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Abstract

The results of Strassen [25] and Raz [19] show that good enough tensor rank lower
bounds have implications for algebraic circuit/formula lower bounds.

We explore tensor rank lower and upper bounds, focusing on explicit tensors. For
odd d, we construct field-independent explicit 0/1 tensors T : [n]d -+ F with rank
at least 2n td/ 2j + n - 8(d Ig n). This improves the lower-order terms in known lower
bounds for any odd d > 3.

We also explore a generalization of permutation matrices, which we denote permu-
tation tensors. We show, by applying known counting lower bounds. that there exist
order-3 permutation tensors with super-linear rank as well as order-d permutation
tensors with high rank. We also explore a natural class of permutation tensors, which
we call group tensors. For any group G, we define the group tensor T : Gd -* F, by

g 1 iff gi - = 1 G We give two upper bounds for the rank of these
tensors. The first uses representation theory and works over "large" fields F, showing

(among other things) that rankF(T) |G In the case that d = 3, we are able
to show that rank(T3) < O(IG '/2) < O(IGV 1 9), where w is the exponent of matrix
multiplication. The next upper bound uses interpolation and only works for abelian
G, showing that over any field F that rankF(Td) < O(JIl+Ig d 1ld-1|lG). In either
case, this shows that many permutation tensors have far from maximal rank, which
is very different from the matrix case and thus eliminates many natural candidates
for high tensor rank.

We also explore monotone tensor rank. We give explicit 0/1 tensors T : [n]d -+ F
that have tensor rank at most dn but have monotone tensor rank exactly nd-1 . This
is a nearly optimal separation.

Thesis Supervisor: Scott Aaronson
Title: Associate Professor
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Chapter 1

Introduction

1.1 Motivation

Most real-world computing treats data as boolean, and thus made of bits. However,

for some computational problems this viewpoint does not align with algorithm design.

For example, the determinant is a polynomial, and computing it typically does not

require knowledge of the underlying bit representation and rather treats the inputs

as numbers in some field. In such settings. it is natural to consider the computation

of the determinant as computing a polynomial over the underlying field, as opposed

to computing a boolean function.

When computing polynomials, just as when computing boolean functions, there

are many different models of computation to choose. The most general is the alge-

braic circuit model. Specifically, to compute a polynomial f over a field F in variables

.. . . . x- , one defines a directed acyclic graph, with exactly n source nodes (each la-

beled with a distinct variable), a single sink node (which is thought of as the output),

and internal nodes labeled with either +, meaning addition, or x. meaning mul-

tiplication. Further, each non-leaf is restricted to have at most two children nodes.

Computation is defined in the natural way: each non-source node computes the (poly-

nomial) function of its children according to its label, and source nodes compute the

variable they are labeled with. One can also consider the algebraic formula model,

which requires the underlying graph to be a tree. In both of these models, we define



the size of the circuit/formula to be the total number of nodes in the graph (other

natural measures of size are polynomially related).

Neither the algebraic circuit nor the formula model are well understood, in the

sense that while it can be shown that there exist polynomials which require large

circuits for their computation, no explicit' examples of such polynomials are known.

Indeed, finding such lower bounds for explicit functions is considered one of the most

difficult problems in computational complexity theory. Several lower bounds are

known, such as Strassen's [26] result (using the result of Baur-Strassen [4]) that the

degree ni polynomial E" X requires Q(n lg n) size circuits. However, no super-linear

size lower bounds are known for constant-degree polynomials. In the case of formulas.

Kalorkoti [16] proved a quadratic-size lower bound for an explicit function.

One approach for improvements on known lower bounds in both of these models

is by proving lower bounds for tensor rank. A tensor is a generalization of a matrix,

and an order-d tensor is defined as a function T : [n]d -+ F, where [n] denotes the set

{1, . n.. , n}. A tensor is rank one if it can be factorized as T(ii, .. d. , i) = j (ig)

for 6j - Fn \ {}, where 65(ij) is the iy-th entry of the vector '. The rank of a

tensor is the minimum r such that T = E Sk for rank one tensors Sk. It can be

seen that an order-2 tensor is a matrix, and the notions of rank coincide. It can be

observed that the rank of an [n]d tensor is always at most nd-1, and a counting-type

argument shows that over any field there exist tensors of rank at least nd- i/d. A

tensor is called explicit if T(ii, .. . , id) can be computed by algebraic circuits of size

at most polynomial in poly(d lg n), that is, at most polynomial in the size of the input

(ii, ... , id). All explicit tensors in this paper will also be uniformly explicit.

Interest in tensors arise from their natural correspondence with certain polyno-

mials (a class known as set-multilinear polynomials). Consider the sets of variables

{Xi jiE[n],jE[d). Given a tensor T : [n]d -+ F, one can define the polynomial

d

fT(Xij}iG[rij.jc[d]) = T(ii., id) f Xii j
l~id E[n] j=1

1A polynomial is said to be explicit if the coefficient of a monomial X0 is computable by algebraic
circuits of size at most poly(I6|).



This connection was used in the following two results. First, Strassen [25] showed

that

Theorem (Strassen [25], see also [31]). For a tensor T : [n]3 -+ F. the circuit size

complexity of fT is Q(rank(T)).

Thus, any super-linear lower-bound for order-3 tensor rank gives a super-linear

lower bound for general arithmetic circuits, even for the constant degree polynomials.

More recently. Raz [19] proved

Theorem (Raz [19]). For a family of tensors T, : [n]d(n) --+ F with rank(T) >

n(1-o(l))d(n) and w(1) < d(n) < O(log n/ log log n), the formula-size complexity of fT

ms super-polynomial.

Thus, while Strassen's result cannot be used to prove super-quadratic circuit-size

lower bounds (because of the upper bounds on order-3 tensor rank), Raz's result

shows that tensor rank could be used to prove very strong lower-bounds. These

results motivate a study of tensor rank as a model of computation, which this work

pursues.

1.2 Prior Work

Strassen's connection between order-3 tensor rank and circuit complexity further

established a close connection between tensor rank to what is known as bilinear com-

plexity. As several important problems, such as matrix multiplication and polynomial

multiplication, are bilinear. one can study their bilinear complexity, and thus their

order-3 tensor rank. We interpret various prior results in the language of tensor rank.

For the matrix multiplication (which corresponds to a tensor of size [n2] x [n2] x [n2 ]).

Shpilka [23] showed that the tensor rank is at least 3n 2 -O(n/ 3) over F2, aid Bliser [5]

earlier showed that over any field the tensor rank is at least 2.5n 2 - e(n). For polyno-

mial multiplication (which corresponds to a tensor of size [2n - 1] x [n] x [n]), Kamin-

ski [17] showed that the tensor rank over Fq is known to be (3 + 1/(q 3))n_ - o(n)

and earlier work by Brown and Dobkin [8] showed that over F2 the tensor rank is at



least 3.52n. Lower bounds for these problems seem difficult, in part because strong

upper bounds exist for both matrix multiplication and polynomial multiplication.

This work attempts to prove tensor rank lower bounds for any explicit function,

not just problems of prior interest such as matrix or polynomial multiplication. Pre-

vious work in this realm include that of Ja'Ja' [15] (see their Theorem 3.6), who

used the Kronecker theory of pencils to show tensor rank lower bounds of 1.5n for

[n] x [n] x [2] tensors. for large fields. The work was later expanded by Sumi, Miyazaki,

and Sakata [27] to smaller fields. However, in these works the rank is shown to be at

most 1.5n, so seemingly cannot be pushed further. Most notably, Blaser [61 exhibited

an explicit algebra whose multiplication tensor is of rank at least 3n - O(,F), which

is the best tensor rank lower bound we are aware of prior to this work (in this work

we improve the lower order term to -8(log n)).

It is also worth noting that Histad proved [12, 13] that deternining if the tensor

rank of T : [n]3 -+ F is at most r is NP-hard, for F finite or the rationals (the

problem is also known to be within NP for finite F, but not known for the rationals).

Implicit in his work is a tensor rank lower bound (for explicit order-3 tensors) of

4n/3. To the best of our knowledge, the hardness of approximating tensor rank is

an open question. Part of its difficultly is that any gap-preserving reduction from NP

to tensor rank would automatically yield lower bounds for explicit tensors, and few

lower bound techniques for tensor rank are known.

It is also a folklore result (eg. see Raz [19], or the proof in Section 3.3) that one can

reshape, or embed., a nLd/ 2J x nLd/ 2J size matrix into a order-d tensor, thus achieving

a nLd/ 21 rank lower bound for [n]d size tensors. Independent of this work, Weitz [32]

and Blaser [7] use this idea to transform rank lower bounds for order-3 tensors into

raink lower bounds for order-(2d + 1) tensors for any d. In particular, they prove

2nd - O(n d-1) rank lower bounds for explicit order-(2d + 1) tensors. We also use

this idea to achieve 2nd + n - 8(d lg n) rank lower bounds for explicit order-(2d + 1)

tensors.



1.3 Our Results

Our work2 has several components, each studying different aspects of the tensor rank

problem. We first give two new methods in proving tensor rank lower bounds. In

Section 3.1. we detail the first construction, which proves the best known 3 tensor rank

lower bound for a tensor of size [n] x [n] x [n] (over any field). In particular, using a

generalization of Gaussian elimination we prove

Theorem (Corollary 3.1.10). Let F be an arbitrary field. There are explicit {0, 1}-

tensors T, : [n]3 -+ F such that rank(T,) = 3n - e(lg n).

Our analysis of this construction is in fact exact. In Section 3.2. we give a different

order-3 tensor construction with a 3n - O(lg n) rank lower bound over F2 that has

no matching upper bound, and leave as a open question what is the exact rank. In

Section 3.3, we show how to extend the order-3 tensor rank lower bounds to yield a

lower bound (for odd d) of 2nLd/ 2J + n - 0-(d lg n) for the tensor rank of anm explicit

0/1 size [n]d tensor. which is improves by a factor of 2 on the folklore reshaping lower

bound of nLd/ 2j, and improves in the lower-order terms of other works [32. 7] that use

reshaping.

In Section 4.1. we explore the tensor rank of permutation tensors. For matrices.

permutation matrices are all full-rank and have a tight connection with the determi-

nant. Consequently, it is natural to conjecture that a generalization of permutation

matrices, which we call permutation tensors, have high rank. In particular. using

known counting lower bounds for Latin squares and k-ary quasigroups. we show that

indeed there are order-3 permutation tensors with super-linear tensor rank and order-

d permutation tensors with high rank (over finite fields).

A natural class of permutation tensors are those constructed from groups. That

is, for a finite group G we can define the group tensor T : Gd -+ F. which is a 0/1

tensor defined by T(gi,. .( . , g) - 1 iff gi - -g = 1G- It seems natural to conjecture

2Parts of this work have appeared online [1], and will appear in a conference [2].
3 When comparing this result to those listed in the prior work, it is helpful to note the differences

in size of the tensors. such as comparing [n2
]
3 (for matrix multiplication) to our [n].3 For example,

overF2, we match Shpilka's 3n2 - 0("./ 3 ) lower bound (and improve on low-order terms).



that these tensors might also have high-rank. However, using representation theory

we can give a strong upper bound on the rank of any group tensor (over 'large"

fields such as C). To prove results over any field, we use interpolation methods and

field-transfer results to bound the rank of any group tensor arising from an abelian

group. In particular, we have the following theorem.

Theorem (Theorem 4.1.7, and Corollary 4.1.16). Let G be a finite group. For

"large" fields F (such as algebraically closed fields with characteristic exceeding |G),
rankF(T) < |GIa/2. Further, for d = 3 we have that rank(T3) < O(|GW/ 2) <

O(|G|119), where w is the exponent of matrix multiplication. Moreover, for any field

F, if G is abelian then rankj(T) < O(|G|1+lg d gd-1 G|).

In each case, we show that group tensors have rank far from the maximal 8d(|G|d-1)

and thus are not good candidates for high tensor rank for large d (which are needed

for Raz's application) as well as possibly not being good candidates for Strassen's

application (assuming the conjecture that matrix multiplication exponent w is in fact

2). We are unable to place non-trivial upper bounds on the rank of Td for G non-

abelian and small F, but it seems natural to conjecture that strong upper-bounds exist

given the above results. Moreover, these results indicate that searching for candidate

high-rank tensors should be done among less structured tensors.

Finally, in Chapter 5 we explore monotone tensor rank. Monotone computation

exploits the idea that if a polynomial only uses positive coefficients (over an ordered

field such as Q), then one might try to compute this polynomial only using posi-

tive field elements. Previous researchers have tried, in various models, to show that

such restricted computation is much more inefficient than unrestricted computation.

Indeed, for general algebraic circuits Valiant [28] has shown that allowing negative

field elements allows for an exponential improvement in the efficiency of computing

certain polynomials. We continue in this line of work. In particular, we can show the

following nearly optimal separation.

Theorem (Theorem 5.0.3). Let F be any ordered field. There is a explicit 0/1 tensor

T : [nld -+ F such that rankF(T) < dn, but the monotone rank of T is nd-1.



Chapter 2

Structural Results

2.1 Definitions and Notation

We first define tensors, and give some basic facts about them. Throughout this work,

[n] shall denote the set {1. n}. n shall denote the set {O, .. . , n- 1}. and ig n shall

denote the logarithm of n base 2. Further, the notation [E (the Iverson bracket)

will often be used as an indicator variable for the event E, and can be distinguished

from [n] by context.

Definition 2.1.1. A tensor over a field F is a function T: ]f_1[n --+ F. It is said

to have order d and size (ni, ... dn). If all of the n are equal to n, then T is said to

have size [n]d. T is said to belong to the tensor product space of=F n.

In later sections, the input space of a tensor will sometimes be a group or a set

n] instead of the set [n]. Throughout this paper F shall denote a arbitrary field,

the variable n (or (ni,... , n)) shall be reserved for the tensor size, and d shall be

reserved for the order. Fq will denote the field on q elements. We can now define the

notion of rank for tensors.

Definition 2.1.2. A tensor T : [ni] -+ F is simple if for j E [d] there are vectors

Vj E F~i such that T = ojf_1. That is, for all i E [ij), T(ii, ... , id) = -, 1 Ij)

where ?7j(ij) denotes the I-th coordinate of --.



Definition 2.1.3. The rank of a tensor T :H 1  [nil - F, is defined as the inimum

number of terms in a summation of simple tensors expressing T. that is,

T
rankF(T) = min T : T 1j~i,k, Vjk E Fnj

k=1

Notice that by definition., a non-zero tensor is simple iff it is of rank one.

The next definition shows how identically sized order-(d - 1) tensors can be com-

bined into an order-d tensor.

Definition 2.1.4. For T .. . ,' E _F'j define T = [Ti l -.. ITl by the equation

T(ii... id-1, id) = Tid(ii,. , id1). The Ti are said to be the layers of T (along

the d-th axis). Layers along other axes are defined analogously.

Conversely, given T E F define the l-th layer of T (along the d-axis).

sometimes denoted T E 0d 1 Fn, to be the tensor defined by Ti(ii,...,is 1) =

T(ii,...l, 1).

2.2 Basic Facts about Tensors

We now prove some standard facts about tensors.

Lemma 2.2.1. The 0 _ 1F"> tensor product space is an H_ 1 nj

space, with standard basis { o Iej}i[n,] where {eij,}j JC[lnj is

Thus, the space ®>iFnj tensor product space is isomorphic
FHj=1

dimensional F-vector

the standard basis for

(as a vector space) to

Proof. Recall that the tensor product space O 1F" is the set of functions from

H> [nj] to F. As a F-valued function space, it is thus an F-vector space. That it is

j-_ nj dimensional follows from the fact that this is the cardinality of the domain.

To see that the basis is as claimed, note that the function O e is equal to the

tensor T(i'i, ') = j i = ij]. It is then not hard to see that these tensors are

a basis for the tensor product space.



Lemma 2.2.2 (Multilinearity of Tensor Product). Suppose j E [d], 'j E Fj,. and

a, b G F. In the tensor product space 02_)Fd. for any jo E [d] and 5 C Fso the

following identity holds:

v1@ - (aV-jo + bw-)- - -..@9t = a (V1@- -. -05 -j -. -t) + b(61@ - - - O -..-. i

Proof. This follows directly from Definition 2.1.2. E

We now use these properties to establish a class of rank-preserving maps on ten-

sors.

Lemma 2.2.3. For j E [d], consider linear maps Aj : Fnj -+ F" .

1. The Aj induce a function on simple tensors ®d i,- - o,® 1Asjs which uniquely

extends to a linear map on the tensor product space which is denoted ®1 A:

2. If the Aj are invertible, then so is IlA and its inverse is given by A- 1

3. For T : ~_1[nj]d -+ F, rank(T) > rank((® j Aj)(T)),. with equality if the Aj

are invertible.

Proof. (1): By Lemma 2.2.1 the tensor product space ®d 1Fn has a basis consist-

ing entire of simple tensors. Thus by standard linear algebra, the map _1 id

ojdfl Aj 'on this basis extends uniquely to a linear map @0_1 Aj on the entire tensor

product space.

It must also be shown that the map O®_ Aj induced from the basis elements is

also compatible with the map _1 V - ® 1 AJ65 defined on the rest of the simple

tensors. This fact follows from the linearity of the Aj and the multilinearity of the

tensor product, Lemma 2.2.2. That is, we first use that each Jj can be expressed in

terms of the basis elements 6j = gE c e %,j and then notice that by multilinearity



of the tensor product we have

d d nj d nj

AVi =Ey cij,,y j, = ci,j Ag ei
j=1 j=1 (ig=1 jl 1 ig=1

n1 n (j d

i1=1 id=l j=1

n1 n d d

i=1 id=1

We observe similarly that @&d i = 2- Zi-- c1 . 1 - - cidd 1e.,,j). As the

unique linear map induced above defines (@&_ Ay)(_16 ') as

ni nd d

i= id=
1  j=1

this shows that o>,Aj (& 1 Aj)(®>IV), and so the two maps agree on the

simple tensors.

It should also be noted that this argument is independent of the basis chosen, as

long as the basis is chosen among the simple tensors. This fact follows from the fact

that the induced map on the entire space agrees with the map only defined on the

simple tensors. Thus, the map @&d As is well-defined.

(2): Denote the linear maps A := o&_1Aj, and A- : _A-'. Part 1 of this

lemma shows that the maps A and A compose, in either order, to be the identity

on the simple tensors. As there is a basis among the simple tensors, by Lemma 2.2.1.,

this means that A o A-1 and A o A are both identity maps. Thus A-- is indeed the

inverse map of A.

(3): Consider a minimal simple tensor decomposition of T, so that T = 1= 1 o 1 j,.

By part 1 of this lemma, we have a simple tensor decomposition (0>1 Aj)T =

Z_ 1 01,Ajj,,. This establishes the desired rank inequality. To establish equal-

ity when the Aj are invertible it is enough to run the inequality in the opposite

direction using the linear map g__ 1 A 1 and using part 2 of this lemma. D



We now use these rank-preserving maps to establish facts about tensors and their

layers.

Lemma 2.2.4. Consider T = _1 c @_ F , where T is split into layers as

T = [T1 |---T]. Then T = (d1 0.-. 0 V_)- (1l) E @&_ 'Fn.

Proof. Definition 2.1.4 and Definition 2.1.2 show that Ti(ii. .id1) := T(ii...,_1, 1)=

V1 (ii) -V _(ia_1) - Vd(l). We can then note that this is exactly the function V1 0

- - 1, multiplied by the scalar V(l), as desired. D

Lemma 2.2.5. Consider the operation of taking the l-th layer (along the d-th axis).

This is a linear map L, : @ _ " -+ Fnj.

Proof. Given the tensor T( ... ). Taking the l-th layer yields T(, ....- ): T(-. ..... 1).

Thus. the statements T = S + R -- > T = Si + RI, and c C F. T = cS I = cS

hold because they are simply a restriction of the above identity. E

We can now prove the main lenna of this appendix, on how applying linear maps

interacts with the layers of a tensor.

Lemma 2.2.6. Consider T C 0g_ 1 F'j. Expand T into layers, so T - [T ... IT].

Let (ai j)ij C Fm"xnd be a matrix. Define A : Fnd F" to be the linear map the

matrix (ai j 3, induces via the standard basis. Then,

(Io -- I@A) (T) = j1., Ti, --- am,,im, Tin

Proof. The proof is in two parts. The first part proves the claim for simple tensors,

and the second part extends the claim, using the linearity shown in Lemma 2.2.5. to

general case.

We first prove the claim for simple tensors. Let T = (&_ 1- be a simple tensor.

Let {eiCan(I be the standard basis for Ffl and {',a}etmI be the standard basis for

F". Then by expanding out in terms of the basis elements and using multilinearity,



we have

= )71 09 -.- - - 0 (9(i) ,d)
i=1

Denote T' (I® . 0 I 0 A)(T). So then,

na

T' = (1
i=1
nd

= 1

O - -O- @ )d 1A((),d)

0 ~ ~ ~ V - - e1 Si -As

' V'd-1 0 (d

Vd Z ' i' i -' l (91 ..

ai',iCi'.d

BUd-1 ei',d )

By Lemma 2.2.4 and Lemma 2.2.5, we have,

nan'

T' YEY ((i) -ai,,i
i=1 '=1

-(U1 0 ... - ) -. -'. '

and using that e,d(l) = 1i'

n1

i = 1 ( Z .
ajj-(i1@ --- 9O _.1)

nd

i=1

which establishes the claim for simple tensors.

Now let T c 0&_1 Fnu be an arbitrary tensor. Consider a simple tensor expansion

T -= 1 Sk for Sk = o, I ,k. Denote Sk,1 to be the l-th layer of Sk. So then as the

Sk are simple, we have that (I-- .. - A)(Sk) [Z7" ai,, S k,i, -- 1 ami, Sk, 1 m

nd

1~ Mi1
2=1 i'=1



by the above analysis. So then.

A)(T)I oA) ( Sk
(k=1

r nd nd

a1 ,i Sk,ii Sk,im,,
k=1 .i1=1 i 1

by linearity of taking layers. Lemma 2.2.5, we get

[ a1 i Sk,i
k=1 i1=1

na

I>alaili1

r
ESk,ii

k=1

Sam,iI Sk,im
k=1 im=1

amnj

am,im TM
nd n1

Eai i, Ti -.-.-

Ji=1im 1

which is the desired result.

We now apply this to get a symmetry lemma.

Corollary 2.2.7. Consider T G @'_1 "Fn. Expand T into layers, so T = [T1 -- ITnd].

For any permutation o- : [nd] - [n],

rank([T,(1| --. -|T,(n,))) = rank([Ti I -I-Tnd])

Proof. Let P be the linear transformation defined by the permutation that o induces

on the basis vectors of F"d. Then P is invertible, and so by Lemma 2.2.3.2 the induced

transformation 1 09 ... 0 I P is also invertible and so rank((I0 ... 0 I 0 P)(T))

rank(T) by Lemma 2.2.3.2. Then, by Lemma 2.2.5 we see that (I 9 -.. 01 0 9 P) (T)

[T1 I -- Tndl. 

We also need another symmetry lemma.

Lemma 2.2.8. For T G =1 and a permutation o- : [d] -+ [d], define T' G

of_1FflQ) by T'(ii, . .. , i)= T(ir 1(1). - .. * 0-1(d)). Then, rank(T)

Sk,im,

r ank (T').-



Proof. We show rank(T) > rank(T'), and the equality follows by symmetry as o- is in-

vertible. Consider a simple tensor decomposition T = . _16V,k. It is then easy

to see that T' - k=_ I o (j).k by considering the equation pointwise: T'(ii, . . .

T(ie((1), . . . , i-1(d)) = 1 ,J1,> (j)) = 1 Fl (),k(ij). The conclu-

sion then follows by considering a minimal rank expansion. E

Finally, we need a corollary about how dropping layers from a tensor affects rank.

Corollary 2.2.9. For layers S1,...., S, S' E 02 F , we have that

rank([S1I - ISi-S) < rank([S 1| ... Snd|S'])

with equality if S' is the zero layer.

Proof. (<): The projection map P induces the map (I0 ... 0 I 0 P) which takes

[SIl - - -|Sn1IS'1 to [SiI ... ISd] by Lemma 2.2.5 and so Lemma 2.2.3.3 implies that the

rank has not increased.

(>): So now assume S' is the zero layer. Then again we apply Lemma's 2.2.5 and

Lemma 2.2.3.3 but now extend the natural inclusion imap t : Fn --> Fnd+1 to a linear

map (10 ... 0 10 t) on the tensors which takes [S1 | ... ISndl to [S1I ... I S 01. again

showing that the rank has not increased. D

2.3 Layer Reduction

This section details a generalization of row-reduction. which we call layer-reduction.

We show that layer-reduction can alter a tensor in such a way to provably reduce its

rank. By showing this process can be repeated many times, a rank lower bound can

be established.

The following lemma is the main technical part of this section. HAstad implicitly

used' a version of this lemma in his proof that tensor rank is NP-Complete [12, 13]

'Histad's usage, and proof, is reflected by Lemmas 2, 3 and 4 (and the following discussion) of
the conference version [12]. The journal version [13] ascribes the origin of these lemmas to Lemma 2
in the work of Hopcroft and Kerr [14]



However. Histad's usage requires that S,, is a rank-one tensor. This special case

does not seem to directly imply our lennna, which was independently proven. While

the special case is sufficient to lower-bound the coimbinatorially-constructed tensors

of Section 3.1, the full lemma is needed to lower-bound the rank of the algebraically-

constructed tensors of Section 3.2.

Lemma 2.3.1 (Layer Reduction). For layers S1.... S Frh with Sn 'O

zero, there exist constants c1 . .... c,,_1 C F such that

rank([Sil - - -Snj) > rank([Si + c1Sng| ... ISnd1 + Cfl_1Snd)) + 1

Proof. Denote T := [Sil ... SlJ. The proof is in two steps. The first step defines a

linear transformation A on Fnd such that the linear transformation I 9 ... 0 I O A is

a higher-dimensional analogue of a row-reduction step in Gaussian elimination. That

is, for T' the image of T, it is seen that T' = [Si + C1SndI... ISl + Cnd_1Snd|Sndl

by Lemma 2.2.6. The ci are chosen in such a way so that T' has a minimal simple

tensor expansion where some simple tensor R is non-zero only on the Sd-layer. In

the second step. the Sd-layer is dropped and the remaining tensor T" = [S1 +

c1S.d I .S. Sfld1 + CndlSndl no longer requires R in its simple tensor expansion and

so rank(T) > rank(T") + 1.

Consider a minimal simple tensor expansion T =Z _1 0jmQk. Expanding the

Vd,k in terms of basis vectors yields

r

T = Z(i.jk 0 - 0 Vd- 1.k) 0 (V,k(l) - 1,-d + -+ Vd,kf(nd) - Cnd))

k=1

and in particular Lemma 2.2.4 shows that S,, = Z _1(1,ek0 ... -- - 1,k),(nd). As

Sn, is non-zero there must be some ko such that 1"d,k0 (nd) / 0. Define A : Fna --+ Fna

to be the linear transformation defined by its action on the standard basis

Ud,kO(1) - d,k 0 (fd-1)

A(~d) C nd dk() el,... ~; 0 fd efldlI.d if i - nd

CO else



Letting I denote the identity transformation, consider the tensor T' :=(I 0

... 10 A)(T) E F n -... -® Fnd. By Lemma 2.2.6, we observe that T' = [Si +

clSn| - , -SnI + c,- 1SnISnd ]. where ci - Vdk 0o )

By Lemma 2.2.3 we have the simple tensor expansion T' = E_ 1,k 0 - 0

d_1,k 0 AVd,k. By construction. A('d, 0 ) - vak 0 (ni) efl,. Using Lemma 2.2.4 we

observe that the simple tensor k1,ko 0 - 0 -@ _1,k 0 0 Avd.k 0 has non-zero entries only

on the S -layer.

We now define the linear transformation A': F"d -> Fnd-i defined by

A'(i,)= 0 els
ei. d else

This will correspond to dropping the Sfl-layer. We can compose this with A to get

A" =A' o A. defined by

d,k ( ()

(ei) - dko(1 )ld

ei,d

So now we take T" = (I - - - 0 I 0 A")(T).

[Si + C1SnJ| ... ISndi + Cnd iSl]. Further, v

Vd,ko (d) -fdid if -

else

By Lemma 2.2.6 we see that T" =

e observe now that by construction

A"(Vd,k0 ) = 0. This leads to the simple tensor expansion,

r

T" = k O0 ... 0 'd 1,k 0 A" d,k

k= 1

= 1,k 0 ... 0 1, @ko 0 A"' do + YS VI1,k 9 - - -V d 1,k 9 AVd,k
k=1,k#ko

=V1,ko V - 1,ko 0
0 + E U1,k --

k=1 .k#ko

Osd 1.k9 A"Vd,k

E 141,k 0 . Vd-1,k0 A d,k
k=l,k#ko

Therefore rank(T") < r - 1 - rank(T) - 1. and thus rank(T) ;> rank(T") - 1.



The layer-reduction lemna will mostly be used via the following extension.

Corollary 2.3.2 (Iterative Layer-Reduction). For layers S1 , ... , Snd E F"i 0, -. 0

"d 1'ith S1. S linearly independent (as vectors in the space F"f"n ), there

exist constants cij E F, i E {1, ... , m}, j E {m + 1., nd}, stIch that

rank([SiI ... Snd)) > rank Sm+1
m

+ ci,m+iSi - Sad

m

Z cen, Si
i=1i

+M

(2.3.3)

Proof. The proof is by induction on iM.

m = 1: This is Lemma 2.3.1, up to reordering of the layers, with the observation

that the singleton set {S1 is linearly-independent iff S1 is non-zero. The reordering

of layers is justified by Lenna 2.2.7.

m > 1: By the induction hypothesis we have that

rank([SiI ... ISn,]) > rank

rn-1

Sm + Z Ci,mSi
i=1l

Snd +

m-1
Sci,nSi

i=1 .

+m-1

(2.3.4)

for the appropriate set of constants cij. As the Si are linearly independent, Sm +

Z=1 cinSi is non-zero and so we can eliminate this layer from

m-1

Sm + cimSi ... Sd
i=1i

m-1

+z( cin Si

by Lemma 2.3.1 and consequently have

m-1

(ci nd Sirank (Sm +

m-1

(ci,MSi . . Snd

m-1

Sm+1 + E
m-1

Snd +

Ci,m+1Si) + Cmm+1 (Sm

+ Cm,nd (Sm

m-1

+ cimSi
i1

m-1
+ Ci,mSi + I

> rank (
(2.3.5)

1

ci,Tld 
Si )



where the cmj are new constants. Now define

cij + Cm,jCi,m if i j m
cij ,=(2.3.6)

Cmj else

Combining Equations (2.3.4), (2.3.5), and (2.3.6) yields the desired Equation (2.3.3).

D

Notice that by Lemma 2.2.8 we can in fact use Lemma 2.3.1 and Corollary 2.3.2

along any axis. not just the d-th one.

Remark 2.3.7. Lemma 2.3.1 shows that the rank of T : ] J _[nj] --+ F is at least

1 more than the rank of some T' : {ri [n'] --+ F, where n' = nj for all j jo,

and n = nyo - 1. In using this lemma, the quantity Ed ny decreases by one.

Therefore. we can never hope to apply this lemma more than Ed n many times.

and thus using this lemma alone will never produce lower bounds larger than this

quantity. Corollary 2.3.2 simply applies Lemma 2.3.1, so the same barriers apply.



Chapter 3

Tensor Rank Lower Bounds

3.1 Combinatorially-defined Tensors

In this section, we construct combinatorially-defined tensors and prove linear lower

bounds for their rank. To do so, we use the follow fact about tensors. which is

proved in Section 2.3. For matrices, this can be seen as a statement about Gaussian

elimination.

Corollary (Iterative Layer Reduction, Corollary 2.3.2). For layers Si.... , (E

F n -..- Fnd with Si,. . . Sm linearly independent (as vectors in the space Fen,' ,

there exist constants cij C F, i E {l, . . m}, j E {m + 1, . . . , nd}, such that

rank([SiI . .. Snaj) > rank Sm+1 + ci,m+iSi ... Ci,ndS, + m

([Smi~t~~m~~i Sd+Z(3.1.1)

The idea of this section is to construct tensors such that we can apply Corol-

lary 2.3.2 as many times as possible. As mentioned in Remark 2.3.7. for a [n d tensor,

the lemma can be applied at most dn times, and thus the lower bounds can at best

be dn. In general, the lemma may not be able to be applied this much because the

elimination of layers zeroes out too much of the tensor. However, in this section we

construct tensors (for d = 3) such that we can almost apply the lemma dn times.

The result is that we give explicit (order 3) 0/1-tensors with tensor rank exactly



3n - 0(lg n) over any field. To begin, we apply the above corollary twice, along two

different axes, to get the following lenna.

Lemma 3.1.2. Let A1 . .. Ak be n >

identity matrix, and 0 , denote the m

rak In 0n On 0n On
rank( [A

OIn A 1 0n Ak

n sized F-matrices. Let I, denote the rn x m

x m zero matrix. Then.

> rankA1 ---Akl + 2n(3.1.3)

and

rank

0
In

On

0

On

A1

0

0 -

0

0

on

Ak

where the left-hand side of Equation 3.1.4 expresses

[2n + 1] x [k + 1]-sized tensor.

> rank([A1|I - - -|Ak])+ 2n (3.1.4)

Proof. Notice that the left hand sides of Equation 3.1.3 and Equation 3.1.4 are equal.

This follows from applying Corollary 2.2.9 twice (using that this corollary extends to

layers along any axes. not just the d-th, by applying Leinina 2.2.8), once on the layers

slicing the page vertically, and once on the layers slicing the page horizontally. Thus,

it is enough to show Equation 3.1.3.

We now apply Corollary 2.3.2. First, we use it on the layers slicing the page

vertically and deriving that

rank
( L

On 00 On on

In A1 On Ak
(3.1.5)

where C is an n x n matrix of field elements defined by the constants cj of Corol-

lary 2.3.2. Notice that the layers being dropped in the use of this corollary must be

linearly independent. However, as they are the layers of [In0, ... 0n] which slice

the page vertically, they have exactly one 1 in the first row', and have 0 entries

'It is immaterial whether we call this a "row" or "column", as no specific orientation of these

the tensor rank of a [2n + 1] x

;> rank -n -n -. O + n
i )( LC _A1 Akj



elsewhere. As their non-zero entries are in different positions, they are linearly in-

dependent. Similarly, we can apply the corollary again on the remaining layers that

slice the page horizontally to see that

rank ( On

A1

On

Ak
> rank([C + C'l Al -.. -Ak]) + n (3.1.6)

where C' is yet another n x ni matrix of field elements produced by Corollary 2.3.2.

We now invoke Corollary 2.2.9 to observe that

rank((C + C'IA1 | - - -Ak]) > rank([A1uI - -Ak]) (3.1.7)

Combining Equations (3.1.5), (3.1.6)., and (3.1.7) yields Equation (3.1.3) and thus

the claim. E

Applying this lenna recursively yields the following construction.

Definition 3.1.8. Let H : N -+ N denote the Hamming weight function. That is,

H(n) is the nunber of l's in the binary expansion of n.

Theorem 3.1.9. For i E {0

following recursive manner.

0 Sim = [1]

[lg nj }, let Sn,j be an n x n matrix defined in the

e For 2n > 1,

S2n,i -

0 z
On
On

i < [lg nj

ifi - [lgnj

tensors was chosen.



* For 2n +1> 1,

0 0 0

0 0 0 if i < lignj

Sn,i On 0
S2n+l =<

0 0 0

In On 0 f=lin

On In 0

Then, denoting T= [S.,0 ... Sn,[lgn, ]

1. Tn has size [n] x [n] x [[lgnj + 1].

2. rank(T,) = 2n - 2H(n) + 1

3. On inputs n and (ij, k) E [n] x [n] x [llgnj + 1], T"(i.j, k) can be computed in

polynomial time. That is, in time O(polylog(n)).

Proof. (1): This is clear from construction.

(2): We first note that [lg 2nj = [ig n + 1] = [ig nj + 1. We first prove the upper

bound, and then the lower bound.

To see that rank(T,) < 2n - 2H(n) + 1 we observe that T has exactly this many

non-zero entries. Denote this quantity rn. We proceed by induction on the recursive

definition of the S,,. For n = 1, there is clearly exactly 2 1 - 2H(1) + 1 = 1 non-zero

entry. For 2n > 1. r 2, r,+2n which by induction yields r 2, = (2n-2H(n)+I1)+2n.

Observing that H(n) H(2n), we see that r 2, = 2(2n) -2H(2n) +1. For 2n-+1 > 1.

r2n+1 = r, + 2n, which by induction yields r 2n+1 = (2n - 2H(n) + 1) + 2n. Noticing

that H(2n + 1) H(n) + 1 we have that r2n+l = 2n - 2(H(2n + 1) - 1) + 1 + 2n

4n +2 - 2H(2n+ 1) + 1 2(2n + 1) - 2H(2n + 1) + 1. Thus. the induction hypothesis

shows that rn = 2n - 2H(n) + 1 for all n, and thus upper-bounding the rank by this

quantity.



For the rank lower bound. we use Lenna 3.1.2 and induction on the recursive

definition of the Sj. Clearly, rank(TI) > 1. Then for 2n > 1, rank(T2,) > rank(T,) +

2n, and for 2n + 1 > 1, rank(T2n+1) > rank(T) + 2n. These are exactly the same

recurrences from the proceeding paragraph, and so they have the same solution:

rank(T,) > 2n - 2H(n) + 1.

Combining these two bounds shows that rank(T,) = 2n - 2H(n) + 1.

(3): This is clear from the equations defining the S, .

Another application of Corollary 2.3.2 (along the one axis it has not yet been

applied) yields the following claim.

Corollary 3.1.10. Define Sn, as in Theorem 3.1.9. Let n G N and restrict to n > 2.

Then, for i G [n] define n x n matrices S. by

Sn-1i-_1 0
Sf I [[lg(n - 1)] + 1]

00

On_1 ei_([gg(n-1)y 1)j else

L0 0 -

where e G F"-1 is the indicator column vector where e (k) = j = k . (Notice that

[lg(n - 1)] + 1 < n - 1 for all n > 2.) Then, denoting T = [S | -. I Snh

1. T' has size [n|3 .

2. rank(T ) = 3n - 2H(n - 1) - [lg(n - 1)] - 2 > 3n - e(lg n).

3. On inputs n and (i, j, k) G [n] x [n] x [in], T(i. j, k) can be computed in polynomial

time, that is, O(polylog(n)).

Proof. (1): This is clear from construction.

(2): Observe that in the construction of Tn, the matrices Si for i > [lg(n-1)]+1

are linearly independent. Thus, applying Corollary 2.3.2, we see that

rank(T) > rank([5'i l ... - ,1g(n_1)j1) + n - ([lg(n - 1)] + 1)

31



where

~Snli- 5j5' . =

~ [0 0
for some arbitrary vectors Ei E F"-4. It follows from Corollary 2.2.9 that we can drop

the bottom row and last column of each of the S.,j without increasing the rank, so

that

rank([SG| -- -SXg(n 1)+1]) > rank([Snq,ol -..- 1-S lg.n )

where the S,_1,i_1 are as defined in Theorem 3.1.9, and as such.

rank([S,_1,oIl - - -|Sn-1,Ig(n_1)j]) = 2(n - 1) + 2H(n - 1) + 1

. Combining these inequalities yields the rank lower bound for Tn.

(3): This is clear from the equations defining T . and using the explicitness of the

Sn-1,i- as seen from Theorem 3.1.9. D

Note that this analysis is exact. The next section contains similar lower bounds

over F2 using different methods, where no non-trivial upper bound is known.

3.2 Algebraically-defined Tensors

The results of this section will be field-specific, and so we no longer work over an

arbitrary field.

Lemma 3.2.1. Let Fq be the field of q eleericnts. Consider n x n matrices M1 , .... Mk

over Fq such that all non-zero linear combinations have full-rank. Then the tensor

T = [M1 | ... |Mk| has tensor rank at least qkq n.

Proof. The proof is via the probabilistic method, using randomness to perform an

analogue of gate elimination. For non-zero 5FE Fk, the summation C'. M will nullify

terms in a simple tensor expansion with some probability. This will in expectation

reduce the rank. We then invoke the hypothesis that the result is full-rank, to conclude

the bound on the original rank.



Consider a minimal simple tensor decomposition T = -4 i (9 0 (9 0G.. For

q E F, consider (notation-abused) dot-product (C, M), which can also be written as

the matrix E cii. By Lenna 2.2.6 it can be seen that this is the image of T under

the linear transformation I 0 I 0 A, where A is the linear transformation that sends

the basis element 5i to ci 1 . Consequently, we have that (V, 1) =(I 0 I 0 A)(T)

=Il 0 & o (Azsi). Noticing that Asi = (5, Wi), and that we can then treat this as

a matrix instead of one-layer tensor, we see that (C ) = i(, Gi)ii 0 Vi.

Minimality implies that Ui j 0 for all i. So for a fixed i, the set of ' such that

(5, iGi) = 0 is a 1-dimensional subspace by the Rank-Nullity theorem. Using that the

field size is q, this shows that

k _k-i

Pr [(c Wi) / 0 = qk
FEuFk\{U} q ~

Now define SF : {il(C1 ti) $ 0}. By linearity of expectation, EaFy gd[ISd| =

k l r. Thus, there exits a non-zero c such that S-0 l qk r ee

can write the matrix (5,A) as (', A) = -1(, ')51 0 =EisS(Qws)ui 0 51.
The hypothesis on the Mi says that (51 M) is of full-rank, and therefore we have
that n < rank((<, M)) q |S< k r. As rank(T) = r. we have that rank(T) >

thtn<rn((IA) S - qk-I

k k1 -

q -qk- .E

Corollary 3.2.2. Let Fq be the field of q elerients. Consider nx n matrices M 1 , A,

OVer Fq such that all non-zero linear corbinations have full-rank. Then the tensor

T =[M1| - -AI- ] has tensor rank at least n' - ln- q -1 n).
q 1 n i Pgqi -1 =q-1 n 0(ogqn)

Proof. Let k < n be a parameter, to be optimized over later.

Notice that the hypothesis show that the matrices Mi are linearly independent

and so Corollary 2.3.2 shows that

rank([Mil - - -.|MA/n]) 2! rank([M1I + Mjl - -- Mk + M()') + (n - k)

where the Al' are linear combinations of the Mk+1, ... , AI. Thus, any non-zero linear

combination of the (Mi +I M) is necessarily a non-zero linear combination of the M.



In particular. this shows that any non-zero linear combination of the (Mi + AMjf) has

full-rank. Thus, by Lemma 3.2.1

rank([A/1 + MI'| I Mk + AI/j) q n
qk -- qk

and so

rank([M l J-A-IM]) q n - k + n qk = : f(k)

nnq maximizes f. but asymptotically it isOne can observe that k -logq k\1-11q)

sufficient to take k =[log, n]. Then

f (k) k 1-q-k
f(k)=n-k+ 1q kn

1 - 1/q

1 - 1/n

> - ogqn I 1- I1q I ~
> n - Flogq n] + 1 n1 - 1q-I

>2n -[log g - n

1- 1/q 7 1- 1/q

n-[lon]+ n- q
_ gq q-1 q-1

2q-1 _ q

q-1q-

As f(k) lower-bounds the rank by the above, this establishes the claim. D

The above lemma and its corollary establish a property implying tensor rank lower

bounds. We now turn to constructing tensors that have this property. Clearly we

seek explicit tensors, and by this we mean that each entry of the tensor is efficiently

computable.

We first observe that the property can be easily constructed given explicit field

extensions of the base field F.

Proposition 3.2.3. Let F be a field and f E F[x] be an irreducible polynomial of

degree n. Then there exists n x n F-matrices M1,..., M , such that all non-zero F-

linear combinations of the Mi have full-rank. Furthermore, the entries of each matrix

are computable in algebraic circuits of size O(poIyIog(n)poy(||f||o)), where If||o is



the number of non-zero coefficients off.

Proof. Let f (x) = anx" + - - - + a1 x + ao. Recall that K = F[x]/(f) is a field. and be-

cause deg f = n, K is a n-dimensional F-vector space, where we choose 1. x.X n-

as the basis. This gives an F-algebra isomorphism p between K and a sub-ring M4 of

the m x m F-matrices, where M is defined as the image of p. The map Ap is defined by

associating a C K with the matrix inducing the linear map p(a) : Fm ->, Fm, where

p(a) is the multiplication map of a. That is, using that K = F m we can see that the

map B - a,3 for ,3 E K is an F-linear map, and thus defines p(,) over F'.

That the map is injective follows from the fact that p(a) must map 1 C K to a C K.

so a is recoverable from p(a) (and surjectivity follows be definition of M). To see

the required homomorphism properties is also not difficult. As (a + y)j3  aB3 + 7y3

for any a,,3,7 E K, this shows that p(a + ) p(a) + p(7') as linear maps, and

thus as matrices. Similarly, as (ay),S - a(-,3) for any a. 3, -y E K it must be that

p(a-y) = p(a)p(y). That this map interacts linearly in F implies that it is an F-algebra

homomorphism, as desired.

In particular, this means that a E K is invertible iff the matrix p(a) E MC Ff lX"

is invertible. As K is a field, the only non-invertible matrix in M is p(O). The F-

algebra homomorphism means that for a. E F and a, C K, the linear combination

Z ajt(aj) equals p(E ajai) and so the matrix E aip(ai) is invertible iff E aia, ) 0.

Thus. as 1. x,....x-1 are F-linearly independent in K, it follows that the matrix

P(1), t(x), . . ., p -(x1 ) have that all non-zero F-linear combinations are invertible, as

desired.

We now study how to compute pt(z). Observe that acting as a linear map on F",

p(x) sends x.r± (mod f). To read off the xk component can be done with a lookup

table to the coefficients of f. and thus in O(poly(lfI1o)) size circuits. O

To make the above construction explicit, we need to show that the irreducible

polynomial f can be found efficiently. We now cite the following result of Shoup [22].

It says that we can find irreducible polynomials in finite fields in polynomial-time

provided that the field size is fixed.



Theorem 3.2.4 ([22]. Theorem 4.1). For any prime or prime power q, an irreducible

polynomial of degree n in F,[x] can be found in time O(poly(nq)).

Combining Corollary 3.2.2, Proposition 3.2.3, and Theorem 3.2.4, we arrive at the

following result.

Corollary 3.2.5. For any fxed prime or prime power q. over the feld Fq there is a

family of tensors Tn of size [n]3 such that

1. rank(T,) > 2_-1 n - 8(log, n)

2. On inputs n and (i, j, k) E [n]3 , T (ij. k) is computable in O(poly(nq))

Note that this is strictly worse than Corollary 3.1.10 in two respects. First, while

this result asymptotically matches the lower bound of Corollary 3.1.10 over F 2, the

above result is only valid over finite fields, and as the field size grows, the lower bound

approaches 2n - o(n). This seems inherent in the approach.

Further, the given construction is less explicit as computing even a single entry

of the tensor might require examining all n of the coefficients in the irreducible poly-

nomial f. preventing a O(polylog(n)) runtime. One method of circumventing this

problem is to use sparse irreducible polynomials. In particular, we use the following

well-known construction.

Lemma 3.2.6 ([29], Theorem 1.1.28). Over F2 [x]., the polynomial

f(X) = x 3 + X' + 1

is irreducible for any I > 0.

Observe that this allows for much faster arithmetic in the extension field, and this

leads to the following result when applying the above results.

Corollary 3.2.7. Over the field F2, there is a family of tensors T, of size [n]3 defined

for n = 2 - 31, such that

1. rank(T,) > 3n - O(lg n)



2. On inputs n and (i, j. k) c [n]3. Tn(i, j. k) is computable in O(polylog(n))

Thus, this algebraic construction is also explicit, at least for some values of n.

Also, this corollary is not limited to F,2. Other constructions [11] are known over

some other fields. However., unlike the results of Section 3.1, it is not clear if better

lower bounds exist for the tensors in this section. Indeed, we do not at present know

non-trivial upper bounds for the tensors given here.

3.3 Higher-Order Tensors

In this section we investigate order-d tensors., particularly when d is odd. It is a

folklore result, eg. see [19], that we can always "reshape" a lower-order tensor into

a higher-order tensor without decreasing rank. Reshaping an order-d tensor into an

order-2 tensor (a matrix) shows that there are explicit order-d tensors with rank nta/2j.

Other works used reshaping of order-(2d + 1) tensors into order-3 tensors to derive

rank lower bounds of 2nd - O(nd-1) for explicit order-(2d + 1) tensors. We also use

this idea to derive rank lower bounds of 2nd + n - 8(d ig n) for explicit order-(2d + 1)

tensors, improving the lower order terms in known lower bounds.

We first state our reshaping lennma. keeping in mind that we again now work over

an arbitrary field.

Lemma 3.3.1. Let T be an order-3 tensor of size [nd] x [d] x [n. Then define the

order-(2d + 1) tensor T' of size [n]2d+l by

d-1 d-1

T'(ii, . 2d+1) = T 1 + E(ij+ - 1)nj. 1 + E(i+(d+1) - 1I)ni, 2d+1I

j=0 j=0

Then T' has rank at least rank(T).

Further, if T(-.-,-) is computable in time f(n), then T'(...,-) is computable in

time O(poly(d) polylog(n) + f(n)).

Proof. First observe that the nap (i1. id) 1 4i -- 1)ni is a bijection

from [n]d to [nd] as this is simply the base-n expansion. That this is map is computable



in time O(poly(d)polylog(n)) establishes the claim about efficiency.

Now consider a rank r' decomposition of T'

T' = il 0I, .. - - -@ ,2d+1
l=1

We now define . e F"d Via the bijection from above, we can write

d-1

1 1 + (Ij+1 - -)n = '11('1) - jd('d)

j=0

and similarly we define U17,2 E IF" by

d-1

U, 1( + E(i+(d1) - 1)n - ,d+1(d+1) ,2d(i2d)

j=0

and we take U_, 3 =l,2d+1 E Fn. Thus we see that

T1 = 1 @9 ',2 0 U'1,3
1=1

by examining the equation pointwise. and thus r' > rank(T). The conclusion thus

follows when taking r' = rank(T'). E

The above lemma shows that rank lower bounds for low-order tensors extend

(weakly) to rank lower bounds of higher-order tensors. We now apply this lemma to

the tensor rank lower bounds of Section 3.1. It is possible to do similarly with the

results of Section 3.2. but a weaker conclusion would result as those lower bounds are

weaker.

Corollary 3.3.2. For every d > 1, there is a family of {0, 1}-tensors Tn of size

[n] 2d+1 such that rank(Tn ) = 2nd + n - e(dlgn). Further, given n and i1 , ... , i2d+1,

TnI1, . .-.2d+1) is computable in polynomial time (that is, in time O(poly(d) polylog(n))).

Proof. We first observe that the proof of Corollary 3.1.10 extends to give a family

of tensors T with size [n] x [n] x [f(n)], where rank(Tn) = 2n + f(n) - 8(lg n),



where w(lg n) < f(n) < n. Further, these tensors have their entries computed in

O(polylog(n)) time.

Thus, this leads to tensors of size [nd) x [nd] x [n] of rank 2nd + n -(d ig n).

By Lemma 3.3.1 we can then see that these tensors can be reshaped into the desired

tensors, establishing the claim on the rank as well as the explicitness. E
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Chapter 4

Tensor Rank Upper Bounds

4.1 Permutation Tensors

One of the most natural families of full-rank matrices are permutation matrices.

This section examines a natural generalization of permutation matrices to tensors.,

which we call permutation tensors. A counting argument (Proposition 4.1.4) shows

that there exists order-3 permutation tensors of super-linear rank (over any fixed

finite field) as well as order-d permutation tensors with high rank, so it is natural to

conjecture that permutation tensors may all have near-inaxiinal rank., just as in the

matrix setting. However, we show (Subsection 4.1.2) that this is false: we give tensor

rank upper bounds proving that permutation tensors constructed from groups have

rank far less than maximal.

We begin with the formal definition of permutation tensors.

Definition 4.1.1. Let F be a field. and T be a tensor T : [n]d --+ F. T is a permuta-

tion tensor if T assumes only 0/1 values, and T has exactly one 1 in each generalized

row. (A generalized row, sometinmes just "row". is the set of n inputs to T resulting

from fixing d - 1 of the coordinates, and varying the remaining coordinates).

It is not hard to see that order-2 permutation tensors are permutation matrices:

permutation matrices are those 0/1-matrices such that each row and column have

exactly one 1.



4.1.1 Permutation Tensors: Rank Lower Bounds

We will show that for any d, there are high rank permutation tensors of order d.

This will follow from counting permutation tensors and applying standard a counting

argument. To count order-d permutation tensors we exploit the fact that they are

identical to (d - 1)-ary quasigroups. we we now define.

Definition 4.1.2. A function f : [n]k * [n] is an k-ary quasigroup if the unary

function resulting from fixing any k - 1 inputs to any values results in a bijection.

Observe that 2-ary quasigroups are Latin squares. We now show the equivalence

to permutation tensors.

Proposition 4.1.3. Let T : (n] {O, 1} be an order-d tensor. Then T is a per-

mutation tensor if f{('i. . . . . id) : T(ii, ... ,id) =1} is the graph of an (d - 1)-ary

quasigroup f : [n]d-1 [n).

Proof. ->: As fixing the first d - 1 coordinates of T leaves exactly one choice for

the remaining coordinate so that T evaluates to 1, this means that the graph of T

defines a function f : [n]d-1 -+ [n]. To see that f is a (d - 1)-ary quasigroup, note

that of we fix any d - 2 of the first d - 1 coordinates, T ensures that the resulting

tensor is a permutation matrix, and thus the graph of a bijection. This implies that

each desired restriction of f is a bijection, so f is a (d - 1)-ary quasigroup.

___ :_ As T is defined as the graph of a function, we see that the generalized

rows resulting from fixing the first d - 1 coordinates will have exactly one 1 (as a

function assumes exactly one value). If we restrict any other d - 1 coordinates, then

that f is a quasigroup implies that the remaining coordinate has exactly one choice

such that f(ii,...,ia_1) . id because of f's induced bijections. This says that the

desired generalized row has exactly one 1. As this is for any generalized row, T is a

permutation tensor. E

We now cite two lower bounds for the number of quasigroups. The first uses

well-known lower bounds on the pernanents of doubly-stochastic matrices, but only



applies to 2-ary quasigroups. The second applies to k-ary quasigroups but is not as

strong for k = 2 as the first bound.

Theorem ([30]). The number of n x n Latin squares (and thus 2-ary quasiyroups) is

at least (n!)2n/rn

Theorem ([18]). The number of k-ary quasigroups on n symbols is at least 21- r4/3Jk

We now combine these results with a standard counting argument.

Proposition 4.1.4. Let F be a finite field.

" There exist order-3 permutation tensors of rank Q(n log 1 n).

" There exist order-d permutation tensors of rank Q( ( )d2

Proof. We apply a standard counting argument along with the lower bounds for the

number of permutation tensors, as given by the above facts.

Over F, there are at most |Fldn simple tensors of order d. Thus, there are at most

|Flfnr tensors T : [n]d -+ F of rank at most r. Consider the least r such that every

permutation tensor has rank at most r. Then, we must have that |F"dnr bounds the

number of permutation tensors. Solving for r yields the lower bound.

To reach the first claim, we use the standard lower bound of n! > (n/e)" in

application to the above lower bounds on the number of Latin squares, and this

shows that the number of order-3 permutation tensors is at least (n/e2)n2 . Thus. we

have that r > n/3 - log1 1 (n/e 2) Q(n og 1 F n).

To reach the second claim, we see that the above facts imply that the number

of order-d permutation tensors is at least 2 l"5[n/3d '. This implies that r > 1/(dn) -

1/ lg |F| - 1.5Ln/3]d-I = Q((n/3)d 2 /(d lg |FI)). E

Given this proposition, it may seem natural to restrict to searching within permu-

tation tensors for high-rank tensors. However, the next section shows that a natural

class of permutation tensors, called group tensors, do not have high-rank.



4.1.2 Permutation Tensors: Rank Upper Bounds

In this section we define a class of permutation tensors constructed from finite groups,

and show that these tensors have rank far from maximal. We will give two rank upper-

bound methods. The first method uses representation theory and accordingly only

works where the group has a complete set of irreducible representations (which usually

means "large" fields). The second method is based on polynomial interpolation, and

while it gives worse upper bounds and only works for finite abelian groups, it gives

results over any field. Neither of these methods applies to all finite non-abelian groups

over small fields, and the rank of the corresponding tensors is unclear.

Definition 4.1.5. Let G be a finite group (written multiplicatively. with identity IG)

, and F a field. Define the order-d group tensor Td: Gd -+ F by

T-gi ... gd) = [gi -. -gd 1G

We first explore the representation-theory based upper bound. To do so, we first

cite relevant facts from representation theory.

Theorem 4.1.6 ([21]). Let G be a finite group and F a field. A representation of

G is a homormorphism p : G -+ Fdxd, 'where d is the dimension of the representation

and is denoted dim p. The character of a representation p is a map Xp : G -+ F

defined by tr op, that is, taking the trace of the resulting matrix of the representation.

If char(F) is coprime to IG|, and F contains N-th roots of unity, for N equal to

the least common multiple of all of the orders of elements of G, then there exists

a complete set of irreducible representations. In particular, for c denoting

the number of conjugacy classes of G, there is a set of representations p1,..., pc and

associated characters such that (among other properties) we have

1 j= 1(dimi p i x(g) = [g e

2. E'=(dinpj)2 = |G|

3. dim pi divides |G|



In particular, for finite abelian groups, c = n and dim pi = 1 for all i.

Notice that property (1) in the above theorem is an instance of the column or-

thonormality relations of character tables. which follow from the more commonly

mentioned row orthonormality relations. We now use these facts to derive upper

bounds on the rank of T' when the conditions to the above theorem hold.

Theorem 4.1.7. Let G be a finite group, d > 2 and F a field, such that char(F) is

coprime to |G|, and F contains N-th roots of unity., for N equal to the least com-

rion multiple of the orders of elements of G. Then given the irreducible represen-

tations p1,. pc for over F, the order-d group tensor has IGI < rankF(T') <

Zi(dim p)d < IG/2.

Furthermore. for d = 3, we have that rankF(T ) < Z> MM (dim pi) < O(|G|w/ 2)

O(IGI'- 9), where MM(n) is the tensor rank of matrix-multiplication and MM(n) =

O(nw).

In particular, for finite abelian groups. rankF (Tk) =|G|.

Proof. rankF(Th) > G|: This follows from observing that for fixed g3 . .. ,gd, the

matrix Td(., , g3 ... ,g) is a permutation matrix, and thus its rank (of Gl) lower

bounds the rank of Td (over any field). This can also be seen by induction on

Corollary 2.2.9.

G abelian -- > rankF(Th) < |G|: Theorem 4.1.6 further implies dim pi = 1 for all

irreducible representations of finite abelian groups, which implies rankF(Td) < jGI

for abelian groups.

ZI(dinp)d < |G/2: Theorem 4.1.6(2) shows that E _1 (dimpi) 2 = n. The

claim will follow from proving that for d E R, d > 1 and ni E R>o, we have E nd <

(E ni)d. To see the claim, we note that as we have d > 2 in this case, we have that

E((dim pi) 2)d/ 2  (E(dim pi) 2)d/ 2 _ nd/2.

We now show E nj - (E ni)d under the above conditions. We first show that

(n + m)d + 0  ( + m)d > nd + md. Without loss of generality, n > m. Define

f (x) = (n + x)d. Expanding f around 0 using Taylor's theorem with exact error

term [20] we have that (n + x)d = nd - f'(z)x. for some z C [0, x]. Taking this at



x = m we have (n+ )d - nd~d(n+ Z)d lm > nd + d(m+ z)d-l > nd+md as desired

(using d > 1, n > m and z > 0). Thus. given non-negative ni summing to n, one can

iteratively zero out certain ni while increasing the sun E nd, until only ni = n and

thus E nd = nd. Thus. this is a bound on the initial sum of E n4.

rankF(T ) -Z> (dim pi)d: The result will follow by constructing, for each i, the

order-d tensor

T(gi .. ,g x(gigd)

in rank (dimpi)d. Theorem 4.1.6(1) shows that T = Z I(dimpi) Ti and so

distributing the dim p/IG| term inside the simple tensors yields the result (where we

crucially use the restriction on the field characteristic).

Thus, all that remains is to show that rankF(T d) < (dim p,)d. Using the group

homomorphism properties of the representations and expanding the definition of the

trace through the matrix multiplication we see

dim pi 11111 pi

T.g) - ... (,pg91 k,.k 2  ( p(9d- 10)kd 1,kd(Pi(9d)) k.k1

k1=1 kd=1

and one can observe that for fixed k1 , kd, the function

(pi(g1))k,,k2 - - - (pi(gad 1) 1 kd-_,,kd(Pi (gd)akB

is a simple tensor so the above shows rankF(T d) _ (dim p,)d as desired.

rankF(TG) < E'= MM(din p): We now prove that rankIF(T ) E= MM(dimn pi),

where MM(n) is the tensor-rank of matrix-nmultiplication of n x n matrices (which is

defined below). By the above, it is sufficient to show that rankF(T ) < MM(dim pi).

To do this, we start with the observation that T = tr(pi(gi)pi(g2)pi(gs)).

Now, we observe that for n x n matrices X, Y, Z, the polynomial tr(XYZ") =

Z2'2k=1 XijY9,kZi,k exactly corresponds to the matrix multiplication tensor. That is,

the tensor Al : [n2]3 -* {0. 1} defined by M((ii, i2 ), (j1 , j 2 ), (ki, k2)) [ [ii = ki -i2

jil j2 = k2 ] is in natural correspondence with the bilinear form of matrix multiplica-

tion (see [9] for reference), and the correspondence implies that rankF(M)= MM(n).



Thus. suppose we have a rank MM(n) decomposition, so = = d1  0 b1 0 2,for

a,, E- E FT2 . Then we have that tr(XYZT) = E1 "')(d, X)(bl. Y)(5j, ZT), where

we take the inner products as the natural inner products over the space F, 2 .

Applying this to computing T3. we see

MNI(dim(p7 ))

T (gi, g 2 , 93 ) = (, pi(gi))(bpi(g2 ))(cp (gs)
T )

which is a rank MM(dini(pi)) computation of T3 as each summand is a simple tensor.

Thus. rank.(T) < MM(dim(p)). By the previous work in this proof, the current

claim follows.

Z MM(dim pi) < O(|Glw/2) = O(IGI| 1"): We note that MM(n) < O(n 2 .376) fol_

lows fron Coppersmith-Winograd's result [10], and that in general any exact algo-

rithmn for natrix-multiplication will result in the same (up to constant factors) com-

plexity tensor rank for the matrix multiplication tensor, as per the connection be-

tween bilinear computation and tensor rank (again, see [9]). This proves the second

inequality.

To prove that E MM(dim pi) < O(1Gl 1 2), we use the above proof that E n' <

(E n)d for any d > 1 and ni > 0, while noting that a > 2. In particular, there is some

constant C such that MM(dim pi) < C(dini pi)w by assumption. Thus we have that

ECMM (dimn pi) E' _I C ((dimn p_)2)w/2 < C(El 1 (dimn p,)2)w/2 = O(|G Jw/2). F-

We remark that it is not clear whether fast matrix multiplication algorithms can

improve the above results for d > 3.

Applying tensor rank lower bounds to Raz's [19] result requires order-d tensors

of rank n(1-o(1))d and Theorem 4.1.7 shows that no group tensor can achieve this

rank over "large" fields. In particular, for the purposes of tensor rank lower bounds.

the lower bounds of Corollary 3.3.2 are asymptotically (in d) as good as the rank

achievable by any group tensor (over "large" fields).

Further, Theoren 4.1.7 also possibly rules out group tensors as candidates for

high rank order-3 tensors (and thus cannot be used for Strassen's result). That is, it



is conjectured that MM(n) < O(n 2 ), which would imply that rankF(TG) < O(|Gj) for

any group G over a "large" field F.

Theorem 4.1.7 only works over "large" fields in general. In particular, it does

not (in general) give insight into the rank of group tensors over fixed finite fields.,

or even over the rationals. To take an example, the cyclic group Zn requires n-th

roots of unity for its irreducible representations. While Lemma 4.1.15 does show a

relation between rankQ(T ) and rankoQ[]/(,fl ,(Ti) (where Q[x]/(x - 1) is the field

of rationals adjoined with a n-th primitive root of unity, so Theorem 4.1.7 applies)

this relationship implies nothing beyond trivial rank upper bounds. Thus, to achieve

rank upper bounds for group tensors over small fields we take a different approach.

one using polynomial interpolation. Our result only applies to finite abelian groups,

but is able to show that have "low" rank in this regime.

Proposition 4.1.8. Let F be a field with at least d(n - 1) + 1 elements. Let T

njd --+ F be a tensor such that

d(n-1)

T(ii. i)' = cm~ii -- +i"---I i=

m=o

for constants cm E F. Then. rank(T) < d(n - 1) + 1.

Proof. The proof follows the result of Ben-Or (as reported in Shpilka-Wigderson [24])

on computing the symmetric polynomials efficiently over large-sized fields. To com-

pute a desired polynomial f(Y), one can introduce a new variable a and an auxiliary

polynomial P(a, Y) such that

* P is efficiently computable, of degree at most d' in a

" For some m, f(s) = C.-n(P(a, )). That is. f equals the coefficient of am in P.

To compute f on input 5, we can then evaluate P on (ai 5), ... , (adl±1, 5) and then

use interpolation to recover Crn = f(x).

To apply Ben-Or's interpolation idea to tensors, we first note the connection



between tensors and polynomials. Consider the space of polynomials

P := F[{X f (}) , .. {X 2 }]

. that is. polynomials on the variables X that are set-multilinear with respect to

the sets {X0 )}71. One can call such a polynomial simple if it can be written as

dfJ(a j,oX~j) +.. + aj~- iXWi110 + jn- 1

j=1

One can then define the rank(p), for p C P, as the least number of simple polynomials

needed to sum to p. One can observe that P is a (n]d tensor product space. and the

notions of rank coincide. In this language, we seek to upper-bound the rank of the

polynomial
d(n-1)

T({X>)} j) = > cm > X(1 -- Xd
rn ~ ~ i idiI"±~

m=0 fi+---+i,/=m

To implement Ben-Or's method, define the auxiliary polynomial P by

d

P(a, {X }) = (X) + aXi) + a2X) + - + an-1X
0=1

For fixed a, this polynomial is simple. When a is considered a variable, this polyno-

mial has degree d(n - 1) in a. Further. the coefficient of am is

C"-(P(a, {X } ))= - X) ... X(d)

i+-+id=m

which corresponds exactly to tensors of the desired form. We can now interpret the

auxiliary polynomials as polynomials in F( the polynomial ring in the

variable a over the field of rational functions in the XP). As |F > d(n - 1), we can

consider the evaluations {P(a,{ X(j)ii)}d"o~1 c IF[{X 0}j] for distinct a, E F.

Polynomial interpolation means that the coefficients C m (P) are recoverable from

linear combinations of the evaluations of P. As the a E F. the (linear) evaluation map

from the coefficients of P to the evaluations is defined by a F-matrix. Therefore, the



inverse of this map is also defined by an F-matrix. Specifically, there are coefficients

am,l c F such that

d(n-1)

C""(P~a{ } E) am,,P(aej,{fX ()
1=0

Therefore.

d(n-1)

T({X hj) =
m=0

d(n-1)

1=0

d(n -1)

Cm Z am,iP(ai.{X '},j)
1=0

d(n -1)
cmami P(i.{ X }")I

m=0

Thus. T is in the span of d(n - 1) + 1 simple polynomials. By moving the coefficients

on the simple polynomials inside the product, this shows that T is expressible as the

sum of d(n - 1) + 1 simple polynomials. Using the above connection with tensors.

this shows that the rank is at most d(n - 1) + 1. E

We now prove that Proposition 4.1.8 is essentially tight. The proof uses Corol-

lary 2.3.2.

Proposition 4.1.9. Let F be a field. Let T be a tensor T : njd --+ F such that

1 I

T(i1 . id) 0

unconstrained

ifi1+ +id=n

if 1+--+Zd> n

else

then rankF(T) > (d - 1)(n - 1) + 1-

Proof. The proof is by induction on d, using Corollary 2.3.2 to achieve a lower bound.

d = 1: As T # 0, its rank must be at least 1, so the result follows.

d > 1: Decompose T into layers along the d-th axis, so that T = [To| - ITn_ 1]. Ob-

serve that the hypothesis on T implies that for any linear combination S - _ ciTi

it must be that S / 0. For if not, one may consider the smallest i such that c / 0.



Then S(n - i, 0. - , 0) = ci by the hypothesis on T and the construction of S, which

is a contradiction as c. f 0.

Thus, Corollary 2.3.2 implies that rankF(T) > rankF (TO 1 aiT) + (n - 1) for

some ai E F. However, observing that T' = To + a T is an order-(d - 1) tensor

fitting the hypothesis of the induction we see that rankFT) (d - 2)( - 1) + 1.

Combining the above equations finishes the induction.

The above proposition shows that Proposition 4.1.8 is nearly tight. because to-

gether they show that defining T : [nd -+ F by T(ii,. . . . I) =ii + + td - n we

see that (d - 1)(n - 1) + 1 < rankF(T) < d(n - 1) + 1.

We now turn to using Proposition 4.1.8 to upper bound the rank group tensors

formed from cyclic groups.

Corollary 4.1.10. Let F be a field with at least d(n - 1) + 1 elements. Then,

rank(T) < d(n - 1) + 1.

Proof. Notice that Td is a tensor fitting the hypothesis of Proposition 4.1.8, where

Cm = [m - 0 (mod n) . E

Proposition 4.1.8 was done by interpolating a univariate polynomial. By inter-

polating multivariate polynommials one may obtain an upper bound for the rank over

group tensors arising from the direct product of cyclic groups. However, the same

result is derivable in a more modular fashion, which we now present. We start with

the folklore fact that tensoring two tensors multiplies their rank bounds.

Lemma 4.1.11. Let F be a field. Let T: [n]d -+ F and S : [m]d -+ F be two tensors.

Define (T 0 S) : ([n] x [m])d - F by

(T & S)((ii, '). .,)( T=ii, .. ., iT) S('.i)

Then rankF(T 0 S) < rankF(T) rankF(S).

Proof. Suppose T = E- _i 1 ady and S Z, >jIa,[,,. Then T(ii,.. .,id)

Ej]7Jj djS(ij) and S(,.i') , ,, d,(i>,). Thus, (TOS)((ii,i'),..., (Iif)
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equals W, FL( dyj(i-)dlr(i,) = 1, H ,(dyi 0 ,) . Thus, as for fixed 1, i'

the tensor 0 ,)(u @ d 1,y) is simple (as a ([n] x [mj)d -+ F tensor). this shows

the claim.

We now apply this to the direct product construction of groups.

Corollary 4.1.12. Consider integers n1 .. . .. nn G Z>2 and consider the finite abelian

group G = Z, x ... x Z,,. Let F be a field with at least naxi(d(ni - 1) + 1) eleients.

Then. rank(T) < Hi(d(ni - 1) + 1).

Proof. First observe the relevant definitions imply that TI 0 TIM =' T . Thus,

the claim follows directly from Corollary 4.1.10 and Leiima 4.1.11. E

We now recall the Structure Theorem of Finite Abelian Groups.

Theorem 4.1.13 (Structure Theorem of Finite Abelian Groups (see, e.g. [3])). Let

G be a finite abelian group. Then there are (not necessarily distinct) prime powers

ni,... , nm E Z;>2 such that G = Z, x --- x Z,,.

This theorem shows that Corollary 4.1.12 extends to general groups. One can get

better bounds if more information is known about the group, of if results such as

Theorem 4.1.7 apply, but the next result shows that even without such information

group tensors from finite abelian groups have "low" rank.

Using the Structure Theorem of Abelian Groups the following can now be shown.

Corollary 4.1.14. Let G be a finite abelian group,. and F be a field with at least |G|

elements. Then rankF(T d) < ||1+gd.

Proof. Observe that using the Structure Theorem of Finite Abelian groups, we can
pMCorollary 4.1.12 C GZ and using that d(n. - 1) + 1 < dn (as

app~ly Coolr .. 2to G, usn th ii7

d ;> 2) shows that rankF(T) < dmfjn. As m lg|G| and IG| = Hni, the result

follows. E

While all of the results based on Proposition 4.1.8 do not require the field to have

large roots of unity. they still require the field to have large size. Thus, they seemingly



do not answer the question of the rank of group tensors over small fields. However, as

the next lemma shows, one can transfer results over large-sized fields to snall-sized

fields with a minor overhead.

Lemma 4.1.15. Let K a field that extends F. Then for any tensor T : [n]d --+ F,

rankF(T) 5 (dinmFK)d-I - rankK(T). where dimFK is the dimension of K as an F-

vector space.

Proof. Define m := dimF K. Thus., we can identify K = Fm as vector spaces, where

we choose that 1 C K is the first element in the F-basis for K. This gives an F-algebra

isomorphism p between K and a sub-ring Ml of the m x m F-matrices, where M is

defined as the image of p. The map p is defined by associating x C K with the matrix

inducing the linear map p(x) : Fm -> Fm where p(x) is the multiplication imap of x.

That is, using that K = Fm we can see that the map y H- xy for y C K is an F-linear

map, and thus defines p(x) over Fm.

That the map is injective follows from the fact that p(x) must map 1 E K to

x E K, so x is recoverable from p(x) (and surjectivity follows be definition of A). To

see the required homomorphism properties is also not difficult. As (x + z)y = xy + zy

for any x, y, z E K, this shows that p(x + z) = p(x) + p(z) as linear maps, and

thus as matrices. Similarly, as (xz)y = x(zy) for any x, y. z E K it must be that

p(xz) =p(x)p(z). That this map interacts linearly in F implies that it is an F-

algebra homomorphism, as desired.

Now consider a tensor T : [n]d -> F with simple tensor decomposition T

Zan"K(T) @, a over K First observe that if we define the map w : K -* F de-

fined by

x if xGEF
wr(x) =

0 else

then T = rankx(T) w(®, jd',). Thus for each 1, (0d4 i ) is a tensor T : [n]d -+ F.

We now show that rankF(T) < md-. First observe that for x E F, pu(x) is

a diagonal matrix. In particular, because we chose 1 E K to the first element in

the F-basis for K, for x E F, r(x) is equal to the (1, 1)-th entry in p(x). Thus, it



follows that Ti(ii, . . . , fai) (bt(di .(ii)) - (.d,- p((id)) 1, 1 . By expanding out the matrix

multiplication we can see that T, is expressible as

m m

Tii1 . ,id) =-1 ( 1,1( i1))1,k - p( ( 22 k,,k2 - p id))akd-I,1
ki=1 kd_1=1

and just as in Theorem 4.1.7 we see that for fixed kj the summands are simple F-

tensors. and thus rankF(T) md-1.

Using the observation that T = (ikT) T and the above bound for the F-rank

of T1. we then see that rankF(T) < (dinmF K)dl rankK(T). as desired. D

With this field-transfer result. we can now state rank upper bounds for group

tensors (for finite abelian groups) for any field.

Corollary 4.1.16. Let F be any field, and G be a fiite abelian group. Then rankF(T) <

|G|1+1gdr|lg |G|J] -1.

In particular. if G is cyclic, then rankF(Td) d|G| [lg|G|] d-1.

Proof. First observe that, if needed, we can extend F to a field K, such that |KI > |G|

and (as |F| > 2) such that dimF K < [ig IG]. Thus, applying Lenuna 4.1.15 to

Corollaries 4.1.10 and 4.1.14 yields the result. E

This last result shows that for any finite abelian group. any field and any large d,

the rank of the corresponding group tensor is far from possible Q(nd-1). These results

do not settle the rank of group tensors for non-abelian groups over small fields, and

leaves the open question whether the methods of Theorem 4.1.7 or Proposition 4.1.8

(or other methods) can resolve this case.



Chapter 5

Monotone Tensor Rank

We now explore a restricted notion of tensor rank. that of monotone tensor rank. In

algebraic models of computation, monotone computation requires that the underlying

field is ordered, which we now define.

Definition 5.0.1. Let F be a field. F is ordered if there is a linear order < such

that

* For all x, y, z E F, x < y ' x + z < y + z.

" For all x, y E F and z E F>O, x < y = xz < yz.

where F>0  {xIx E F, x > 0}.

Recall that every ordered field has characteristic zero. and thus is infinite.

Over ordered fields, computation of polynomials that only use positive coefficients

can be done using only positive field constants, but many works (such as [28]) have

shown that the circuit model of computation, the restriction to positive field con-

stants in computation leads drastically worse efficiency as compared to unrestricted

computation. In this section, we show that in the tensor rank model of computation,

monotone computation is also much less efficient then unrestricted computation. We

first define the notion of monotone tensor rank.

Definition 5.0.2. Let F be a ordered field. Consider a tensor T :j=]1 [n] -+ F>o.



Define the monotone tensor rank of T. denoted im-rank(T), to be

m-rank(T) = min r : T = VI",1 V-- UVj , (F>o)i}

We now show an essentially maximal separation between monotone tensor rank

and unrestricted tensor rank, for the explicit group tensor T,,.

Theorem 5.0.3. Let IF be an ordered field. Consider the group tensor Td. Then

1. rankF(fz ) < d(n - 1 +1

2. m-rankF (T nd 1

Proof. m-rankFT ) r 1- We remark that the following lower bound will only rely

on the fact that Tj is a permutation tensor, and no other properties.

In monotone computation, there is no cancellation of terms. Thus. in a monotone

simple tensor decomposition T = 1 T, one can see that the partial sums T<m

21 T successively cover more and more of the non-zero entries of T. We will show

that in any monotone decomposition of Td, at most one non-zero entry can be covered

by any T, which implies that the monotone rank is at least the number of non-zero

entries, which is nd-.

We now prove that in any monotone siniple tensor decomposition T Z, = lao,1,

each simple tensor T := aj_1 , can cover at most one non-zero entry of T Suppose

not, for contradiction. Then there is a simple tensor T that covers at least two non-

zero entries (ii, .. . , id) and (i. ... ,.i') of Td . However, these tuples must differ in at

least one index, we we assume without loss of generality to be index 1, so that il / it.

Consequently, we must have that a1, (ii), i,, (i') > 0 (as all field constants are positive

in monotone computation). As d-,i(i) > 0 for j > 1 (as T(il, i2, ... , i ') =1) it must

be that T(i , i2-, ., fd) di,1(i'1) H>j d,(ij) > 0. However. this is a contradiction.

For now this positive number at T(i', i2 , . ., id) cannot be canceled out by other sim-

ple tensors in a monotone computation and we must have T d(ii i2 ,. ,id) = 0 by

the fact that this is a permutation tensor. Thus, it must be that each simple tensor



in this monotone computation can only cover a single non-zero entry of T , which

implies the lower bound by the above argument.
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