× c6cd
6d
e3ef

3f
g6gh

6h
i
3i
j
3j

c′
6c′
d′

6d′
e′

3e′
f ′

3f ′
g′

6g′
h′

6h′
i′

3i′
j′

3j′
.

We find that
a = 0.00000003659

b = 0.00000630812

c′ = 0.00026561642

d
′ = 0.00355378473

e′ = 0.01227154212

f
′ = 0.00035081817

g′ = 0.00726671323

h
′ = 0.04705061728

i
′ = 0.1317211657

j
′ = 0.07270369094

c = 0.00026306415

d = 0.00350153973

e = 0.01238113686

f = 0.00035592270

g = 0.00731895819

h = 0.04699326750

i = 0.13183076142

j = 0.07259920020

q = 6

gives an exponent of

ω ≤ 3τ < 2.373689703.

81

These figures were originally calculated to 200 decimal points, but have been
truncated to 11 for the purposes of this thesis.

4.3 Finding the Values of the Trilinear Forms

Lemma 21. The value of the trilinear form

X [1]Y [1]Z [6] = X [1]Y [1]Z [2] ⊗X [0]Y [0]Z [4] ⊕X [0]Y [0]Z [4] ⊗X [1]Y [1]Z [2]

⊕X [0]Y [1]Z [3] ⊗X [1]Y [0]Z [3] ⊕X [1]Y [0]Z [3] ⊗X [0]Y [1]Z [3].

is at least

22/3(8q3τ (q3τ + 2) + (2q)6τ)1/3.

Proof. Take the 2Nth tensor power. Let α, β be such that α+ β = N, 0 ≤ α, β ≤ N
Retain only those X-blocks with exactly N indices of [1, 0] and N of [0, 1], and do the
same for the Y -blocks. Retain those Z-blocks that have α indices of [2, 4] and [4, 2],
and 2β of [3, 3].
Hence, here, α represents the number of X [1]Y [1]Z [2] ⊗X [0]Y [0]Z [4] and
X [0]Y [0]Z [4] ⊗X [1]Y [1]Z [2] type blocks, and β the number of X [0]Y [1]Z [3] ⊗X [1]Y [0]Z [3]

and X [1]Y [0]Z [3] ⊗X [0]Y [1]Z [3] type blocks.
Do analogous operations for X [1]Y [6]Z [1] and X [6]Y [1]Z [1], and tensor multiply them
all together.
Hence, the remaining number of different X, Y and Z blocks is the same at(

2N
N,N

)(
2N
N,N

)(
2N

2β, α, α

)
.

The number of non-zero triples containing a given X-block is

M ′′ =
(
N

α

)4(2β
β

)
.

Similarly for Y and Z blocks. We set M = 6M ′′ + 1, and construct a Salem-Spencer
set B of size M1−ε (which is possible from theorem 10). Set random variables
{w0, w11, w12, .., w2N 1, w2N 2} and define the functions

bX(I) =
∑

i

Ii1wi1 + Ii2wi2 mod M

bY (J) = w0 +
∑

i

Ji1wi1 + Ji2wi2 mod M

bZ(K) =
1
2
(w0 +

∑
i

(Ii1wi1 + Ii2wi2 + Ji1wi1 + Ji2wi2)) mod M.

The probability that a triple I, J,K is such that bX(I) = bY (J) = b ∈ B is 1
M2 , and

the expected number of triples that have this property (for a particular b) is

1
M2

(
2N
N,N

)(
2N
N,N

)(
2N

2β, α, α

)
M ′′.

82

The expected number of pairs sharing an X-block with
bX(I) = bY (J) = bY J

′ = b ∈ B is

1
M3

(
2N
N,N

)(
2N
N,N

)(
2N

2β, α, α

)
M ′′(M ′′ − 1).

Subtracting this expression from the previous one and adding up all possible values of
b yields that the number of remaining triples is greater than

cM1−ε

M

(
2N
N,N

)(
2N
N,N

)(
2N

2β, α, α

)
for some constant c. Letting N become large and ε go to zero we have that

V 6N
116 ≈

(
2N
N,N

)(
2N
N,N

)(
2N

2β, α, α

)
(V112V004)6α(V 2

103)
6β

≈ (2N)2N (2N)2N (2N)2N

NNNNNNNN (2βN)2β(α)α(α)α
(V112V004)6α(V 2

103)
6β

=
24N22αN2N

(β)2β(α)2α
(V112V004)6α(V 2

103)
6β

≈ 24N
[(N

α

)
(2V 3

112V
3
004)

α(V 6
103)

β
]2

Setting

α =
2(V112V004N)3

2(V112V004)3 + V 6
103

and β =
V 6

103N

2(V112V004)3 + V 6
103

maximizes the equation and letting N grow and taking the 6Nth root yields

V116 = 22/3(2V 3
112 + V 6

103)
1/3 = 22/3(8q3τ (q3τ + 2) + (2q)6τ)1/3

as required.
It is clear, since all the values are greater than 0, that the α and β found here satisfy
the above constraints.

Lemma 22. The value of the trilinear form

X [1]Y [2]Z [5]

is at least

22/3(4q3τ (q3τ + 2) + 2(q2 + 2)3τ)1/3(
4q3τ (q3τ + 2)

(q2 + 2)3τ
+ (2q)3τ)1/3.

Proof. As above, we regard this trilinear form as the sum of six different blocks
obtained by multiplying two trilinear forms from the square of the original algorithm.
Again, this gives the advantage of any improvements in value we obtained in that
algorithm, as well as making our calculations simpler. We raise this trilinear form to
the 2Nth tensor power, and do the same with X [5]Y [1]Z [2] and X [2]Y [5]Z [1], tensor
multiplying all three together. We have α, β, γ such that α+ β + γ = N and
0 ≤ α, β, γ ≤ N . Here, α represents the number of X [0]Y [1]Z [3] ⊗X [1]Y [1]Z [2] type
blocks (and permutations thereof), β the number of X [0]Y [0]Z [4] ⊗X [1]Y [2]Z [1] type

83

blocks and γ the number of X [1]Y [0]Z [3] ⊗X [0]Y [2]Z [2] type blocks.
Each resulting block will have three vectors
I, J,K ∈ {[1, 0], [0, 1], [1, 1], [2, 0], [0, 2], [2, 3], [3, 2], [1, 4], [4, 1]}6N associated with it.
We set to zero, in the portion belonging to X [1]Y [2]Z [5] any X-blocks whose I vector
does not contain N instances of each of [1, 0] and [0, 1] respectively. In the
X [5]Y [1]Z [2] portion, we set to zero any X-blocks that do not contain α+ γ instances
each of [2, 3] and [3, 2] and β instances each of [1, 4] and [4, 1]. Finally, in the
X [2]Y [5]Z [1] portion, we retain only those blocks that contain 2α instances of [1, 1]
and β + γ instances each of [2, 0] and [0, 2].
We do similar operations on Y and Z-blocks: we find that the number of blocks
containing a given X,Y or Z block is(

N

α, β, γ

)2(β + γ

β, γ

)2(2α
α, α

)(
α+ γ

α, γ

)2

.

Using similar probabilistic arguments as before, selcecting an M roughly similar to
the number of triples containing a given X-block, we find that, for a constant c, the
number of independent triples remaining is greater than

cM1−ε

M

(
2N
N,N

)(
2N

β + γ, β + γ, 2α

)(
2N

α+ γ, α+ γ, β, β

)
.

Letting N grow and letting ε go to zero, we get that this expression is proportional to
the number of available X-blocks. Since the choice of X-blocks automatically
determines the number of Y -blocks of a given type, all these blocks (and not just a
portion, as in previous examples) match the desired criteria.
Let Va,b,c denote the “value” of the trilinear form X [a]Y [b]Z [c] from Coppersmith and
Winograd’s algorithm (we note that several different trilinear forms will have this
value: we just pick one for the sake of notation). Then the overall value becomes

(
2N
N,N

)(
2N

β + γ, β + γ, 2α

)(
2N

α+ γ, α+ γ, β, β

)
×

×(V112V013)6α(V112V004)6β(V022V013)6γ .

Approximating this using Stirling’s formula, using algebraic manipulation and taking
the square root, this reduces to

22N

(
N

α, β + γ

)
(V 3

112)
α(2V 3

022)
β+γ

(
β

α+ γ

)
(
V 3

112

V 3
022

)β(V 3
013)

α+γ

We set

α =
V 3

112N

V 3
112 + 2V 3

022

, β + γ =
2V 3

022N

V 3
112 + 2V 3

022

and

β =

V 3
112

V 3
022
N

V 3
112

V 3
022

+ V 3
013

, α+ γ =
V 3

013N
V 3
112

V 3
022

+ V 3
013

which renders the value as being approximately equal to

84

22N (V 3
112 + 2V 3

022)
N (
V 3

112

V 3
022

+ V 3
013)

N .

We let N grow and take 3Nth roots. Substituting the values previously obtained for
the appropriate V terms we obtain the desired result.
It remains to show that α, β and γ satisfy the constraints. If we take q = 6 and
τ = V/3. These values give α = 0.64019N , β = 0.00983N and γ = 0.3461507N . Since
these values all lie between 0 and 1, and their sum is N , we have that all the
constraints are satisfied.

Lemma 23. The value of the trilinear form

X [1]Y [3]Z [4]

is at least

V134 = 22/3(4q3τ (q3τ + 2) + (2q)3τ)1/3(2(2q)3τ + (q2 + 2)3τ + 2)1/3

Proof. We have α+ β + γ + δ = N and 0 ≤ α, β, γ, δ ≤ N . We raise X [1]Y [3]Z [4],
X [4]Y [1]Z [3] and X [3]Y [4]Z [1] to the 2Nth tensor power and tensor multiply all three
together.
We let α be the number of X [0]Y [1]Z [3] ⊗X [1]Y [2]Z [1] blocks, β the number of
X [0]Y [0]Z [4] ⊗X [1]Y [3]Z [0] blocks, γ the number of X [1]Y [0]Z [3] ⊗X [0]Y [3]Z [1] blocks
and δ the number of X [0]Y [2]Z [2] ⊗X [1]Y [1]Z [2] blocks (with the same proportions
holding for the appropriate permutations). Retain only those X blocks (respectively ,
Y , Z blocks) which contain N instances of [1, 0] and N instances of [0, 1]. Retain only
those Y -blocks (respectively, Z,X blocks) that contain α+ δ instances of [1, 2] and
[2, 1] and β + γ instances of [0, 3] and [3, 0]. Finally, retain only those Z-blocks
(respectively X and Y blocks) that contain α+ γ instances of [3, 1] and [1, 3], β
instances of [0, 4] and [4, 0] and 2δ instances of [2, 2].
As before we define M , a Salem-Spencer set B and appropriate hash functions, and
set to zero blocks which do not map into B, and set to zero appropriate blocks such
that no X, Y or Z blocks are shared.
We are left with about(

2N
N,N

)(
2N

α+ δ, α+ δ, β + γ, β + γ

)(
2N

α+ γ, α+ γ, β, β, 2δ

)
independent blocks (for N greater than some ε > 0). The ”value“ of each block is
greater than

(V112V013)6α(V013V014)6β(V 2
013)

6γ(V112V022)6δ.

If we multiply these last two expressions together, approximate using Stirling’s
formula and take the square root, we obtain

22N

(
N

α+ δ, β + γ

)
(V 3

112)
α+δ(V 3

013)
β+γ

(
N

α+ γ, β, δ

)
(2V 3

013)
α+γ(2V 3

004)
β(V 3

022)
δ.

Setting

85

β =
2N

2V 3
013 + V 3

022 + 2

δ =
V 3

022N

2V 3
013 + V 3

022 + 2

α+ γ =
2V 3

013N

2V 3
013 + V 3

022 + 2

α+ δ =
V 3

112N

V 3
112 + V 3

013

β + γ =
V 3

013N

V 3
112 + V 3

013

and taking 3Nth roots, this becomes approximately

22/3(V 3
112 + V 3

013)
1/3(2V 3

013 + V 3
022 + 2)1/3.

Substituting the appropriate V values in, we get the desired result.
We must show that we can get values of α, β, γ and δ to satisfy the constraints. With
q = 6 and τ = 2.373691893/3, we obtain α = 0.0974439531N , β = 0.0003546866N ,
γ = 0.017245N and δ = 0.884956N , which do indeed satisfy the constraints.

Lemma 24. The value of the trilinear form

X [2]Y [3]Z [3]

is at least

1
qτ (q3τ + 2)1/3

(2(q2 + 2)3τ + 4q3τ (q3τ + 2))1/3(4q3τ (q3τ + 2) + (2q)3τ)2/3.

Proof. We have α, β, γ, δ, ε such that α+ β + γ + δ + ε = N and 0 ≤ α, β, γ, δ, ε ≤ N .
Let α be the number of instances of X [0]Y [2]Z [2] ⊗X [2]Y [1]Z [1], β the number of
instances of X [2]Y [0]Z [2] ⊗X [0]Y [3]Z [1], γ the number of instances of
X [0]Y [1]Z [3] ⊗X [2]Y [2]Z [0], δ the number of instances of X [1]Y [1]Z [2] ⊗X [1]Y [2]Z [1]

and ε the number of instances of X [1]Y [0]Z [3] ⊗X [1]Y [3]Z [0]. The same proportions
hold for appropriate permutations. As before, we raise the three permutations of X,
Y and Z to the 2Nth power. Set to zero those X-blocks which do not contain
α+ β + γ instances of [2, 0] and [0, 2], and 2(δ+ ε) instances of [1, 1]. Set to zero those
Y -blocks that do not contain α+ γ + δ instances of [1, 2] and [2, 1] and β + ε instances
of [3, 0] and [0, 3]. Finally, retain only those Z-blocks which have α+ β + δ instances
of [1, 2] and [2, 1] and γ + ε instances of [3, 0] and [0, 3].
The number of blocks remaining is(

2N
α+ β + γ, α+ β + γ, 2(δ + ε)

)(
2N

α+ γ + δ, α+ γ + δ, β + ε, β + ε

)
×

×
(

2N
α+ β + δ, α+ β + δ, γ + ε, γ + ε

)
.

After defining the usual Salem-Spencer pruning, we are left with approcimately the
same number of blocks. Of these, a proportion will have value equal to

86

(V112V022)6α(V022V013)6(β+γ)(V 2
112)

6δ(V 2
013)

6ε.

However, it is possible to re-arrange this expression so that the overall size of the
matrix products created does not depend on the individual choices of α..ε. If we
approximate M ′′ by its largest term, we can set the α..ε to match these, and so we are
left with a fraction 1

N of the number of boxes remaining.
Thus, the overall auxiliary equation is roughly equal to the product of the previous
two terms, and, after applying Stirling’s formula and taking the square root, can be
rewritten as

22N

V 3N
112

×
(

N

α+ β + γ, δ + ε

)
(2V 3

022)
α+β+γ(V 3

112)
δ+ε

×
(

N

α+ β + δ, β + ε

)
(V 3

112)
α+γ+δ(V 3

013)
β+ε

×
(

N

α+ β + δ, γ + ε

)
(V 3

013)
γ+ε(V 3

112)
α+β+δ.

We then set

α+ β + γ =
2V 3

022N

2V 3
022 + V 3

112

β + ε =
V 3

112N

2V 3
022 + V 3

112

α+ γ + δ = α+ β + δ =
V 3

112N

V 3
112 + V 3

013

γ + ε = β + ε =
V 3

013N

V 3
112 + V 3

013

and take 3Nth roots to get

22/3

V112
(2V 3

022 + V 3
112)

1/3(V 3
112 + V 3

013)
2/3

which, upon substituting the required values back, gives us the desired result.
To show that α, β, γ, δ, ε satisfy the constraints, we set q = 6 and τ = 2.373691893/3.
We obtain the following equations:

α+ β + γ = 0.3559809N
δ + ε = 0.6440190993N

α+ β + δ = 0.9824002N
γ + ε = 0.017599787N.

This system of equations does not yield a unique solution for α, β, γ, δ, ε. However, it

87

is clear that a solution in our required region can exist: set

α = 0.033598N
β = 0.01N
γ = 0.01N
δ = 0.6364193N
ε = 0.007599N.

We see all the constraints are satisfied.

Lemma 25. The trilinear form

X [2]Y [2]Z [4]

has value at least

1
(q2 + 2)τ

(4q3τ (q3τ + 2) + 2(q2 + 2)3τ)2/3(2(2q)3τ + (q2 + 2)3τ + 2)1/3

Proof. We work as before, taking 2Nth tensor powers of each of the three
permutations and tensor them together. We have α, β, γ, δ, ε such that
α+ β + γ + δ + ε = N and 0 ≤ α, β, γ, δ, ε ≤ N .
Here, α represents the number of instances of X [0]Y [0]Z [4] ⊗X [2]Y [2]Z [0], β the
number of instances of X [0]Y [2]Z [2] ⊗X [2]Y [0]Z [2], γ the number of instances of
X [1]Y [1]Z [2] ⊗X [1]Y [1]Z [2], δ the number of instances of X [1]Y [0]Z [3] ⊗X [1]Y [2]Z [1]

and ε the number of instances of X [0]Y [1]Z [3] ⊗X [2]Y [1]Z [1] (with the same numbers
holding for appropriate permutations).
We retain only those X-blocks with α+ β + ε instances of [2, 0] and [0, 2] and 2(γ + δ)
of [1, 1]. Retain only those Y -blocks with α+ β + δ instances of [2, 0] and [0, 2] and
2(γ + ε) of [1, 1]. Finally, retain only those Z-blocks which have α instances each of
[4, 0] and [0, 4], 2(β + γ) instances of [2, 2] and δ + ε of [3, 1] and [1, 3].
The number of X-blocks remaining is thus

(
2N

α+ β + ε, α+ β + ε, 2(γ + δ)

)
×(

2N
α+ β + δ, α+ β + δ, 2(γ + ε)

)
×(

2N
α,α, 2(β + γ), δ + ε, δ + ε

)
.

Each of the remaining blocks will have a value of

(V220V004)6α(V 2
022)

6β(V 2
112)

6γ(V112V013)6δ(V112V013)6ε

Agani, the overall value can be manipulated in such a way that it does not depend on
the individual values of α, ..ε. Hence, we approximate M ′′ by its largest term and set
α..ε as being the same as in this term. The overall value is thus a fraction 1

N times
the product of the two previous statements.
Using Stirling’s formula, rearranging and taking the square root, we obtain
approximatelyWe have α, β, γ, δ, ε such that α+ β + γ + δ + ε = N and
0 ≤ α, β, γ, δ, ε ≤ 1.

88

23N

(
N

α+ β + ε, γ + δ

)
(
V 3

112

2
)γ+δ(V 3

022)
α+β+ε ×(

N

α+ β + δ, γ + ε

)
(
V 3

112

2
)γ+ε(V 3

022)
α+β+δ ×(

N

α, β + γ, δ + ε

)
(V 3

013)
δ+ε(V004)α(

V 3
022

2
)β+γ ×

1
V 3N

022

Setting

α =
V004N

V 3
103 + V 3

022/2 + 1

δ + ε =
V 3

013N

V 3
103 + V 3

022/2 + 1

β + γ =
V 3

022N

2V 3
103 + V 3

022 + 2

γ + δ = γ + ε =
V 3

112N

2V 3
022 + V 3

112

α+ β + ε = α+ β + δ =
V 3

022N

V 3
022 + V 3

112/2

makes the expressions approximately equal to

(2(
V 3

112

2
+ V 3

022)
2/3(V 3

013 +
V 3

022

2
+ V004)1/3)3N × 1

V022

3N

.

Taking 3Nth roots and substituting in the appropriate variables, we get the desired
result.
Finally, proving that α, β, γ, δ, ε satisfy the constraints, we get, on setting q = 6 and
τ = 2.373691893/3, that

α = 0.0003147913N
β = 0.2983016300N
γ = 0.5866546200N
δ = 0.05736447930N
ε = 0.05736447930N

which satisfy the constraints, as required.

89

Chapter 5

Group-Theoretic Methods for
Determining ω

In [9], Cohn and Umans devised a new way of representing Matrix Multiplication,
that is via a Group-theoretic means. They show that is is possible to represent a
m× n by n× p matrix multiplication by taking subsets of size m,n, p satisfying a
particular property, and, by multiplying elements of the group algebra CG together
(via a Discrete Fourier Transform), showing that one can read off the appropriate
values of the matrix product from this result.
This group-theoretic framework has, so far, not provided any algorithms to reduce ω,
but importantly it has produced several conjectures that will lead to ω = 2 if any of
them are proven. In this chapter we will explain how groups can realize matrix
multiplications, show some examples of this, and show how we can derive
Coppersmith and Winograd’s algorithms in this context. Finally, we explain some
conjectures which would imply ω = 2.
Some of the proofs require a knowledge of basic representation theory, so we will
explore some background on that first.

5.1 Background to Representation Theory

This section uses definitions and theorems found James and Liebeck [17] : for a more
in-depth introduction to Representation Theory, please consult this book.
Representation Theory is the study of writing groups as a set of matrices.

Definition 9. The Group Algebra CG (or equivalently RG) of a group
G = {1, g1, g2..} is the set

{a0.1 + a1.g1 + a2g2 + ..}

where the ai can take any values in C (or R).
Addition in CG (RG) follows the rule:∑

i

aigi +
∑

i

bigi =
∑

i

(ai + bi)gi

and multiplication follows the rule: where the ai can take any values in C (or R).
Addition in CG (RG) follows the rule:

90

∑
i

aigi ×
∑

i

bigi =
∑

i

(
∑

j,k:gjgk=gi

ajbk)gi.

Definition 10. A Representation of a group G over a field F is a homomorphism ρ
from G to GL(n, F) (the set of n× n matrices with non-zero determinant and with
entries in F) for some n. The degree of ρ is the integer n.

We write the action of ρ on g ∈ G as gρ. Since ρ is a homomorphism it must follow
that

(gh)ρ = (gρ)(hρ)

for all g, h ∈ G and

1ρ = In

where In is the n× n identity matrix.

Definition 11. The Kernel of a Representation is the set {g ∈ G|gρ = In}.

Now, we let V = Fn be the set of row vectors of length n with entries in F . We then
have that the product v(gρ) is also a vector of length N . We say that V is an
FG-module if a multiplication vg is defined, satisfying the following conditions for all
u, v ∈ V, µ ∈ F and g, h ∈ G.

• vg ∈ V

• v(gh) = (vg)h

• v1 = v

• (µv)g = µ(vg)

• (u+ v)g = ug + vg

We now define submodules and irreducibility.

Definition 12. Let V be an FG-module. A subset W of V is an FG-submodule of V
if W is a subspace and wg ∈W for all w ∈W and all g ∈ G.

In this case W is also an FG-module.

Definition 13. An FG-module V is said to be irreducible if its only FG-submodules
are {0} and V . If it has other submodules, then it is reducible. We say that the
representation ρ is (ir)reducible if V is (ir)reducible.

We need to show that some representations are distinct from others. In order to do
this, we define what it means for two representations to be isomorphic.

Definition 14. Let V and W be FG-modules. A function G : V →W is said to be
an FG-homomorphism if G is a linear transformation and

(vg)G = (vG)g

for all v ∈ V, g ∈ G.

91

Definition 15. Let V and W be FG-modules. We call a function G : V →W and
FG-isomorphism if G is an FG-homomorphism and invertible. If such an
FG-isomorphism exists, then V and W are isomorphic.

The number of (non-isomorphic) irreducible representations is related to the size of
the group. In order to show this, we first state Maschke’s Theorem.

Theorem 26. (Maschke) If G is a finite group, and V is a RG or CG-module with
RG or CG submodule U then there is a RG or CG submodule W such that

V = U ⊕W.

The proof can be found in Chapter 8 of James and Liebeck [17].
An iterative argument shows that every FG-module V (for F = C or R) may be
written as the sum of irreducible FG-submodules.
We now show that for abelian G, the dimension of every irreducible FG-module is
equal to 1.

Lemma 27. (Schur) (part 2) If, for an irreducible CG-module V , G : V → V is a
CG-isomorphism, then G is a scalar multiple of the identity endomorphism 1V .

Proposition 4. For abelian G, the dimension of every irreducible CG-module V is
equal to 1.

Proof. Let g, h ∈ G. Since G is abelian we have

vgh = vhg

for all h, g ∈ G. Hence v → vh is a CG-homomorphism. By Lemma 27, this means
that

vh = µhv

for all v ∈ V , and some µh ∈ C. This implies that every subspace of V is a
CG-submodule. Since V is irreducible, it must be the case that dim(V) = 1.

Finally, we use two more theorems to show that

|G| =
k∑

i=1

dim(Vk)2

where the Vk are the complete set of non-isomorphic irreducible CG-modules.

Theorem 28. If we have CG =
⊕r

i Ui, a direct sum of irreducible CG-submodules,
and U any irreducible CG-module, then the number of CG-modules Ui with Ui ' U is
equal to dim(U).

Proof in James and Liebeck [17] (chapter 11).

Theorem 29. Let Vk be the complete set of non-isomorphic irreducible CG-modules.
Then

|G| =
k∑

i=1

V 2
k

92

Proof. We start by noting from Maschke that we may rewrite CG in terms of
CG-submodules

CG =
r⊕

i=1

Ui

where the Ui are the irreducible submodules. By the previous theorem, the number of
irreducible CG-modules Uj ' Vi is dim(Vi).
Then we have, taking the dimension of both sides, that

dim(CG) =
k∑

i=1

(dim(Vi))2

and since dim(CG) = |G| the result follows.

Corollary 30. Multiplication of two elements in the group algebra is isomorphic to
⊕i〈di, di, di〉.

Proof. Use of the Discrete Fourier Transform to multiply two elements of CG together
will show that the two are isomorphic.

5.2 The Triple Product Property

In [9], it was shown that if three subsets of a group G satisfy the Triple Product
Property,then the group is capable of simulating matrix multiplications. We let Q(S)
be the right quotient set of S, a subset of a group G, that is

Q(S) = {s1s−1
2 : s1, s2 ∈ S}.

Of course, if S is a subgroup of G, we see that Q(S) = S. For now, though, we only
consider arbitrary subsets.

Definition 16. We say that three subsets S1, S2, S3 of a group satisfy the Triple
Product Property if, for qi ∈ Q(Si),

q1q2q3 = 1 ⇒ q1 = q2 = q3 = 1.

Why is this condition important? It arises because, as previously said, the matrix
multiplication is embedded in multiplication of the group algebra C[G]. We choose
three subsets of G, S, T and U , all of which satisfy the Triple Product Property. We
then consider the product

(
∑

s∈S,t∈T

Asts
−1t)(

∑
t′∈T,u∈U

Bt′ut
′−1u)

We have that

ss′−1tt′−1uu′−1 = 1

if and only if

ss′−1 = tt′−1 = uu′−1 = e.

It must therefore follow that s = s′, t = t′ u = u′, and performing appropriate
operations means that

93

s−1tt−1u = s−1u.

This means that, for a given s, u the coefficient of s−1u in our product as described
above is ∑

t∈T

As,tBt,u

which is indeed a matrix product. It follows from the above arguments that the
number of operations required to multiply to elements of C[G] is more than or equal
to the number of operations required to multiply an |S| × |T | matrix with a |T | × |U |
one.
We say that the group G realizes 〈|S|, |T |, |U |〉. It is easily shown that if G realises
〈m,n, p〉, then G will also realise any permutation of m,n, p.
In order to put this into context, we need to show how a group G realizing 〈m,n, p〉
relates to ω. To do this, we need to use theorem 29:

C[G] ' ⊕i〈di, di, di〉

where the {di} are the dimensions of the CG-submodules of G.

Theorem 31. (Theorem 4.1 of [9]) If a group G with character degrees {di} realizes
〈m,n, p〉 then

(mnp)ω/3 ≤
∑

i

dω
i

Proof. We assume that G realizes 〈m,n, p〉. We know from previously that the
number of operations required to perform 〈m,n, p〉 is at most the number of
operations required to multiply two elements of C[G], which we know to be
isomorphic to ⊕i〈di, di, di〉.
Hence

〈m,n, p〉 ≤ ⊕i〈di, di, di〉.

That is to say, performing ⊕i〈di, di, di〉 is sufficient to obtain the product 〈m,n, p〉.
We raise this expression to the lth tensor power. This yields

〈ml, nl, pl〉 ≤ ⊕il〈di1 ...dil , di1 ...dil , di1 ...dil〉,

that is, there are il different possible matrix multiplications (all square) to be
obtained from raising it to the lth power. From previous results the rank of the right
hand side is less than or equal to

C
∑
il

(di1 ...dil)
ω+ε = C(

∑
i

dω+ε
i)l.

We also have that (nmp)lω/3 ≤ R(〈ml, nl, pl〉), so taking the rank of both sides of the
above expression yields

(nmp)lω/3 ≤ C(
∑

i

dω+ε
i)l.

If we let l grow, and take lth roots of both sides, we obtain the desired result.

We see that this does not provide non-trivial estimates for ω unless nmp >
∑

i d
3
i . In

[10], a group that satisfies this condition is constructed.

94

The Triple Product Property can be extended so that, for larger groups, we can have
many matrix multiplications simulated by a single multiplication in the group
algebra. We call this the Simultaneous Triple Product Property

Definition 17. We say that n triples of subsets Ai, Bi, Ci of a group G satisfy the
Simultaneous Triple Product Property if

• for each i the three subsets Ai, Bi, Ci satisfy the triple product property, and

• for all i, j, k,
ai(a′j)

−1bj(b′k)
−1ck(c′i)

−1 = 1 ⇒ i = j = k

for ai ∈ Ai, a
′
j ∈ Aj , bj ∈ Bj , b

′
k ∈ Bk, ck ∈ Ck, c

′
i ∈ Ci.

We see from this property that if

(a′j)
−1bj(b′k)

−1ck = a−1
i c′i

then i = j = k so
(a′i)

−1bi(b′i)
−1ci = a−1

i c′i.

and since the Ai, Bi, Ci satisfy the triple product property, we get that
a = a′, b = b′, c = c′. Thus, if we multiply two elements in the group algebra, we get
that the coefficient of a−1

i c′i is ∑
bi∈Bi

Aa−1
i ,bi

Bb−1
i c′i

as the matrix product.
The following lemma shows that the Simultaneous Triple Product Property also
applies to group products (this lemma is found in [10], but there, no proof is
provided):

Lemma 32. If n triples of subsets Ai, Bi, Ci ⊆ H and n′ triples of subsets
A′

j , B
′
j , C

′
j ⊆ H ′ all satsify the Simultaneous Triple Product Property, then so do the

nn′ triples of subsets

Ai ×A′
j , Bi ×B′

j , Ci × C ′
j ⊆ H ×H ′.

Proof. We first show that three sets Ai ×A′
j , Bi ×B′

j , Ci × C ′
j ⊆ H ×H ′ satisfy the

triple product property. Consider (a1, a
′
1), (a2, a

′
2) ∈ Ai ×A′

j ,
(b1, b′1), (b2, b

′
2) ∈ Bi ×B′

j and (c1, c′1), (c2, c
′
2) ∈ Ci × Cj . Looking at the equation

(a1, a
′
1)(a2, a

′
2)
−1(b1, b′1)(b2, b

′
2)
−1(c1, c′1)(c2, c

′
2)
−1 = 1 ∈ H ×H ′

we see that

(a1(a2)−1b1(b2)−1c1(c−1
2), a′1(a

′
2)
−1b′1(b

′
2)
−1c′1(c

′−1
2)) = (1, 1) ∈ H ×H ′.

We have two sepearate equations to solve. However, since Ai, Bi, Ci and A′
j , B

′
j , C

′
j , it

follows that a1(a2)−1b1(b2)−1c1(c−1
2) = 1 only if a1 = a2, b1 = b2, c1 = c2 and

a′1(a
′
2)
−1b1′(b′2)

−1c′1(c
′−1
2) = 1 only if a′1 = a′2, b

′
1 = b′2, c

′
1 = c′2. Hence (a1, a

′
1) = (a2, a

′
2)

and so on, and so the triple product property is preserved.

95

To prove the second statement, consider the following subsets of H ×H ′:

Aii′ = Ai ×A′
i′ Ajj′ = Aj ×A′

j′

Bjj′ = Bj ×B′
j′ Bkk′ = Bk ×B′

k′

Ckk′ = Ck × C ′
k′ Cii′ = Ci × C ′

i′ .

Let aii′ ∈ Aii′ , ajj′ ∈ Ajj′ , bjj′ ∈ Bjj′ , bkk′ ∈ Bkk′ , ckk′ ∈ Ckk′ , cii′ ∈ Cii′ . We wish to
show that

aii′(ajj′)−1bjj′(bkk′)−1ckk′(cii′)−1 = 1 ∈ H ×H ′ ⇒ ii′ = jj′ = kk′.

Considering each coordinate seperately we have

ai(aj)−1bj(bk)−1ck(ci)−1 = 1 ∈ H
a′i′(a

′
j′)

−1b′j′(b
′
k′)

−1c′k′(c
′
i′)

−1 = 1 ∈ H ′

Since all triples Ai, Bi, Ci and A′
j , B

′
j , C

′
j satisfy the Simultaneous Triple Product

Property, it follows that i = j = k and i′ = j′ = k′ and so ii′ = jj′ = kk′, and hence
these groups satisfy the Simultaneous Triple Product Property.

The usefulness of the simultaneous triple product property is borne out in the
following theorem (compare with Schönhage’s asymptotic sum inequality (theorem
7)):

Theorem 33. (Theorem 5.5 in [10]) If a group H simultaneously realizes
〈a1, b1, c1〉, ..., 〈an, bn, cn〉, and has character degrees {dk} then

n∑
i=1

(aibici)ω/3 ≤
∑

k

dω
k .

We note that if H is abelian then the right hand side of this equals |H|- and hence we
could regard |H| as being the “rank” of the Matrix Multiplication, making this
equation analogous to Schönhage’s asymptotic sum inequality. In order to prove this,
we need the following lemmas.

Lemma 34. (lemma 1.1 of [10]) If we have non-negative real numbers s1, .., sn, and
also that (

N

µ

) n∏
i=1

sµi
i ≤ CN

for all N ∈ N and all µ where µ is a vector of non-negative integers with
∑n

i=1 µi = N
and C > 0, then

n∑
i=1

si ≤ C.

Proof. Fix N . We have for all µ with µ = {µ1, .., µn} and
∑

i µi = N that(
N

µ

) n∏
i=1

sµi
i ≤ CN

96

we sum over all possible values of µ (with
∑

i µi = N), of which there are
(
N+n−1

n−1

)
:

∑
µ

(
N

µ

) n∏
i=1

sµi
i ≤

(
N + n− 1
n− 1

)
CN

which equals

(
n∑

i=1

si)N ≤
(
N + n− 1
n− 1

)
CN .

Letting N grow and taking Nth roots we get the desired result.

Lemma 35. (Theorem 7.1 of [10]) We suppose n triples of subsets Ai, Bi, Ci ⊆ H
satisfy the simultaneous triple product property, then the subsets
H1,H2,H3 ⊂ G = Hn o Symn satisfy the triple product property:

H1 = {hπ : π ∈ Symn, hi ∈ Ai∀i}
H2 = {hπ : π ∈ Symn, hi ∈ Bi∀i}
H3 = {hπ : π ∈ Symn, hi ∈ Ci∀i}

Proof. Let hiπi, h
′
iπ
′
i ∈ Hi, and consider the triple product

h1π1(π′1)
−1(h′1)

−1h2π2(π′2)
−1(h′2)

−1h3π3(π′3)
−1(h′3)

−1 = 1. (5.1)

We must have

π1(π′1)
−1π2(π′2)

−1π3(π′3)
−1 = 1. (5.2)

We then say that

π1(π′1)
−1 = π, π1(π′1)

−1π2(π′2)
−1 = ρ,

which makes the above equivalent to

(h′3)
−1h1((h′1)

−1h2)π((h′2)
−1h3)ρ = 1

where the superscripts denote that the actions of performing π and ρ have been
performed on the group elements.
Thus, for each co-ordinate i,

[(h′3)
−1]i[h1]i[(h′1)

−1]π(i)[h2]π(i)[(h
′
2)
−1]ρ(i)[h3]ρ(i) = 1

Since Ai, Aπ(1), Bπ(i), Bρ(i), Cρi , Ci are all parts of triples that satisfy the simultaneous
triple product property, it must follow that π(i) = ρ(i) = i, meaning that π = ρ = 1.
Since Ai, Bi, Ci satisfy the triple product property, it then follows that

h1(h′1)
−1h2(h′2)

−1h3(h′3)
−1 = 1

implies that h1 = h′1, h2 = h′2, h3 = h′3. Thus the three sets described above satisfy the
Triple Product Property.

97

Lemma 36. If {dk} are the character degrees of a finite group H and {cj} are the
character degrees of Symn nHn, then∑

j

cωj ≤ (n!)ω−1(
∑

k

dω
k)n

Proof. If H is abelian, we use the fact that∑
j

c2j = n!|H|n.

Since cj ≤ n!, we multiply both sides by (n!)ω−2. Since∑
j

cωj ≤ (n!)ω−2
∑

j

c2j

the lemma holds for abelian H.
The proof for non-abelian H can be found in [10], where it is lemma 1.2. We do not
go into detail here as it relies on more advanced representation theory.

Lemma 37. (7.2 in [10]). If H is a finite group with character degrees {dk} and n
triples of subsets Ai, Bi, Ci ⊆ H satisfying the simultaneous triple product property,
then

n(
∏

i

(|Ai||Bi||Ci|)ω/3)1/n ≤
∑

k

dω
k

Proof. From lemma 35, we may build subsets of G of size n!
∏

i |Ai|, n!
∏

i |Bi| and
n!

∏
i |Ci|. We have from theorem 31 that

((n!)3
∏

i

|Ai||Bi||Ci|)ω/3 ≤
∑

j

cωj

where the cj are the character degrees of G. Lemma 36 tells us that the right hand
side is at most

(n!)ω−1(
∑

k

dω
k)n.

We divide both sides by (n!)ω to obtain

(
∏

i

|Ai||Bi||Ci|)ω/3 ≤ 1
n!

(
∑

k

dω
k)n

To obtain the desired inequality, we replace H with Ht, and similarly n with nt. This
gives

(
∏

i

|Ai||Bi||Ci|)tnt−1ω/3 ≤ 1
nt!

(
∑

k

dω
k)n,

we then take tntth roots and let t→∞ to get the desired statement (via
approximation of the factorial term using Stirling’s formula).

We can now prove theorem 33.

98

Proof. We raise H to the Nth power, and we take subsets of HN A′
j , B

′
j , C

′
j ⊆ HN .

To create these subsets we choose a vector in Zn, µ = µ1, .., µn, µ ≥ 0,
∑n

i=1 µi = N .
We set A′

j =
∏n

i=1A
µi
i , B

′
j =

∏n
i=1B

µi
i , C

′
j =

∏n
i=1C

µi
i . There are

(
N
µ

)
such triples,

and |A′
j ||B′

j ||C ′
j | =

∏n
i=1(aibici)µi .

We apply lemma 37 to these triples to obtain(
N

µ

)
(

n∏
i=1

(aibici)µi)ω/3 ≤ (
∑

k

dk)N .

We apply lemma 34 to obtain the desired inequality.

We seek groups, and subsets of these groups that satisfy the Simultaneous Triple
Product Property. Using objects called Uniquely Solvable Puzzles, introduced in [10],
it is indeed possible to generate such groups.

Definition 18. A Uniquely Solvable Puzzle of width k is a subset U ⊆ {1, 2, 3}k

satisfying the following property:
For all bijections π1, π2, π3 ∈ Sym(U), either π1 = π2 = π3 or else there exist u ∈ U
and i ∈ {1, ..k} such that at least two of (π1(u))i = 1, (π2(u))i = 2 or (π3(u))i = 3
hold.

That is, if we are given any three bijections from the symmetric group Sym(U), our
task is to find a unique u such that this condition holds.
In chapter 2, we showed that the number of ways in which one could divide 3k objects
into three subsets of size k, (such that no two divisions shared the same first, second
or third subset and that choosing the first, second and third subsets from three
different divisions could form a new division) was more than (27

4)k(1−ε) for large k and
ε > 0. We show now that a set U of such partitions u is a uniquely solvable puzzle.

Proof. Suppose we have a set of 3k objects. We wish to divide them into three sets of
size k: we do so by labelling k objects with 1, k objects with 2 and k objects with 3.
Let π1, π2, π3 ∈ Sym(U). We look at the sets
I1 = {i : (π1(u))i = 1}, I2 = {i : (π2(u))i = 2}, I3 = {i : (π3(u))i = 3} for each u ∈ U .
Each of these sets will have size k. If there is a u ∈ U such that
I1 ∪ I2 ∪ I3 = {1, .., 3k}, then the three sets I1, I2, I3 are disjoint and so can
themselves form an element of U : however since this violates one of our constraints,
there is no such element in U and thus π1 = π2 = π3. Therefore U is a USP.

5.2.1 Using USPs to Generate Subsets

We now show how we use Uniquely Solvable Puzzles to generate subsets that satisfy
the Simultaneous Triple Product Property.

Definition 19. Let H be an abelian group of finite order. An H-chart
C = (Γ, A,B,C) consists of a finite set of symbols Γ, together with three mappings
A,B,C : Γ → 2H such that for each x ∈ Γ, the sets A(x), B(x), C(x) satisfy the Triple
Product Property. Let H(C) ⊆ Γ3 denote the set of ordered triples (x, y, z) such that

0 /∈ A(x)−A(y) +B(y)−B(z) + C(z)− C(x)

where 0 denotes the identity element of the group H.

99

A local C-USP of width k is a subset U ⊆ Γk such that for each ordered triple
(u, v, w) ∈ U3 with u, v, w not all equal, there exists i ∈ {1, .., k} such that
(ui, vi, wi) ∈ H(C).

Informally, an H-chart, together with a local C-USP, is a means of generating groups
that satisfy the simultaneous triple product property.
The condition that

0 /∈ A(x)−A(y) +B(y)−B(z) + C(z)− C(x)

is equivalent to the triple product property statement (but we use additive notation
here as we are dealing with Abelian groups).
It is easy to check that Local USPs are also USPs, and that they can achieve the
same size as USPs.
One such H chart is given below, it is equivalent to Coppersmith and Winograd’s
“easy” algorithm in [12]. Here, Ĥ = Cycl\{0, 1} and C = ({1, 2, 3}, A,B,C) with
A,B,C defined as follows

A(1) = {0} B(1) = −Ĥ C(1) = {0}
A(2) = {1} B(2) = {0} C(2) = Ĥ

A(3) = Ĥ B(3) = {0} C(3) = {0}

Finally, it remains to show that the sets generated by this method satisfy the
simultaneous triple product property:
we define

Au =
k∏

i=1

A(ui) Bu =
∏k

i=1B(ui) Cu =
k∏

i=1

C(ui).

We thus have |U | sets of three subsets of Hk.

Theorem 38. (Theorem 6.6 in [10], the proof there is omitted) These subsets of Hk

satsify the simultaneous triple product property.

Proof. First, we show that, for a fixed u, the three sets Au, Bu, Cu satisfy the triple
product property. Let a1, a2 ∈ Au, b1, b2 ∈ Bu, c1, c2 ∈ C(u). Then, we wish to show
that

a1 − a2 + b1 − b2 + c1 − c2 = 0

only if a1 = a2, b1 = b2, c1 = c2. We consider each ui individually. If ui = 1 then it is
automatic that (a1)i = (a2)i and (c1)i = (c2)i. So (a1 − a2 + b1 − b2 + c1 − c2)i = 0
only if (b1)i = (b2)i ∈ −Ĥ. Analogous arguments follow if ui = 2 or 3. It follows that
(a1)i = (a2)i, (b1)i = (b2)i, (c1)i = (c2)i for all i and hence a1 = a2, b1 = b2, c1 = c2.
It remains to show the second criterion. This follows from the definition of an
H-chart: there is an i such that for every triple (u, v, w) ∈ U3, (ui, vi, wi) ∈ H(C)
where H(C) is the set of ordered triples with

0 /∈ A(x)−A(y) +B(y)−B(z) + C(z)− C(x).

100

It follows that one cannot create the identity of Hk from the subsets generated by
distinct u, v, w, and hence the simultaneous triple product property applies here.

Finally, we use these groups to get a suitable estimate for ω. Since H is abelian,
theorem 33 reduces to

k∑
i=1

(aibici)ω/3 = |H|.

The sizes of Au, Bu and Cu are (l − 2)k and the size of H is l3k. Since there are more
than (27

4)k(1−ε) possible groups to be created, we obtain

(
27
4

)k(l − 2)ωk = l3k

and letting k grow, taking kth roots and setting l = 10, we obtain ω ≤ 2.403...
We can obtain the same estimates that Coppersmith and Winograd [12] obtain using
similar methods.
To obtain ω < 2.38719, we set H = Cycl and Ĥ = H\{0, 1} and we define our H-
chart as follows:

A(1) = {0} B(1) = −Ĥ C(1) = {0}
A(2) = {1} B(2) = {0} C(2) = Ĥ

A(3) = Ĥ B(3) = {0} C(3) = {0}
A(4) = {1} B(4) = {0} C(4) = {0}
A(5) = {1} B(5) = {1} C(5) = {1}
A(6) = {1} B(6) = {0} C(6) = {1}.

We thus need a different definition of our local Uniquely Solvable Puzzle. We first
need to define our H. Our local USP U is a subset of {1, 2, 3, 4, 5, 6}k such that, for
every ordered (u, v, w) ∈ U3, there is an i such that (ui, vi, wi) ∈ H.
We define three functions α, β, γ : {1, 2, 3, 4, 5, 6} → {0, 1, 2}:

α(2) = α(3) = 1, α(4) = 2, α(1) = α(5) = α(6) = 0

β(1) = β(3) = 1, β(5) = 2, β(2) = β(4) = β(6) = 0

γ(1) = γ(2) = 1, γ(6) = 2, γ(3) = γ(4) = γ(5) = 0

Then, H is the set of all triples (u, v, w) ∈ {1, 2, 3, 4, 5, 6}3 such that

α(u) + β(v) + γ(w) < 2.

There are 81 such elements, for example (2, 2, 4) ∈ H.
From Coppersmith and Winograd [12], it can be shown that the maximum size of U
with k = 3N is roughly (

3N
L,N + L, 2N − 2L

)
if, in each u ∈ U we allow N − L occurences each of 1,2 and 3 and L occurences each
of 4,5, and 6.

101

The subsets

Au =
k∏

i=1

A(ui) Bu =
∏k

i=1B(ui) Cu =
k∏

i=1

C(ui)

thus all satisfy the simultaneous triple product property. Using theorem 7, setting
l = 8 and L = 0.048N , we get the desired upper bound of ω.
This algorithm is equivalent to Coppersmith and Winograd’s “Complicated”
algorithm (Section 7 of [12]); the following correspondence applies:

1 → X [0]Y [1]Z [1]

2 → X [1]Y [0]Z [1]

3 → X [1]Y [1]Z [0]

4 → X [2]Y [0]Z [0]

5 → X [0]Y [2]Z [0]

6 → X [0]Y [0]Z [2]

The USP condition ensures that all the matrix products are independent. Here, l is
equivalent to q + 2 in Coppersmith and Winograd’s version.

5.3 Using Group Theory to show ω = 2

We have objects called Strong Uniquely Solvable Puzzles, defined in [10], which are
similar to USPs with one important exception:

Definition 20. A Strong Uniquely Solvable Puzzle of width k is a subset
U ⊆ {1, 2, 3}k satisfying the following property:
For all bijections π1, π2, π3 ∈ Sym(U), either π1 = π2 = π3 or else there exist u ∈ U
and i ∈ {1, ..k} such that exactly two of (π1(u))i = 1, (π2(u))i = 2 or (π3(u))i = 3 hold.

In our comparison with dividing 3k objects into 3 sets of size k, we have that this is
equivalent what we had before, with the additional restriction that each object can
only be placed in a maximum of two sets, throughout the USP.
It is conjectured in [10] that, given ε, one can find a k large enough such that the
number of elements in the strong USP is greater than

(
27
4

)k(1−ε)
. We explain how [10]

shows how this would show ω = 2.
We let H be the abelian group of functions from U × {1, .., k} to the cyclic group
Cycm. The symmetric group Sym(U) acts on H in the following manner, for
π ∈ Sym(U), h ∈ H,u ∈ U, i ∈ {1, .., k}:

πh(u, i) = h(π−1(u), i)

Let G be the semidirect product H o Sym(U). We then define three subsets
S1, S2, S3 ⊆ G.
Set

Si = hπ : h(u, j) 6= 0 iff uj = i

for all u ∈ U and j ∈ {1, .., k}.
It is shown in [10] that these three subsets satisfy the triple product property. Each of
these subsets has size |U !|(m− 1)|U |k.

102

Using corollary 3.6 in [10], we have that

ω ≤ 3 log(m)
log(m− 1)

− 3 log(|U |!)
|U |k log(m− 1)

.

If the maximum size of the USP is greater than Ck for some C, then this becomes

ω ≤ 3
log(m)− log(C)

log(m− 1)
.

We thus have that if the size of strong USPs is the same as that for regular USPs,
C = 3

22/3 , that, on setting m = 3, that ω = 2. However, it is not known if such a
strong USP exists.
In Proposition 3.8 of [10], it is shown that C is at least 22/3. For regular USPs, C was
roughly equal (using Stirling’s Formula and Salem-Spencer sets) to the number of
possible combinations of blocks that included the symbol 1. We have the additional
restriction that within the USP, no entry can contain any more than two symbols.
Unfortunately, the Salem-Spencer set method (as it is described in chapter 2 and in
[12]) cannot detect and remove triples which violate this restriction: it can only deal
with triples which share an X, Y or Z block. However, there is no known reason that
we cannot remove an appropriate number of triples and be left with a number of
blocks proportional to the number of X-blocks, thereby getting the required value of
C.
Finally, another property, similar to the Simultaneous Triple Product Property, the
Simultaneous Double Product Property, together with appropriately defined
subgroups, can be used to how that ω = 2, if certain, unproven conditions can be met.
This is also defined and described in [10].
Two subsets S1, S2 of a group H satisfy the Double Product Property if

q1q2 = 1 ⇒ q1 = q2 = 1

for qi ∈ Q(Si).

Definition 21. Then we say that n pairs of subsets Ai, Bi satisfy the Simultaneous
Double Product Property if

• for all i, the pair Ai, Bi satisfies the double product property and

• for all i, j, k

ai(a′j)
−1bj(b′k)

−1 = 1 ⇒ i = k

where ai ∈ Ai, a
′
j ∈ Aj , bj ∈ Bj and b′k ∈ Bk.

It is possible to define subsets of a group G which satisfy the triple product property
using subsets which define the double product property. If

∆n = {(a, b, c) ∈ Z3 : a+ b+ c = n− 1, a, b, c ≥ 0}

and n pairs of subsets Ai, Bi ⊆ H that satisfy the Simultaneous Double Product
Property, then the following subsets of H3 satsify the triple product property. Here,
v = {v1, v2, v3} ∈ ∆n:

103

Âv = Av1 × {1} ×Bv3

B̂v = Bv1 ×Av2 × {1}
Ĉv = {1} ×Bv2 ×Av3 .

Lemma 39. The above sets satsify the triple product property.

Proof. Let a, a′ ∈ Âv, b, b′ ∈ B̂v and c, c′ ∈ Ĉv. We then suppose that

a(a′)−1b(b′)−1c(c′)−1 = 1 ∈ H3.

We consider the first coordinate. Let av1 , a
′
v1
∈ Av1 and bv1 , b

′
v1
∈ Bv1 . Then the

product obtained in the first coordinate is

av1(a
′
v1

)−1bv1(b
′
v1

)−11(1)−1 = 1.

Now, since the pair Av1 , Bv1 satisfied the Simulatenous Double Product Property, it
must follow that av1 = a′v1

and bv1 = b′v1
. Doing this for all three coordinates will

show that a = a′, b = b′ and c = c′, and hence these subsets satisfy the triple product
property.

This gives rise to a lemma, which we will use to prove an analogous theorem to
Theorem 33. In order to prove this lemma, we must use a theorem from [9] (Theorem
3.3).

Theorem 40. Let ∆n be the set of triples (v1, v2, v3) with v1, v2, v3 ≥ 0 ∈ Z and
v1 + v2 + v3 = n− 1. Then the sets

H1 = {π ∈ Sym(∆n) : [π(v1, v2, v3)]1 = v1∀v ∈ Sym(∆n)}
H2 = {π ∈ Sym(∆n) : [π(v1, v2, v3)]2 = v2∀v ∈ Sym(∆n)}
H3 = {π ∈ Sym(∆n) : [π(v1, v2, v3)]3 = v3∀v ∈ Sym(∆n)}

satisfy the triple product property.

Proof. For π1, π
′
1 ∈ H1, π2, π

′
2 ∈ H2, π3, π

′
3 ∈ H3, consider the triple product

π1(π′1)
−1π2(π′2)

−1π3(π′3)
−1 = 1.

Set
π = π1(π′1)

−1, ρ = π2(π′2)
−1, θ = π3(π′3)

−1

to obtain

πρθ = 1.

It follows that π ∈ H1, ρ ∈ H2, θ ∈ H3.
Consider the element (0, 0, n− 1) ∈ ∆n. Then θ((0, 0, n− 1)) = (0, 0, n− 1) since θ
preserves the third co-ordinate. We then apply ρ to (0, 0, n− 1) to get (i, 0, n− 1− i)
for some i ≥ 0. Finally, we apply π. Since π preserves the first co-ordinate, and since
πρθ = 1, we must have that i = 0 and that π = ρ = θ = 1. Similar work will show
that (n− 1, 0, 0) and (0, n− 1, 0) are also ”‘fixed points”’.
Now, for any other point (v1, v2, v3), we have that after performing θ and ρ, that the
resulting point will be (v1 + i+ j, v2 − i, v3 − j) for some i ≥ 0, j ∈ Z. Now, π fixes the

104

first coordinate, which we wish to equal v1, so i+ j = 0, making i = −j. Therefore
our point is π(v1, v2 − i, v3 + i). Now, we rank the triples in order, setting (n− 1, 0, 0)
as the largest and (0, 0, n− 1) as the smallest (so therefore (0, 1, n− 2) is larger than
(0, 0, n− 1) in our ranking). Since (0, 0, n− 1) was a fixed point, nothing can map to
this. We suppose that all points smaller than (v1, v2, v3) in our ranking are fixed, and
so we cannot map to them. We therefore have that since h3 sends (v1, v2, v3) to
(v1 + i, v2 − i, v3). The i must be greater than or equal to 0, since an i < 0 would
result in h3 mapping to a smaller, fixed point, which is not possible. So our point
(v1, v2 − i, v3 + i) must have i = 0 as i > 0 will map to a fixed point, thus i = 0 and
π = ρ = θ = 1. Therefore the Triple Product Property holds.

Lemma 41. (Theorem 4.3 of [10]. The proof is omitted in the paper) If n pairs of
subsets Ai, Bi ⊆ H satisfy the simultaneous double product property, then the
following subsets of G = (H3)∆n o Sym(∆n) satisfy the triple product property:

S1 = {âπ : π ∈ Sym(∆n), âv ∈ Âv ∀ v}
S2 = {b̂π : π ∈ Sym(∆n), b̂v ∈ B̂v ∀ v}
S3 = {ĉπ : π ∈ Sym(∆n), ĉv ∈ Ĉv ∀ v}

Proof. Consider the triple product

a1πa1(πa2)
−1(a2)−1b1πb1(πb2)

−1(b2)−1c1πc1(πc2)
−1c−1

2 = 1

where a1πa1 , a2πa2 ∈ S1, b1πb1 , b2πb2 ∈ S2, c1πc1 , c2πc2 ∈ S3.
We must have

πa1(πa2)
−1πb1(πb2)

−1πc1(πc2)
−1 = 1,

so setting

π = πa1(πa2)
−1

ρ = πa1(πa2)
−1πb1(πb2)

−1

means that the original triple product is equivalent to

c−1
2 a1(a−1

2 b1)π(b−1
2 c1)ρ = 1.

Hence for each v

(c−1
2)v(a1)v(a−1

2)π(v)(b1)π(v)(b
−1
2)ρ(v)(c1)ρ(v) = 1

If we consider only the first coordinate of v, we must have that

1 ∈ Av1(A(π(v))1)
−1B(π(v))1(B(ρ(v))1)

−1.

However, due to the fact all sets Ai, Bi satisfy the Simultaneous Double Product
Property, the above can only hold if v1 = (ρ(v))1. The map ρ must therefore be in the
set of maps in Sym(∆n) which preserve the first coordinate.

105

If we consider the second coordinate of v, we must have that

1 ∈ A(π(v))2(A(ρ(v))2)
−1B(ρ(v))2(Bv2)

−1.

Again, due to the fact all sets Ai, Bi satisfy the Simultaneous Double Product
Property, the above can only hold if v2 = (π(v))2. Therefore the map π can only be in
the set of maps in Sym(∆n) which preserve the second coordinate.
Finally, considering the third coordinate of v, we must have that

1 ∈ A(ρ(v))3(Av3)
−1Bv3(B(π(v))3)

−1

which holds if and only if (ρ(v))3 = (π(v))3, that is if the two maps π−1ρ and
ρ−1π ∈ Sym(∆n) both preserve the third coordinate of v.
Recall that the subsets Hi of Sym(∆n) which preserve the ith coordinate satsify the
triple product property. Thus, for hi ∈ Hi, if h1h2 = h3, we have that h1h2(h3)−1 = 1,
and since hi, h

−1
i ∈ Q(Hi), we must have that h1 = h2 = h3 = 1, so π = ρ = 1.

The triple product becomes

a1(a2)−1b1(b2)−1c1(c2)−1 = 1

We look at the first entry in the vth coordinate:

1 ∈ av1(a
′
v1

)−1bv1(b
′
v1

)−1

where
av1 , a

′
v1
∈ Av1 , bv1 , b

′
v1
∈ Bv1 .

Since all Ai, Bi satisfy the Double Product property, av1 = a′v1
and bv1 = b′v1

.
Analogous analysis on the second and third coordinates will yield that
(a1)vi = (a2)vi , (b1)vi = (b2)vi and (c1)vi = (c2)vi for all v ∈ ∆n, i ∈ {1, 2, 3}. Hence
the triple product property holds.

Theorem 42. (Theorem 4.4 of [10]) If H is a finite group with character degrees
{dk}, and n pairs of subsets Ai, Bi ⊆ H satisfy the Simultaneous Double Product
Property, then

n∑
i=1

(|Ai||Bi|)ω/2 ≤ (
∑

k

dω
k)3/2.

Proof. For an integer N set A′
i = An

i and B′
i = BN

i , and µ be a vector in {1, .., N}n,
with

∑n
i=1 µi = N . There are M =

(
N
µ

)
pairs A′

i, B
′
i such that

|A′
i||B′

i| =
∏n

i=1(|Ai||Bi|)µi = L. We then set P = |∆M |, so that P = M(M+1)
2 . We

now use lemma 41, where the three subsets have size P !LP , and a previous theorem
to show that

(P !LP)ω ≤ (P !)ω−1(
∑

k

dω
k)3NP .

We take 2P th roots and let k →∞ to obtain(
N

µ

)
(

n∏
i=1

(|Ai||Bi|)µi)ω/2 ≤ (
∑

k

dω
k)3N/2

106

The original statement then follows from lemma 34.

We conjecture, as do the authors of [10], that there exist n subsets Ai, Bi of H, where
H is an Abelian group of size n2+o(1)such that |Ai||Bi| ≥ n2−o(1). Placing these
figures into the previous theorem will show that ω = 2.

5.4 Relationship between ω and Group Algebra
multiplication

Implicit in this work is the relationship between matrix multiplication and the
multiplication of two elements of the group algebra CG with |G| ≤ n. We show the
relationship between the two problems.

Definition 22. The rank r(G) of multiplication in the group algebra is the minimum
number of multiplications in C which are required to multiply two elements of CG.

Definition 23. The exponent of multiplication of the group algebra CG is the
minimum number α such that

max{r(G) : |G| ≤ n} = O(nα+ε)

for any ε > 0.

Theorem 43. The exponent of matrix multiplication ω = 2α.

Proof. Let {di} be the character degrees of G. The group algebra is a direct sum of
di × di matrix products. It follows that

r(G) < K
∑

i

dβ
i

with β > ω and K a constant depending on β. Then we have

r(G) ≤ K|G|β/2

by using the fact that |G| =
∑

i d
2
i . Thus we have that α ≤ ω/2.

Conversely, Schönhage’s theorem states that∑
i

dω
i ≤ r(G).

using Hölder’s inequality, we obtain

|G| ≤ (
∑

i

dω
i)2/ωc(G)ω/(ω−2)

Where c(G) is the class number of G. Raising both sides to the power of ω/2 we
obtain

|G|ω/2 ≤ r(G)c(G)ω/2−1.

Then ω/2 ≤ α if we choose G such that log(G) >> log(c(G)) (e.g. Symn).

Thus, ω can be shown to be equal to 2 if α can be shown equal to 1 (and vice versa).

107

Chapter 6

Conclusions and Further Work

We finish with a summary of the conclusions of this thesis, and identify areas of
possible future work.

6.1 Conclusions

It was demonstrated in chapter 2 that we were able to compute the “value” as
described in [12] of a trilinear form in a different fashion. We symmetrized: that is if
we have a trilinear form X [a]Y [b]Z [c], then we could tensor multiply it together with
X [c]Y [a]Z [b] and X [b]Y [c]Z [a], thus symmetrizing the numbers of available X, Y and
Z-blocks. Then, there is no need to regard anything as a C-tensor, and we may regard
this new, symmetrised, trilinear form as a trilinear form in its own right. Taking its
value yielded the same value as was obtained in [12].
Using this method, we were able to take higher powers of Coppersmith and
Winograd’s algorithm, and find values for the associated trilinear forms. It was found
that raising the algorithm to the third power did not yield an algorithm capable of
reducing ω, but that raising it to the fourth power did.
However, the improvement gained in raising it to the fourth power was not as stark as
the improvement gained from raising it from the first to the second power. It is
therefore probable that the upper bound of ω generated by this algorithm approaches
a limit larger than 2 as we increase the algorithm by higher powers. It is also probable
that the bound for ω may be reduced only when we raise it to a power 2M for some
M , due to other powers not making full use of gains obtained in previous algorithms.
We also showed that the exponent of matrix multiplication ω and the rank α of
multiplication in C(G) are linked in that ω = 2α. Therefore, investigation of
multiplication in the group algebra, could yield results for ω too (and vice-versa).

6.2 Possible Further Work

As conjectured above, it may be possible to raise Coppersmith and Winograd’s
algorithm to the eighth (or higher) power to obtain a reduction in ω. However, it is
likely that any gains obtained in doing this will be very small.
Chapter 5 provided us with two conjectures: we had that if we could show that the
strong USP capacity was the same as the capacity for regular USPs, then ω = 2. We
also showed that if we could find a group H with n subsets Ai, Bi satisfying the
double product property and |H| = n2+o(1) and |Ai||Bi| ≥ n2−o(1), then ω = 2.

108

It was stated that Salem-Spencer was not adequate for proving the former conjecture-
however there remains scope for it to be modified in such a way as to make it
possible, or for there to be another possible method of showing it. As stated, the
problem is equivalent to finding the number of ways of sorting objects 3N into 3 sets
of size N , with the criteria:

• No two partitions may share an identical first, second or third set;.

• We should not be able to choose a first set from one partition, a second set from
another and a third set from another still to make a new partition; and

• no objects may appear in all three sets throughout the partition.

The other conjecture may be investigated by starting with concrete examples of the
Double Product Property. The paper [10] provides only a trivial example of a set that
satisfies it.
Finally, it was also mentioned in Chapter 5 that rank α of multiplication in the group
algebra CG is half of ω. Therefore, it is also desirable to know if α = 1. Investigation
of this group algebra multiplication could yield improvements for ω.

109

Appendix A

Pan’s Trilinear Aggregation
Algorithm

The following is the trilinear aggregration algorithm as described by Pan in [18],[19].
First we define:

n = 2s
S1(s) = S1

1(s) ∪ S1
2(s)

S1
1(s) = {(i, j, k), 0 ≤ i ≤ j < k ≤ s− 1}
S1

2(s) = {(i, j, k), 0 ≤ k < j ≤ i ≤ s− 1}
i = i+ s

j = j + s

k = k + s.

We also have Kronecker’s δ:

δpq =
{

1 if p = q
0 if p 6= q

Finally, we have the symbol

s−1∑
k=0

∗

which is the same as

s−1∑
k=0

when i 6= j and

s−1∑
k=0,k 6=i

when i = j.

110

We collect all the aggregates together for the first part of the algorithm.

T 0 =
∑

(i,j,k)∈S1(s)

[
(aij + ajk + aki)(bjk + bki + bij)(cki + cij + cjk)

− (aij − ajk + aki)(bjk + bki − bij)(−cki + cij + cjk)
− (−aij + ajk + aki)(bjk − bki + bij)(cki + cij − cjk)
− (aij + ajk − aki)(−bjk + bki + bij)(cki − cij + cjk)
− (aij + ajk − aki)(−bjk + bki + bij)(cki − cij + cjk)
− (−aij + ajk + aki)(bjk − bki + bij)(cki + cij − cjk)
− (aij − ajk + aki)(bjk + bki − bij)(−cki + cij + cjk)

+ (aij + ajk + aki)(bjk + bki + bij)(cki + cij + cjk)
]
.

In the second part, we gather together those undesirable terms which share a and b
coordinates.

T 1 =
s−1∑
i,j=0

{
aijbij

[
(s− 2δij)cij +

s−1∑
k=0

∗(cki + cjk)
]

+ aijbij
[
(s− δij)cij +

s−1∑
k=0

∗(−cki + cjk)
]

+ aijbij
[
(s− δij)cij − δjicji +

s−1∑
k=0

∗(cki − cjk)
]

+ aijbij
[
(s− δij)cij −

s−1∑
k=0

∗(cki + cjk)
]

+ aijbij
[
(s− δij)cij −

s−1∑
k=0

∗(cki + cjk)
]

+ aijbij
[
(s− δij)cij − δjicji +

s−1∑
k=0

∗(cki − cjk)
]

+ aijbij
[
(s− δij)cij +

s−1∑
k=0

∗(−cki + cjk)
]

+ aijbij
[
(s− 2δij)cij +

s−1∑
k=0

∗(cki + cjk)
]}
.

In the third part, we gather together those undesirable terms which share a and c
coordinates (which we have not yet already gathered).

111

T 2 =
s−1∑
i,j=0

{
aij

s−1∑
k=0

∗(bki + bjk)cij − aij

s−1∑
k=0

∗(bki + bjk)cij

+ aij

s−1∑
k=0

∗(bjk − bki)cij − aij [
s−1∑
k=0

∗(bki − bjk)− δjibji]cij

+ aij [
s−1∑
k=0

∗(bki − bjk) − δjibji]cij + aij

s−1∑
k=0

∗(bjk − bki)cij

− aij

s−1∑
k=0

∗(bki + bjk)cij − aij

s−1∑
k=0

∗(bki + bjk)cij
}
.

Finally, we gather together those ungathered undesirable terms which share b and c
coordinates.

T 3 =
s−1∑
i,j=0

{ s−1∑
k=0

∗(aki + ajk)bijcij + [
s−1∑
k=0

∗(aki − ajk)− δjiaji]bijcij

−
s−1∑
k=0

∗(aki + ajk)bijcij +
s−1∑
k=0

∗(ajk − aki)bijcij

+
s−1∑
k=0

∗(ajk − aki)bijcij −
s−1∑
k=0

∗(aki + ajk)bijcij

+ [
s−1∑
k=0

∗(aki − ajk)− δjiaji]bijcij +
s−1∑
k=0

∗(aki + ajk)bijcij
}
.

Finally, we have

2s∑
i,j,k=0

= T 0 − T 1 − T 2 − T 3

which we achieve in 8(s3 − s)/3 + 24s2 multiplications, which, on setting n = 2s is
(n3 − 4n)/3 + 6 ∗ n2 operations.

112

Appendix B

Optimisation Methods in
Chapters 3 and 4

B.1 Optimisation for Chapter 3

In order to determine the optimal values of â, .., ĝ, ĉ′, .., ĝ′, we use a Newton Raphson
procedure. We start with the function

N−p

(
N

A0, A1, A2, A3, A4, A5, A6

)
M ′

Mmax
×

× (3q)6τ b̂(3q2 + 3)6τ ĉ′(q3 + 6q)3τ d̂′ ×

× 3qτ (1 + q3τ)ê′(32/3qτ (1 + q3τ)1/3(6 + q3τ)1/3)6f̂ ′3(1 + q3τ)ĝ′ .

Approximating the function using Stirling’s formula, taking logs and allowing
N →∞, we get our function F .
We use Coppersmith and Winograd’s value of τ here, and use various values of q: if
the overall value of the function at our new point exceeds (q + 2)3, then we may
reduce τ in order to make the equality exact (further, this shows that we are tending
towards a maximum).
We start with initial values for b̂, d̂, ê, f̂ , ĝ. From calculations in chapter 3, we know
that Mmax occurs when ĉ = d̂êĝ

f̂2
, so we set ĉ as this. This also forces â (due to the

restriction that 3â+ ...+ ĝ = N . Hence we also have our values of A0, .., A6. We use
these same A0, ..., A6 in M ′. We note that given A0, .., A6, there is one degree of
freedom among the ĉ′, .., ĝ′ so we allow ĉ′ to vary. This will force d̂′, ê′, f̂ ′, ĝ′.
Thus, this is a function of b̂, ĉ, d̂, ê, f̂ , ĝ, ĉ′. We use a Newton-Raphson procedure in
several dimensions. Given a function F over n variables x1, .., xn, and an initial vector
a = a1, .., an, the procedure is defined as follows:
We start by setting a column vector v where the entries are

vi =
∂F

∂xi

evaluated at xi = ai.
We then set a matrix G where

Gi,j =
∂2F

∂xi∂xj

113

evaluated at xi = ai.
Then, we set our new ”initial” vector as being

a−G−1v.

The initial values were chosen by considering the proportions of the blocks
X [0]Y [1]Z [1], X [1]Y [0]Z [1],X [1]Y [1]Z [0], X [0]Y [0]Z [2],X [0]Y [2]Z [0], and X [2]Y [0]Z [0].
There, after raising the original algorithm to the Nth power, each final block
contained 0.317N of each of the first three and 0.016N of each of the last three.
Therefore, our initial value for b̂ (which represented X [0]Y [1]Z [5] was

3× (0.317× 0.016× 0.016) = 0.000243456.

We find all our other initial values in a similar manner. It is reasonable to assume
that the values that give the maximum will be obtain in this region, since previous
maxima were also obtained around these points.
Finally, we use Maple to perform 100+ iterations of the Newton-Raphson method to
get a very close approximation to the maximum.

B.2 Optimisation for Chapter 4

The methods for finding the maximum values in Chapter four were similar to those in
Chapter 3, but with some important differences.
We start by noting that we have ten variables â, b̂, ĉ, d̂, ê, f̂ , ĝ, ĥ, î, ĵ. As shown in
chapter 4, we know that Mmax occurs when

ĉ =
êf̂ î

ĥ2
d̂ =

êĝî

ĥĵ

if A0, .., A8 are fixed.
Therefore, we set values for b̂, ê, f̂ , ĝ, ĥ, î, ĵ and set ĉ ,d̂ to be defined as above (thus
forcing â).
As a result, we will have our A0, .., A8. Given these, we have two degrees of freedom,
so we allow ĉ′ and d̂′ (in M ′) to vary, and define our ê′, f̂ ′, ĝ′, ĥ′, î′, ĵ′ appropriately (in
terms of A0, .., A8 and ĉ′ and d̂′).
Here, our F =

|∆| M ′

N2Mmax
[V017]6b̂[V026]6ĉ′ [V035]6d̂′ [V044]3ê′ [V116]3f̂ ′ [V125]6ĝ′ [V134]6ĥ′ [V233]3̂i′ [V224]6ĵ′

with ∆ defined as in chapter 4 (it is a function of b̂, ê, .., ĵ). Again, we approximate
the factorials using Stirling, allowing N →∞ and take logs to obtain a function F .
We perform the Newton-Raphson interation as before, where F is a function over
b̂, ê, f̂ , ĝ, ĥ, î, ĵ, ĉ′, d̂′, trying several values of q, and using Coppersmith and
Winograd’s τ .
The initial values are found similarly to above, except here we may use the values of
â, .., d̂ in Coppersmith and Winograd, as we may regard the algorithm as the product
of two squares.
For example, we may take our initial value for b̂ as being

2× 0.000233× 0.012506 = 0.00005827796.

114

We find our other initial values similarly and use 100 iterations of the
Newton-Raphson procedure as before to obtain our desired values.

115

Bibliography

[1] F.A. Behrend On Sets of Integers which Contain no Three Terms in Arithmetical
Progression Proc. Nat. Acad. Sci. USA Volume 32 (1946), pp 331-332.

[2] D. Bini Relations Between Exact and Approximate Bilinear Algorithms.
Applications. Calcolo 17 (1980) pp 87-97

[3] D. Bini, M. Capovani, G. Lotti, F. Romani. O(n2.7799) Complexity for Matrix
Multiplication. Inf. Proc. letters 8 (1979) pp 234-235

[4] M. Bläser. A 5
2n

2 Lower Bound for the Rank of n× n Matrix Multiplication over
Arbitrary Fields. Proceedings of the 40th Annual Symposium on Foundations of
Computer Science (1999) page 45.

[5] M. Bläser. Beyond the Alder Strassen Bound. Theoretical Computer Science,
Volume 331, Issue 1, Automata, languages and programming , (2005) pp 3-21.

[6] M. Bläser.On the complexity of the multiplication of matrices of small formats
Journal of Complexity Volume 19 , Issue 1 (2003)pp 43 - 60

[7] R.W. Brockett and D. Dobkin. On the optimal evaluation of a set of bilinear
forms.Proceedings of the fifth annual ACM symposium on Theory of computing
(1973) pp. 88-95

[8] P. Bürgisser, M. Clausen, M.A. Shokrollahi Algebraic Complexity Theory, Volume
315, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag 1997

[9] H. Cohn and C. Umans. A Group Theoretic Approach to Fast Matrix
Multiplication. Proceedings of the 44th Annual Symposium on Foundations of
Computer Science, 11-14th October 2003, Cambridge, MA, IEEE Computer
Society, pp.438-449, arXiv:math.GR/0307321.

[10] H. Cohn, R. Kleinberg, B. Szegedy and C. Umans. Group-theoretic Algorithms
for Matrix Multiplication. Proceedings of the 46th Annual Symposium on
Foundations of Computer Science, 9-12 July 2006, Genova, Italy, IEEE
Computer Society, pp.379-388, arXiv: math.GR/0511460v1.

[11] D. Coppersmith and S. Winograd. On the Asymptotic Complexity of Matrix
Multiplication. SIAM Journal of Computation, Volume 11, No. 3 (1982), pp
472-492

[12] D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic
Progressions. Journal of Symbolic Computation, Volume 9:pp 251-280, 1990.

116

[13] H. F. de Groote On Varieties of Optimal Algorithms for the Computation of
Bilinear Mappings II. Optimal Algorithms for 2× 2 matrix multiplication.
Theoretical Computer Science 7 (1978) pp
127-148.http://www.facebook.com/?ref=home

[14] J.E. Hopcroft and L.R. Kerr On Minimizing the Number of Multiplications
Necessary for Matrix Multiplication SIAM Journal of Applied Mathematics,
Volume 20 (1971) pp 30-36.

[15] J. Laderman A Noncommutative Algorithm for multiplying 3× 3 matrices using
23 multiplications. Bull. Amer. Math. Soc. Volume 82 (1976) pp 180-182.

[16] J. C. Lafon and S. Winograd A Lower Bound for the Multiplicative Complexity of
the Product of Two Matrices. Centre de Calcul de L’Esplanade, U.E.R. de
Mathematique, Univ. Louis Pasteur, Strasbourg (1978)

[17] G. James and M. Liebeck Representations and Characters of Groups. Cambridge
University Press, Cambridge, Second Edition, 2001.

[18] V. Pan Strassen’s Algorithm is not Optimal, Trilinear Technique of Aggregating,
Uniting and Canceling for Constructing Fast Algorithms for Matrix Operations.
Proceedings of the 19th Annual Symposium on Foundations of Computer Science
(1978), pp 166-176.

[19] V. Pan Field Extension and Trilinear Aggregating, Uniting and Canceling for the
Acceleration of Matrix Multiplications, Proc. 20th IEEE Symposium on
Foundations of Computer Science, 1979.

[20] V. Pan New Fast Algorithms for Matrix Operations, SIAM Journal of
Computation. Volume 9, No.2 (1980), pp 321-342.

[21] V. Pan How Can We Speed Up Matrix Multiplication?, SIAM Review Volume 26,
No. 3. (1984) pp 393-415

[22] R. Salem, and D.C. Spencer On Sets of Integers which Contain no Three Terms
in Arithmetical Progression Proc. Nat. Acad. Sci. USA Volume 28 (1942), pp
561-563.

[23] A. Schönhage Partial and Total Matrix Multiplication, SIAM Journal of
Computation. Volume 10 (1981), pp 434-455.

[24] V. Strassen Gaussian Elimination is not Optimal, Numer. Math., 13 (1969), pp.
354-356

[25] V. Strassen The Asymptotic Spectrum of Tensors and the Exponent of Matrix
Multiplication Proceedings of the annual IEEE Symposium on Foundations of
Computer Science (1986), pp49-54.

[26] V. Strassen Relative Bilinear Complexity and Matrix Multiplication J. Reine
Angew. Mathe. 375-376 (1987) pp. 406-443.

[27] A. Waksman On Winograd’s Algorithm for Inner Products, IEEE Transactions
on Computers. Volume 19, Issue 4 (1970), pp. 360-361.

[28] S. Winograd. A New Algorithm for Inner Product IEEE Transactions on
Computers, Volume 17, Issue 7 (1968) pp 693-694.

117

[29] S. Winograd: On Multiplication of 2× 2 matrices.Lin. Alg. Appl. 4 (1971) pp
381-388

118

