258 research outputs found

    Improved Parameterized Algorithms for Constraint Satisfaction

    Full text link
    For many constraint satisfaction problems, the algorithm which chooses a random assignment achieves the best possible approximation ratio. For instance, a simple random assignment for {\sc Max-E3-Sat} allows 7/8-approximation and for every \eps >0 there is no polynomial-time (7/8+\eps)-approximation unless P=NP. Another example is the {\sc Permutation CSP} of bounded arity. Given the expected fraction ρ\rho of the constraints satisfied by a random assignment (i.e. permutation), there is no (\rho+\eps)-approximation algorithm for every \eps >0, assuming the Unique Games Conjecture (UGC). In this work, we consider the following parameterization of constraint satisfaction problems. Given a set of mm constraints of constant arity, can we satisfy at least ρm+k\rho m +k constraint, where ρ\rho is the expected fraction of constraints satisfied by a random assignment? {\sc Constraint Satisfaction Problems above Average} have been posed in different forms in the literature \cite{Niedermeier2006,MahajanRamanSikdar09}. We present a faster parameterized algorithm for deciding whether m/2+k/2m/2+k/2 equations can be simultaneously satisfied over F2{\mathbb F}_2. As a consequence, we obtain O(k)O(k)-variable bikernels for {\sc boolean CSPs} of arity cc for every fixed cc, and for {\sc permutation CSPs} of arity 3. This implies linear bikernels for many problems under the "above average" parameterization, such as {\sc Max-cc-Sat}, {\sc Set-Splitting}, {\sc Betweenness} and {\sc Max Acyclic Subgraph}. As a result, all the parameterized problems we consider in this paper admit 2O(k)2^{O(k)}-time algorithms. We also obtain non-trivial hybrid algorithms for every Max cc-CSP: for every instance II, we can either approximate II beyond the random assignment threshold in polynomial time, or we can find an optimal solution to II in subexponential time.Comment: A preliminary version of this paper has been accepted for IPEC 201

    Parameterized Constraint Satisfaction Problems: a Survey

    Get PDF
    We consider constraint satisfaction problems parameterized above or below guaranteed values. One example is MaxSat parameterized above m/2: given a CNF formula F with m clauses, decide whether there is a truth assignment that satisfies at least m/2 + k clauses, where k is the parameter. Among other problems we deal with are MaxLin2-AA (given a system of linear equations over F_2 in which each equation has a positive integral weight, decide whether there is an assignment to the variables that satisfies equations of total weight at least W/2+k, where W is the total weight of all equations), Max-r-Lin2-AA (the same as MaxLin2-AA, but each equation has at most r variables, where r is a constant) and Max-r-Sat-AA (given a CNF formula F with m clauses in which each clause has at most r literals, decide whether there is a truth assignment satisfying at least sum_{i=1}^m (1-2^{r_i})+k clauses, where k is the parameter, r_i is the number of literals in clause i, and r is a constant). We also consider Max-r-CSP-AA, a natural generalization of both Max-r-Lin2-AA and Max-r-Sat-AA, order (or, permutation) constraint satisfaction problems parameterized above the average value and some other problems related to MaxSat. We discuss results, both polynomial kernels and parameterized algorithms, obtained for the problems mainly in the last few years as well as some open questions

    Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems

    Get PDF
    In the {\sc Hitting Set} problem, we are given a collection F\cal F of subsets of a ground set VV and an integer pp, and asked whether VV has a pp-element subset that intersects each set in F\cal F. We consider two parameterizations of {\sc Hitting Set} below tight upper bounds: p=m−kp=m-k and p=n−kp=n-k. In both cases kk is the parameter. We prove that the first parameterization is fixed-parameter tractable, but has no polynomial kernel unless coNP⊆\subseteqNP/poly. The second parameterization is W[1]-complete, but the introduction of an additional parameter, the degeneracy of the hypergraph H=(V,F)H=(V,{\cal F}), makes the problem not only fixed-parameter tractable, but also one with a linear kernel. Here the degeneracy of H=(V,F)H=(V,{\cal F}) is the minimum integer dd such that for each X⊂VX\subset V the hypergraph with vertex set V∖XV\setminus X and edge set containing all edges of F\cal F without vertices in XX, has a vertex of degree at most d.d. In {\sc Nonblocker} ({\sc Directed Nonblocker}), we are given an undirected graph (a directed graph) GG on nn vertices and an integer kk, and asked whether GG has a set XX of n−kn-k vertices such that for each vertex y∈̞Xy\not\in X there is an edge (arc) from a vertex in XX to yy. {\sc Nonblocker} can be viewed as a special case of {\sc Directed Nonblocker} (replace an undirected graph by a symmetric digraph). Dehne et al. (Proc. SOFSEM 2006) proved that {\sc Nonblocker} has a linear-order kernel. We obtain a linear-order kernel for {\sc Directed Nonblocker}

    Fully polynomial FPT algorithms for some classes of bounded clique-width graphs

    Get PDF
    Parameterized complexity theory has enabled a refined classification of the difficulty of NP-hard optimization problems on graphs with respect to key structural properties, and so to a better understanding of their true difficulties. More recently, hardness results for problems in P were achieved using reasonable complexity theoretic assumptions such as: Strong Exponential Time Hypothesis (SETH), 3SUM and All-Pairs Shortest-Paths (APSP). According to these assumptions, many graph theoretic problems do not admit truly subquadratic algorithms, nor even truly subcubic algorithms (Williams and Williams, FOCS 2010 and Abboud, Grandoni, Williams, SODA 2015). A central technique used to tackle the difficulty of the above mentioned problems is fixed-parameter algorithms for polynomial-time problems with polynomial dependency in the fixed parameter (P-FPT). This technique was introduced by Abboud, Williams and Wang in SODA 2016 and continued by Husfeldt (IPEC 2016) and Fomin et al. (SODA 2017), using the treewidth as a parameter. Applying this technique to clique-width, another important graph parameter, remained to be done. In this paper we study several graph theoretic problems for which hardness results exist such as cycle problems (triangle detection, triangle counting, girth, diameter), distance problems (diameter, eccentricities, Gromov hyperbolicity, betweenness centrality) and maximum matching. We provide hardness results and fully polynomial FPT algorithms, using clique-width and some of its upper-bounds as parameters (split-width, modular-width and P_4P\_4-sparseness). We believe that our most important result is an O(k4⋅n+m){\cal O}(k^4 \cdot n + m)-time algorithm for computing a maximum matching where kk is either the modular-width or the P_4P\_4-sparseness. The latter generalizes many algorithms that have been introduced so far for specific subclasses such as cographs, P_4P\_4-lite graphs, P_4P\_4-extendible graphs and P_4P\_4-tidy graphs. Our algorithms are based on preprocessing methods using modular decomposition, split decomposition and primeval decomposition. Thus they can also be generalized to some graph classes with unbounded clique-width
    • 

    corecore