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Abstract
We consider constraint satisfaction problems parameterized above or below guaranteed values.
One example is MaxSat parameterized above m/2: given a CNF formula F with m clauses,
decide whether there is a truth assignment that satisfies at least m/2 + k clauses, where k is
the parameter. Among other problems we deal with are MaxLin2-AA (given a system of linear
equations over F2 in which each equation has a positive integral weight, decide whether there is
an assignment to the variables that satisfies equations of total weight at leastW/2+k, whereW is
the total weight of all equations), Max-r-Lin2-AA (the same as MaxLin2-AA, but each equation
has at most r variables, where r is a constant) and Max-r-Sat-AA (given a CNF formula F

with m clauses in which each clause has at most r literals, decide whether there is a truth
assignment satisfying at least

∑m
i=1(1 − 2ri ) + k clauses, where k is the parameter, ri is the

number of literals in clause i, and r is a constant). We also consider Max-r-CSP-AA, a natural
generalization of both Max-r-Lin2-AA and Max-r-Sat-AA, order (or, permutation) constraint
satisfaction problems parameterized above the average value and some other problems related
to MaxSat. We discuss results, both polynomial kernels and parameterized algorithms, obtained
for the problems mainly in the last few years as well as some open questions.
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1 Introduction

While the main body of papers in the area of parameterized algorithms and complexity deals
with problems on graphs and hypergraphs, in this paper we will consider parameterized
constraint satisfaction problems (CSPs). This article is an update of survey paper [27] on
the topic. We provide basic terminology and notation on parameterized algorithms and
complexity in Section 2.

To the best of our knowledge, the first study of parameterized CSPs was almost twenty
years ago by Cai and Chen [7] on standard parameterization of MaxSat. In MaxSat, we
are given a CNF formula F with m clauses and asked to determine the maximum number of
clauses of F that can be satisfied simultaneously by a truth assignment. In the standard
parametrization of MaxSat, denoted by k-MaxSat, we are to decide whether there is a
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truth assignment which satisfies at least k clauses of F , where k is the parameter. However,
in the next paper on the topic Mahajan and Raman [41] already observed that the standard
parameterization of MaxSat is not in the spirit of parameterized complexity. Indeed, it
is well-known (and shown below, in Section 6) that there exists a truth assignment to the
variables of F which satisfies at least m/2 clauses. Thus, for k ≤ m/2 every instance of
k-MaxSat is positive and thus only for k > m/2 the problem is of any interest. However,
then the parameter k is quite large “in which range the fixed-parameter tractable algorithms
are infeasible” [41].

Also it is easy to see that k-MaxSat has a kernel with a linear number of clauses. Indeed,
consider an instance I of k-MaxSat. As we mentioned above, if k ≤ m/2 then I is a positive
instance. Otherwise, we have k > m/2 and m ≤ 2k − 1. Such a kernel should be viewed as
large rather than small as the bound 2k − 1 might suggest at the first glance.

The bound m/2 is tight as we can satisfy only half clauses in the instances consisting of
pairs (x), (x̄) of clauses. This suggest the following parameterization of MaxSat above tight
bound introduced by Mahajan and Raman [41]: decide whether there is a truth assignment
which satisfies at least m/2 + k clauses of F , where k is the parameter.

To the best our knowledge, [41] was the first paper on problems parameterized above
or below tight bounds. Since then a large number of papers have appeared on the topic,
some on graph and hypergraph problems and others on CSPs. In this survey paper, we
will overview results on CSPs parameterized above or below tight bounds, as well as some
methods used to obtain these results. Since some graph problems can also be viewed as
those on CSPs, we will mention some results initially proved for graphs. While not going
into details of the proofs, we will discuss some ideas behind the proofs. We will also consider
some open problems in the area.

In the remainder of this section we give an overview of the paper and its organization.
In the next section we provide basics on parameterized algorithms and complexity. In

Section 3, we describe the Strictly-Above-Below-Expectation Method (SABEM) introduced
in [26]. The method uses some tools from Probabilistic Method and Harmonic Analysis. A
relatively simple example illustrates the method.

Another example for SABEM is given in Section 4, which is devoted to the Maximum
r-CSPs parameterized above the average value, where r is a positive integral constant. In
general, the Maximum r-CSP is given by a set V of n Boolean variables and a set of m
Boolean formulas; each formula is assigned an integral positive weight and contains at most
r variables from V . The aim is to find a truth assignment which maximizes the weight of
satisfied formulas. Averaging over all truth assignments, we can find the average value A of
the weight of satisfied formulas. It is easy to show that we can always find a truth assignment
to the variables of V which satisfied formulas of total weight at least A. Thus, a natural
parameterized problem is whether there exists a truth assignment that satisfies formulas of
total weight at least A+ k, where k is the parameter (k is a nonnegative integer). We denote
such a problem by Max-r-CSP-AA.

In Subsection 4.1, we consider the Max-r-Lin2-AA problem, which is a special case of
Max-r-CSP-AA when every formula is a linear equation over F2 with at most r variables.
For Max-r-Lin2-AA, we have A = W/2, where W is the total weight of all equations. It is
well-known that, in polynomial time, we can find an assignment to the variables that satisfies
equations of total weight at least W/2, but, for any ε > 0 it is NP-hard to decide whether
there is an assignment satisfying equations of total weight at least W (1 + ε)/2 [31]. We will
prove a result by Gutin, Kim, Szeider and Yeo [26] that Max-r-Lin2-AA has a kernel of
quadratic size. We will mention some other results, in particular, a result of Crowston et
al. [11] that Max-r-Lin2-AA has a kernel with at most (2k − 1)r variables.
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In Subsection 4.2, we give a proof scheme of a result by Alon et al. [2] that Max-r-CSP-
AA has a kernel of polynomial size. The main idea of the proof is to reduce Max-r-CSP-AA
to Max-r-Lin2-AA and use results on Max-r-Lin2-AA and a lemma on bikernels given in
the next section. The result of Alon et al. [2] solves an open question of Mahajan, Raman and
Sikdar [42] not only for Max-r-Sat-AA but for the more general problem Max-r-CSP-AA.
The problem Max-r-Sat-AA is a special case of Max-r-CSP-AA when every formula is a
clause with at most r variables. For Max-r-Sat-AA, the reduction to Max-r-Lin2-AA
can be complemented by a reduction from Max-r-Lin2-AA back to Max-r-Sat-AA, which
yields a kernel of quadratic size.

(Note that while the size of the kernel for Max-r-CSP-AA is polynomial, any bound on
the degree of the polynomial is unknown so far.)

Section 5 is devoted to two parameterizations of MaxLin2. The first is MaxLin2-AA,
which is the same problem as Max-r-Lin2-AA, but the number of variables in an equation
is not bounded. Thus, MaxLin2-AA is a generalization of Max-r-Lin2-AA. We present a
scheme of a proof by Crowston et al. [11] that MaxLin2-AA is fixed-parameter tractable
(FPT) and has a kernel with polynomial number of variables. This result solved an open
question of Mahajan et al. [42] of whether MaxLin2-AA is FPT, but we still do not know
whether MaxLin2-AA has a kernel of polynomial size and we present only partial results on
the topic. The second parameterization of MaxLin2 is as follows. Let W be the total weight
of all equations in MaxLin2. We are to decide whether there is an assignment satisfying
equations of total weight at least W − k, where k is a nonnegative parameter. This problem
was proved to be W[1]-hard by Crowston et al. [14]. Following [14] we will discuss special
cases of this problem giving its classification into fixed-parameter tractable and W[1]-hard
cases.

In Section 6 we consider several parameterizations of Max-Sat different from Max-r-
Sat-AA. Subsection 6.1 is devoted to MaxSat-A(m/2), where given a CNF formula F
with m clauses, we are to decide whether there is a truth assignment with satisfies at least
m/2 + k clauses of F , where k is the parameter.

In Subsection 6.2 we consider Max-r(n)-Sat-AA, which is the same problem as Max-
r-Sat-AA, but r(n) now depends on n. We discuss bounds on r(n), which make Max-
r(n)-Sat-AA either fixed-parameter tractable or not fixed-parameter tractable under the
assumption that the Exponential Time Hypothesis (ETH) holds (we introduce ETH in the
next section).

Results on MaxSat parameterized above or below various other tight bounds are discussed
in Subsection 6.3. We will consider the above-mentioned parameterization of MaxSat above
m/2 and some “stronger” parameterizations of MaxSat introduced or inspired by Mahajan
and Raman [41]. The stronger parameterizations are based on the notion of a t-satisfiable
CNF formula (a formula in which each set of t clauses can be satisfied by a truth assignment)
and asymptotically tight lower bounds on the maximum number of clauses of a t-satisfiable
CNF formula satisfied by a truth assignment for t = 2 and 3. We will describe linear-variable
kernels obtained for both t = 2 and 3. We will also consider the parameterization of 2-Sat
below the upper bound m, the number of clauses. This problem was proved to be fixed-
parameter tractable by Razgon and O’Sullivan [48]. Raman et al. [47] and Cygan et al. [17]
designed faster parameterized algorithms. for the problem.

In Section 7 we discuss parameterizations above average for Ordering CSPs. An Ordering
CSP of arity r is defined by a set V = {x1, . . . , xn} of variables and a set of constraints. Each
constraint is a disjunction of clauses of the form xi1 < xi2 < · · · < xir . A linear ordering α
of V satisfies such a constraint if one of the clauses in the disjunction agrees with α. The
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objective of the problem is to find an ordering of V which satisfies the maximum number
of constraints. For the only nontrivial Ordering CSP of arity 2, 2-Linear Ordering,
Guruswami, Manokaran and Raghavendra [22] proved that it is impossible to find, in
polynomial time, an ordering that satisfies at least |C|(1 + ε)/2 constraints for every ε > 0
provided the Unique Games Conjecture (UGC) of Khot [35] holds. (Note that |C|/2 is the
expected number of constraints satisfied by a random uniformly-distributed ordering of V.)
Similar approximation resistant results were proved for all Ordering CSPs of arity 3 by
Charikar, Guruswami and Manokaran [8] and for Ordering CSPs of any arity by Guruswami
et al. [21].

Thus it makes sense to consider Ordering CSPs parameterized above average. It was
proved by Gutin, Kim, Szeider and Yeo [26] that 2-Linear Ordering parameterized above
average is fixed-parameter tractable. Gutin, Iersel, Mnich and Yeo [23] showed that all
Ordering CSPs of arity 3 parameterized above average are fixed-parameter tractable and
conjectured the same results for every arity r ≥ 2. Recently, Makarychev, Makarychev
and Zhou [43] proved the conjecture. All the results can be proved using SABEM. This is
already illustrated in Subsection 4.1 for 2-Linear Ordering parameterized above average.
In Section 7, we provide a proof scheme for Betweenness parameterized above average
by Gutin, Kim, Szeider and Yeo [25] who solved an open question of Benny Chor stated in
Niedermeier’s monograph [44]. This scheme was used also by Makarychev, Makarychev and
Zhou [43], but their proof involves significantly more involved tools from Harmonic Analysis
and we only provide some general remarks on their proof. We will also briefly discuss an
interesting generalization of the result of Makarychev, Makarychev and Zhou [43].

We complete the paper with Section 8, where we briefly discuss two open problems.

2 Basics on Parameterized Algorithms and Complexity

A parameterized problem Π can be considered as a set of pairs (I, k) where I is the problem
instance and k (usually a nonnegative integer) is the parameter. Π is called fixed-parameter
tractable (FPT) if membership of (I, k) in Π can be decided by an algorithm of runtime
O(f(k)|I|c), where |I| is the size of I, f(k) is an arbitrary function of the parameter k
only, and c is a constant independent from k and I. Such an algorithm is called an FPT
algorithm. Let Π and Π′ be parameterized problems with parameters k and k′, respectively.
An FPT-reduction R from Π to Π′ is a many-to-one transformation from Π to Π′, such that
(i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π′ with k′ ≤ g(k) for a fixed computable function g, and
(ii) R is of complexity O(f(k)|I|c).

If the nonparameterized version of Π (where k is just part of the input) is NP-hard,
then the function f(k) must be superpolynomial provided P 6=NP. Often f(k) is “moderately
exponential,” which makes the problem practically feasible for small values of k. Thus, it is
important to parameterize a problem in such a way that the instances with small values of k
are of real interest.

When the decision time is replaced by the much more powerful |I|O(f(k)), we obtain the
class XP, where each problem is polynomial-time solvable for any fixed value of k. There is a
number of parameterized complexity classes between FPT and XP (for each integer t ≥ 1,
there is a class W[t]) and they form the following tower:

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P] ⊆ XP.

Here W[P] is the class of all parameterized problems (I, k) that can be decided in f(k)|I|O(1)

time by a nondeterministic Turing machine that makes at most f(k) log |I| nondeterministic
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steps for some function f . For the definition of classes W[t], see, e.g., [16, 18] (we do not use
these classes in the rest of the paper).

Π is in para-NP if membership of (I, k) in Π can be decided in nondeterministic time
O(f(k)|I|c), where |I| is the size of I, f(k) is an arbitrary function of the parameter k only,
and c is a constant independent from k and I. Here, nondeterministic time means that we can
use nondeterministic Turing machine. A parameterized problem Π′ is para-NP-complete if it
is in para-NP and for any parameterized problem Π in para-NP there is an FPT-reduction
from Π to Π′.

Given a pair Π,Π′ of parameterized problems, a bikernelization from Π to Π′ is a
polynomial-time algorithm that maps an instance (I, k) to an instance (I ′, k′) (the bikernel)
such that (i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π′, (ii) k′ ≤ f(k), and (iii) |I ′| ≤ g(k) for
some functions f and g. The function g(k) is called the size of the bikernel. A kernelization
of a parameterized problem Π is simply a bikernelization from Π to itself. Then (I ′, k′) is a
kernel. The term bikernel was coined by Alon et al. [2]; in [4] a bikernel is called a generalized
kernel.

It is well-known that a parameterized problem Π is fixed-parameter tractable if and only
if it is decidable and admits a kernelization [16, 18]. This result can be extended as follows:
A decidable parameterized problem Π is fixed-parameter tractable if and only if it admits a
bikernelization from itself to a decidable parameterized problem Π′ [2].

Due to applications, low degree polynomial size kernels are of main interest. Unfortunately,
many fixed-parameter tractable problems do not have kernels of polynomial size unless the
polynomial hierarchy collapses to the third level [4, 5, 19]. For further background and
terminology on parameterized complexity we refer the reader to the monographs [16, 18].

The following lemma of Alon et al. [2] inspired by a lemma from [5] shows that polynomial
bikernels imply polynomial kernels.

I Lemma 1. Let Π,Π′ be a pair of decidable parameterized problems such that the nonpa-
rameterized version of Π′ is in NP, and the nonparameterized version of Π is NP-complete.
If there is a bikernelization from Π to Π′ producing a bikernel of polynomial size, then Π has
a polynomial-size kernel.

Recently many lower bound results for parameterized complexity were proved under the
assumption that the Exponential Time Hypothesis (EHT) (see [16]) holds. ETH claims that
3-SAT cannot be solved in O(2δn) time for some δ > 0, where n is the number of variables
in the CNF formula of 3-SAT.

Henceforth [n] stands for the set {1, 2, . . . , n}.

3 Strictly Above/Below Expectation Method

This section briefly describes basics of the method.
Let us start by outlining the very basic principles of the probabilistic method which

will be implicitly used later. Given random variables X1, . . . , Xn, the fundamental property
known as linearity of expectation states that E(X1 + . . .+Xn) = E(X1) + . . .+ E(Xn). The
averaging argument utilizes the fact that there is a point for which X ≥ E(X) and a point
for which X ≤ E(X) in the probability space. Also a positive probability P(A) > 0 for some
event A means that there is at least one point in the probability space which belongs to A.
For example, P(X ≥ k) > 0 tells us that there exists a point for which X ≥ k.

A random variable is discrete if its distribution function has a finite or countable number
of positive increases. A random variable X is symmetric if −X has the same distribution
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function as X. If X is discrete, then X is symmetric if and only if P(X = a) = P(X = −a)
for each real a. Let X be a symmetric variable for which the first moment E(X) exists. Then
E(X) = E(−X) = −E(X) and, thus, E(X) = 0. The following easy to prove [26] result, is the
simplest tool of the Strictly Above/Below Expectation method as it allows us sometimes to
show that a certain random variable takes values (significantly) above/below its expectation.

I Lemma 2. If X is a symmetric random variable and E(X2) is finite, then

P( X ≥
√
E(X2) ) > 0.

We will illustrate the usefulness of the lemma using the 2-Linear Ordering Above
Average problem. Let D = (V,A) be a digraph on n vertices with no loops or parallel arcs
in which every arc ij has a positive integral weight wij . Consider an ordering α : V → [n]
and the subdigraph Dα = (V, {ij ∈ A : α(i) < α(j)}) of D. Note that Dα is acyclic.

2-Linear Ordering Above Average (2-Linear Ordering-AA)
Instance: A digraph D = (V,A), each arc ij has an integral positive weight wij , and
a positive integer κ.
Parameter: The integer κ.
Question: Is there a subdigraph Dα of D of weight at least W/2 + κ, where W =∑

ij∈A wij ?

Mahajan, Raman, and Sikdar [42] asked whether 2-Linear Ordering-AA is FPT for the
special case when all arcs are of weight 1. Gutin et al. [26] solved the problem by obtaining
a quadratic kernel for the problem. In fact, the problem can be solved using the following
result of Alon [1]: there exists an ordering α such that Dα has weight at least ( 1

2 + 1
16|V | )W.

However, the proof in [1] uses a probabilistic approach for which a derandomization is not
known yet and, thus, we cannot find the appropriate α deterministically. Moreover, the
probabilistic approach in [1] is quite specialized. Thus, we will briefly describe a solution
from [26]. Consider the following reduction rule:

I Reduction Rule 1. Assume D has a directed 2-cycle iji; if wij = wji delete the cycle, if
wij > wji delete the arc ji and replace wij by wij − wji, and if wji > wij delete the arc ij
and replace wji by wji − wij.

It is easy to check that the answer to 2-Linear Ordering-AA for a digraph D is Yes if
and only if the answer to 2-Linear Ordering-AA is Yes for a digraph obtained from D

using the reduction rule as long as possible. Note that applying Rule 1 as long as possible
results in an oriented graph, i.e., a digraph with no directed 2-cycle.

I Theorem 3 ([26]). 2-Linear Ordering-AA has a kernel with O(κ2) arcs.

Proof. Consider a random ordering: α : V → [n] and a random variable X(α) defined by
X(α) = 1

2
∑
ij∈A xij(α), where xij(α) = wij if α(i) < α(j) and xij(α) = −wij , otherwise.

It is easy to see that X(α) =
∑
{wij : ij ∈ A,α(i) < α(j)} −W/2. Thus, the answer to

2-Linear Ordering-AA is Yes if and only if there is an ordering α : V → [n] such that
X(α) ≥ κ.

By Rule 1, we may assume that the input of 2-Linear Ordering-AA is an oriented
graph D = (V,A). Let α : V → [n] be a random ordering. Since X(−α) = −X(α), where
−α(i) = n+ 1− α(i), X is a symmetric random variable and, thus, we can apply Lemma 2.
It was proved in [26] that E(X2) ≥ |A|/12. By this inequality and Lemma 2, we have
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P( X ≥
√
|A|/12 ) > 0. Thus, if

√
|A|/12 ≥ κ, there is an ordering β : V → [n] such that

X(β) ≥ k and so the answer to 2-Linear Ordering-AA is Yes. Otherwise,
√
|A|/12 ≥ κ

implying |A| ≤ 12κ2 and we are done. J

By deleting isolated vertices (if any), we can obtain a kernel with O(κ2) arcs and vertices.
Kim and Williams [36] proved that 2-Linear Ordering has a kernel with a linear number
of variables.

If a random variable X is not symmetric then the following lemma can be used instead
of Lemma 2.

I Lemma 4 (Alon et al. [2]). Let X be a real random variable and suppose that its first, second
and fourth moments satisfy E[X] = 0, E[X2] = σ2 > 0 and E[X4] ≤ cE[X2]2, respectively,
for some constant c. Then P(X > σ

2
√
c
) > 0.

To check whether E[X4] ≤ cE[X2]2 we often can use the following well-known inequality
whose proof can be found in [16] and [45].

I Lemma 5 (Hypercontractive Inequality [6]). Let f = f(x1, . . . , xn) be a polynomial of
degree r in n variables x1, . . . , xn each with domain {−1, 1}. Define a random variable X by
choosing a vector (ε1, . . . , εn) ∈ {−1, 1}n uniformly at random and setting X = f(ε1, . . . , εn).
Then E[X4] ≤ 9rE[X2]2.

If f = f(x1, . . . , xn) is a polynomial in n variables x1, . . . , xn each with domain {−1, 1},
then it can be written as f =

∑
I⊆[n] cI

∏
i∈S xi, where [n] = {1, . . . , n} and cI is a real for

each I ⊆ [n].
The following dual, in a sense, form of the Hypercontractive Inequality was proved by

Gutin and Yeo [28]; for a weaker result, see [26].

I Lemma 6. Let f = f(x1, . . . , xn) be a polynomial in n variables x1, . . . , xn each with
domain {−1, 1} such that f =

∑
I⊆[n] cI

∏
i∈S xi. Suppose that no variable xi appears in

more than ρ monomials of f . Define a random variable X by choosing a vector (ε1, . . . , εn) ∈
{−1, 1}n uniformly at random and setting X = f(ε1, . . . , εn). Then E[X4] ≤ (2ρ+ 1)E[X2]2.

The following lemma is easy to prove, cf. [26]. In fact, the equality there is a special case
of Parseval’s Identity in Harmonic Analysis, cf. [45].

I Lemma 7. Let f = f(x1, . . . , xn) be a polynomial in n variables x1, . . . , xn each with
domain {−1, 1} such that f =

∑
I⊆[n] cI

∏
i∈I xi. Define a random variable X by choosing

a vector (ε1, . . . , εn) ∈ {−1, 1}n uniformly at random and setting X = f(ε1, . . . , εn). Then
E[X2] =

∑
i∈I c

2
I .

We will give a relatively simple application of Lemmas 5 and 7 in Subsection 4.1. Another
application is in Subsection 7.2.

4 Boolean Max-r-CSPs Above Average

Throughout this section, r is a positive integral constant. Recall that the problem Max-
r-CSP-AA is given by a set V of n Boolean variables and a set of m Boolean formulas;
each formula is assigned an integral positive weight and contains at most r variables from
V . Averaging over all truth assignments, we can find the average value A of the weight of
satisfied formulas. We wish to decide whether there exists a truth assignment that satisfies
formulas of total weight at least A+ k, where k is the parameter (k is a nonnegative integer).
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Recall that the problem Max-r-Lin2-AA is a special case of Max-r-CSP-AA when
every formula is a linear equation over F2 with at most r variables and that Max-Lin2-AA
is the extension of Max-r-Lin2-AA when we do not bound the number of variables in an
equation. We will see that for both Max-r-CSP-AA and Max-Lin2-AA, A = W/2, where
W is the total weight of all equations.

Subsection 4.1 is devoted to parameterized complexity results on Max-r-Lin2-AA which
are not only of interest by themselves, but also as tools useful for Max-r-CSP-AA. In
particular, we will prove that Max-r-Lin2-AA has a kernel of quadratic size. Since some
basic results on Max-r-Lin2-AA hold also for Max-Lin2-AA, in general, we will show
them for Max-Lin2-AA.

In Subsection 4.2, we give a proof scheme of a result by Alon et al. [2] that Max-
r-CSP-AA has a a kernel of polynomial size. The main idea of the proof is to reduce
Max-r-CSP-AA to Max-r-Lin2-AA and use the above kernel result on Max-r-Lin2-AA
and Lemma 1. This shows the existence of a polynomial-size kernel, but does not allow us
to obtain a bound on the degree of the polynomial. We complete the section, by pointing
out that for Max-r-Sat-AA, the reduction to Max-r-Lin2-AA can be complemented by
a reduction from Max-r-Lin2-AA back to Max-r-Sat-AA and so we obtain a quadratic
kernel for Max-r-Sat-AA.

4.1 Max-r-Lin-AA
In the Max-Lin2-AA problem, we are given a system S consisting of m linear equations in n
variables over F2 in which each equation is assigned a positive integral weight. If we add the
requirement that every equation has at most r variables then we get Max-r-Lin2-AA. Let
us write the system S as

∑
i∈I zi = bI , I ∈ F , and let wI denote the weight of an equation∑

i∈I zi = bI . Clearly, m = |F|. Let W =
∑
I∈F wI and let sat(S) be the maximum total

weight of equations that can be satisfied simultaneously.
For each i ∈ [n], set zi = 1 with probability 1/2 independently of the rest of the variables.

Then each equation is satisfied with probability 1/2 and the expected weight of satisfied
equations is W/2 (as our probability distribution is uniform, W/2 is also the average weight
of satisfied equations). Hence W/2 is a lower bound; to see its tightness consider a system
of pairs of equations of the form

∑
i∈I zi = 0,

∑
i∈I zi = 1 of weight 1. The aim in

both Max-Lin2-AA and Max-r-Lin2-AA is to decide whether for the given system S,
sat(S) ≥W/2 + k, where k is the parameter. It is well-known that, in polynomial time, we
can find an assignment to the variables that satisfies equations of total weight at least W/2,
but, for any ε > 0 it is NP-hard to decide whether there is an assignment satisfying equations
of total weight at least W (1 + ε)/2 [31].

Henceforth, it will often be convenient for us to consider linear equations in their
multiplicative form, i.e., instead of an equation

∑
i∈I zi = bI with zi ∈ {0, 1}, we will consider

the equation
∏
i∈I xi = (−1)bI with xi ∈ {−1, 1}. Clearly, an assignment z0 = (z0

1 , . . . , z
0
n)

satisfies
∑
i∈I zi = bI if and only if the assignment x0 = (x0

1, . . . , x
0
n) satisfies

∏
i∈I xi =

(−1)bI , where x0
i = (−1)z0

i for each i ∈ [n].
Let ε(x) =

∑
I∈F wI(−1)bI

∏
i∈I xi (each xi ∈ {−1, 1}) and note that ε(x0) is the

difference between the total weight of satisfied and falsified equations when xi = x0
i for each

i ∈ [n]. We will call ε(x) the excess and the maximum possible value of ε(x) the maximum
excess. The following claim is easy to check.

I Lemma 8. Observe that the answer to Max-Lin2-AA and Max-r-Lin2-AA is Yes if
and only if the maximum excess is at least 2k.
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Let A be the matrix over F2 corresponding to the set of equations in S, such that aji = 1
if i ∈ Ij and 0, otherwise.

Consider two reduction rules for Max-Lin2-AA introduced by Gutin et al. [26].

I Reduction Rule 2. If we have, for a subset I of [n], an equation
∏
i∈I xi = b′I with weight

w′I , and an equation
∏
i∈I xi = b′′I with weight w′′I , then we replace this pair by one of these

equations with weight w′I + w′′I if b′I = b′′I and, otherwise, by the equation whose weight is
bigger, modifying its new weight to be the difference of the two old ones. If the resulting
weight is 0, we delete the equation from the system.

I Reduction Rule 3. Let t = rankA and suppose columns ai1 , . . . , ait of A are linearly
independent. Then delete all variables not in {xi1 , . . . , xit} from the equations of S.

I Lemma 9 ([26]). Let S′ be obtained from S by Rule 2 or 3. Then the maximum excess
of S′ is equal to the maximum excess of S. Moreover, S′ can be obtained from S in time
polynomial in n and m.

I Definition 10. If we cannot change a weighted system S using Rules 2 and 3, we call it
irreducible.

Now we are read to prove the following result.

I Theorem 11 ([26]). The problem Max-r-Lin2-AA admits a kernel with at most O(k2)
variables and equations.

Proof. Let the system S be irreducible. Consider the excess

ε(x) =
∑
I∈F

wI(−1)bI

∏
i∈I

xi. (1)

Let us assign value −1 or 1 to each xi with probability 1/2 independently of the other variables.
Then X = ε(x) becomes a random variable. By Lemma 7, we have E(X2) =

∑
I∈F w

2
I .

Therefore, by Lemmas 4 and 5,

P[ X ≥
√
m/(2 · 3r) ] ≥ P

 X ≥√∑
I∈F

w2
I/(2 · 3

r)

 > 0.

Hence by Remark 8, if
√
m/(2 · 3r) ≥ 2k, then the answer to Max-r-Lin2-AA is Yes.

Otherwise, m = O(k2) and, by Rule 3, we have n ≤ m = O(k2). J

The bound on the number of variables can be improved and it was done by Crowston et
al. [12] and Kim and Williams [36]. The best known improvement is by Crowston et al. [11]:

I Theorem 12. The problem Max-r-Lin2-AA admits a kernel with at most (2k − 1)r
variables.

Theorem 12 implies the following:

I Corollary 13. There is an algorithm of runtime 2O(k) +mO(1) for Max-r-Lin2-AA.

Kim and Williams [36] proved that the last result is best possible, in a sense, if the
Exponential Time Hypothesis (ETH) holds.

I Theorem 14 ([36]). If Max-3-Lin2-AA can be solved in O(2εk2εm) time for every ε > 0,
then ETH does not hold.
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4.2 Max-r-CSP-AA and Max-r-Sat-AA
Consider first a detailed formulation of Max-r-CSP-AA. Let V = {v1, . . . , vn} be a set of
variables, each taking values −1 (True) and 1 (False). We are given a set Φ of Boolean
functions, each involving at most r variables, and a collection F of m Boolean functions,
each f ∈ F being a member of Φ, each with a positive integral weight and each acting on
some subset of V . We are to decide whether there is a truth assignment to the n variables
such that the total weight of satisfied functions is at least A + k, where A is the average
weight (over all truth assignments) of satisfied functions and k is the parameter.

Note that A is a tight lower bound for the problem, whenever the family Φ is closed
under replacing each variable by its complement, since if we apply any Boolean function to
all 2r choices of literals whose underlying variables are any fixed set of r variables, then any
truth assignment to the variables satisfies exactly the same number of these 2r functions.

Note that if Φ consists of clauses, we get Max-r-Sat-AA. In Max-r-Sat-AA, A =∑m
j=1 wj(1− 2−rj ), where wj and rj are the weight and the number of variables of Clause j,

respectively. Clearly, A is a tight lower bound for Max-r-Sat.
Following [3], for a Boolean function f of weight w(f) and on r(f) ≤ r Boolean variables

xi1 , . . . , xir(f) , we introduce a polynomial hf (x), x = (x1, . . . , xn) as follows. Let Sf ⊂
{−1, 1}r(f) denote the set of all satisfying assignments of f . Then

hf (x) = w(f)2r−r(f)
∑

(v1,...,vr(f))∈Sf

[
r(f)∏
j=1

(1 + xijvj)− 1].

Let h(x) =
∑
f∈F hf (x). It is easy to see (cf. [2]) that the value of h(x) at some x0

is precisely 2r(U − A), where U is the total weight of the functions satisfied by the truth
assignment x0. Thus, the answer to Max-r-CSP-AA is Yes if and only if there is a truth
assignment x0 such that h(x0) ≥ k2r.

Algebraic simplification of h(x) will lead us the following (Fourier expansion of h(x),
cf. [45]):

h(x) =
∑
S∈F

cS
∏
i∈S

xi, (2)

where F = {∅ 6= S ⊆ [n] : cS 6= 0, |S| ≤ r}. Thus, |F| ≤ nr. The sum
∑
S∈F cS

∏
i∈S xi

can be viewed as the excess of an instance of Max-r-Lin2-AA and, thus, we can reduce
Max-r-CSP-AA into Max-r-Lin2-AA in polynomial time (since r is fixed, the algebraic
simplification can be done in polynomial time and it does not matter whether the parameter
of Max-r-Lin2-AA is k or k′ = k2r). By Theorem 11, Max-r-Lin2-AA has a kernel
with O(k2) variables and equations. This kernel is a bikernel from Max-r-CSP-AA to
Max-r-Lin2-AA. Thus, by Lemma 1, we obtain the following theorem of Alon et al. [2].

I Theorem 15. Max-r-CSP-AA admits a polynomial-size kernel.

Applying a reduction from Max-r-Lin2-AA to Max-r-Sat-AA in which each monomial
in (2) is replaced by 2r−1 clauses, Alon et al. [2] obtained the following:

I Theorem 16. Max-r-Sat-AA admits a kernel with O(k2) clauses and variables.

Using also Theorem 12, it is easy to improve this theorem with respect to the number of
variables in the kernel. Note that this result was first obtained by Kim and Williams [36].

I Theorem 17. Max-r-Sat-AA admits a kernel with O(k) variables.
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4.3 Max-r-CSP-AA with global cardinality constraint
Recall the formulation of Max-r-CSP-AA: V = {v1, . . . , vn} is a set of variables, each
taking values from {−1, 1}. We are given m Boolean formulas, each with an integral positive
weight. We wish to decide if we can satisfy clauses with a total weight of k more than the
average weight (if every variables is assigned −1 or 1 with equal probability).

Chen and Zhou [9] consider the unweighted case of Max-r-CSP-AA but allow for a
global cardinality constraint. That is, we can restrict the number of 1’s (or −1’s) to be a
given fraction of the total number of variables. Consider the sum

∑n
i=1 vi and note that

this is an integer between −n and n. We now consider the case when
∑n
i=1 vi = αn and

−p0 ≤ α ≤ p0 for some fixed integer p0 < 1. Note that α may depend on n, but has to
be bounded by constants −p0 and p0 (p0 does not depend on n and will be considered a
constant in the complexity). We now formally describe the problem.

Let 0 ≤ p0 < 1 be a constant and for every n, let αn satisfy −p0 ≤ αn ≤ p0. We consider
all instances that satisfy the following:

n∑
i=1

vi = αnn .

For example if αn = 0 then we require to be equally many 1’s and −1’s in the assignments to
v1, v2, . . . , vn (this is called a bisection constraint). If αn = 1/2 then we require exactly one
quarter of all variables v1, v2, . . . , vn to be assigned −1 and three quarters to be assigned 1.

One application of the global cardinality constraint can be found in the MaxBisection
problem where we are given a graph G and want to partition the vertices into two equal-size
sets such that we have the maximum possible number of edges between the two sets. Let
v1, v2, . . . , vn be the vertices of the graph G and, with abuse of notation, also the variables
in our instance of Max-r-CSP-AA. If vivj is an edge in G then add the constraint vi 6= vj .
Adding the global cardinality constraint

∑n
i=1 vi = 0 now gives us an instance of Max-r-

CSP-AA (with global cardinality constraint) which has a solution k above the average if
and only if MaxBisection has a solution with k more edges in the cut than an average cut
(given that both partite sets are equally large).

If we do not require both partite sets to be equally large we get the problem MaxCut,
in which every edge has probability 1/2 of belonging to a random cut. However for the
MaxBisection problem this probability is slightly higher. Consider en edge vivj in the
graph G. Without loss of generality, let vi be assigned 1. Of the remaining n− 1 vertices
n/2− 1 will be assigned 1 and n/2 will be assigned −1. Therefore the probability that vivj
is in the cut will be as follows.

n/2
n− 1 = 1

2 + 1
2(n− 1) .

Therefore in the MaxBisection-AA we are looking to decide if there is a solution with at
least m

(
1
2 + 1

2(n−1)

)
+ k edges in the cut, where k is the parameter.

MaxBisection-AA was shown to be FPT and have a O(k2) kernel by Chen and Zhou [9].
This significantly improves a result by Gutin and Yeo [29] who showed a similar result when
looking for a solution with at least m/2 + k edges, where k is the parameter.

In fact, in [9] it is proved that each unweighted Max-r-CSP-AA with a global cardinality
constraint is FPT and has a kernel of size O(k2).

I Theorem 18 ([9]). For every p0 with 0 < p0 ≤ 1 there exists a kernel of size O(k2) for
the unweighted Max-r-CSP-AA with global cardinality constraint (given by p0).
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If m ∈ nO(r) (which is the case if we do not repeat constraints), then in Theorem 18 the
polynomial algorithm that produces the kernel has runtime nO(r) (where r was the number
of variables in each constraint). If m 6∈ nO(r), it is not difficult to obtain a runtime of mO(r).

The size of the kernel in Theorem 18 depends on p0 and r, but in the theorem these are
constants. Theorem 18 furthermore implies the following result (where p0 and r again are
considered constants).

I Theorem 19 ([9]). For every 0 < p0 ≤ 1 and unweighted instance Max-r-CSP-AA with
global cardinality constraint (given by p0) and m ∈ nO(1) there exists an algorithm with
runtime nO(1) + 2O(k2) that decides if there is a solution satisfying k constraints more than
the average.

The proofs of the above results are deep and beyond the scope of this survey. They
use a version of the hypercontractive inequality where the probability space is given by
all assignments satisfying the global cardinality constraint. Therefore the variables are
not independent, which complicates matters compared to previous proofs of the ordinary
hypercontractive inequality. The proof of this new hypercontractive inequality relies on the
analysis of the eigenvalues of several nO(r) × nO(r) set-symmetric matrices.

5 Parameterizations of MaxLin2

In the Max-Lin2 problem, we are given a system S of m linear equations in n variables
over F2 in which each equation is assigned a positive integral weight. Our aim is to find am
assignment to the variables that maximizes the total weight of satisfied equations. In this
section, we will consider the following two parameterizations of Max-Lin2 :

MaxLin2-AA is the same problem as Max-r-Lin2-AA, but the number of variables in
an equation is not bounded. Thus, MaxLin2-AA is a generalization of Max-r-Lin2-AA.
In Subsection 5.1 we present a scheme of a recent proof by Crowston et al. [11] that
MaxLin2-AA is FPT and has a kernel with polynomial number of variables. This result
finally solved an open question of Mahajan et al. [42]. Still, we do not know whether
MaxLin2-AA has a kernel of polynomial size and we are able to give only partial results
on the topic.
LetW be the total weight of all equations in S. In Subsection 5.2 we consider the following
parameterized version of MaxLin2: decide whether there is an assignment satisfying
equations of total weight at least W − k, where k is a nonnegative parameter.

5.1 MaxLin2-AA
Let S be an irreducible system of Max-Lin2-AA (recall Definition 10). Consider the
following algorithm introduced in [12]. We assume that, in the beginning, no equation or
variable in S is marked.

Algorithm H
While the system S is nonempty do the following:
1. Choose an equation

∏
i∈I xi = b and mark a variable xl such that l ∈ I.

2. Mark this equation and delete it from the system.
3. Replace every equation

∏
i∈I′ xi = b′ in the system containing xl by∏

i∈I∆I′ xi = bb′, where I∆I ′ is the symmetric difference of I and I ′ (the
weight of the equation is unchanged).
4. Apply Reduction Rule 2 to the system.
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The maximum H-excess of S is the maximum possible total weight of equations marked
by H for S taken over all possible choices in Step 1 of H. The following lemma indicates the
potential power of H.

I Lemma 20 ([12]). Let S be an irreducible system. Then the maximum excess of S equals
its maximum H-excess.

This lemma gives no indication on how to choose equations in Step 1 of Algorithm H.
As the problem Max-Lin2-AA is NP-hard, we cannot hope to obtain an polynomial-time
procedure for optimal choice of equations in Step 1 and, thus, have to settle for a good
heuristic. For the heuristic we need the following notion first used in [12]. Let K and M be
sets of vectors in Fn2 such that K ⊆M . We say K is M -sum-free if no sum of two or more
distinct vectors in K is equal to a vector in M . Observe that K is M -sum-free if and only if
K is linearly independent and no sum of vectors in K is equal to a vector in M\K.

The following lemma was proved implicitly in [12]; we provide a short proof of this result.

I Lemma 21. Let S be an irreducible system of Max-Lin2-AA and let A be the matrix
corresponding to S. Let M be the set of rows of A (viewed as vectors in Fn2 ) and let K be an
M -sum-free set of k vectors. Let wmin be the minimum weight of an equation in S. Then, in
time in (nm)O(1), we can find an assignment to the variables of S that achieves excess of at
least wmin · k.

Proof. Let {ej1 , . . . , ejk
} be the set of equations corresponding to the vectors in K. Run

Algorithm H, choosing at Step 1 an equation of S from {ej1 , . . . , ejk
} each time, and let

S′ be the resulting system. Algorithm H will run for k iterations of the while loop as no
equation from {ej1 , . . . , ejk

} will be deleted before it has been marked.
Indeed, suppose that this is not true. Then for some ejl

and some other equation e in S,
after applying Algorithm H for at most l − 1 iterations ejl

and e contain the same variables.
Thus, there are vectors vj ∈ K and v ∈ M and a pair of nonintersecting subsets K ′ and
K ′′ of K \ {v, vj} such that vj +

∑
u∈K′ u = v +

∑
u∈K′′ u. Thus, v = vj +

∑
u∈K′∪K′′ u, a

contradiction to the definition of K. J

The main result of this subsection is the following theorem whose proof is based on
Theorems 23 and 25.

I Theorem 22 ([11]). The problem MaxLin2-AA has a kernel with at most O(k2 log k)
variables.

I Theorem 23 ([12]). Let S be an irreducible system of MaxLin2-AA and let k ≥ 2. If
k ≤ m ≤ 2n/(k−1) − 2, then the maximum excess of S is at least k. Moreover, we can find
an assignment with excess of at least k in time mO(1).

This theorem can easily be proved using Lemma 21 and the following lemma.

I Lemma 24 ([12]). Let M be a set in Fn2 such that M contains a basis of Fn2 , the zero
vector is in M and |M | < 2n. If k is a positive integer and k+ 1 ≤ |M | ≤ 2n/k then, in time
|M |O(1), we can find an M -sum-free subset K of M with at least k + 1 vectors.

I Theorem 25 ([11]). There exists an n2k(nm)O(1)-time algorithm for MaxLin2-AA that
returns an assignment of excess of at least 2k if one exists, and returns No otherwise.

The proof of this theorem in [11] is based on constructing a special depth-bounded search
tree.

Now we will present the proof of Theorem 22 from [11].
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Proof of Theorem 22. Let L be an instance of MaxLin2-AA and let S be the system of L
with m equations and n variables. We may assume that S is irreducible. Let the parameter
k be an arbitrary positive integer.

If m < 2k then n < 2k = O(k2 log k). If 2k ≤ m ≤ 2n/(2k−1) − 2 then, by Theorem 23
and Remark 8, the answer to L is Yes and the corresponding assignment can be found in
polynomial time. If m ≥ n2k − 1 then, by Theorem 25, we can solve L in polynomial time.

Finally we consider the case 2n/(2k−1) − 2 ≤ m ≤ n2k − 2. Hence, n2k ≥ 2n/(2k−1).

Therefore, 4k2 ≥ 2k + n/ logn ≥
√
n and n ≤ (2k)4. Hence, n ≤ 4k2 logn ≤ 4k2 log(16k4) =

O(k2 log k).
Since S is irreducible, m < 2n and thus we have obtained the desired kernel. J

Now let us consider some cases where we can prove that MaxLin2-AA has a polynomial-
size kernel. Consider first the case when each equation in S has odd number of variables. Then
we have the following theorem proved by Gutin et al. [26] using the Strictly Above/Below
Expectation Method (in particular, Lemmas 2 and 7).

I Theorem 26. The following special case of MaxLin2-AA admits a kernel with at most
4k2 variables and equations: there exists a subset U of variables such that each equation in
Ax = b has odd number of variables from U .

Let us turn to results on MaxLin2-AA that do not require any parity conditions. One
such result is Theorem 11. Gutin et al. [26] also proved the following ‘dual’ theorem.

I Theorem 27. Let ρ ≥ 1 be a fixed integer. Then MaxLin2-AA restricted to instances
where no variable appears in more than ρ equations, admits a kernel with O(k2) variables
and equations.

The proof is similar to that of Theorem 11, but Lemma 6 (in fact, its weaker version
obtained in [26]) is used instead of Lemma 5.

5.2 MaxLin2-B
In 2011, Arash Rafiey asked to determine the parameterized complexity of the following
parameterized problem denoted MaxLin2-B. Let W be the total weight of all equations in
S. Let us we consider the following parameterized version of MaxLin2: decide whether there
is an assignment satisfying equations of total weight at least W − k, where k is a nonnegative
parameter.

Crowston, Gutin, Jones and Yeo [14] proved that MaxLin2-B is W[1]-hard. This
hardness result prompts us to investigate the complexity of MaxLin2-B in more detail by
considering special cases of this problem. Let Max-(≤ r,≤ s)-Lin2 (Max-(= r,= s)-Lin2,
respectively) denote the problem MaxLin2 restricted to instances, which have at most
(exactly, respectively) r variables in each equation and at most (exactly) s appearances of any
variable in all equations. In the special case when each equation has weight 1 and there are no
two equations with the same left-hand side, MaxLin2-B will be denoted by MaxLin2-B[m].
Crowston et al. [14] proved that MaxLin2-B remains hard even after significant restrictions
are imposed on it, namely, even Max-(= 3,= 3)-Lin2-B[m] is W[1]-hard.

No further improvement of this result is possible unless FPT=W[1] as Crowston et al. [14]
proved that Max-(≤ 2,*)-Lin2-B is fixed-parameter tractable, where symbol * indicates
that no restriction is imposed on the number of appearances of a variable in the equations.
Moreover, they showed that the nonparameterized problem Max-(*,≤ 2)-Lin2 is polynomial
time solvable, where symbol * indicates that no restriction is imposed on the number of
variables in any equation.
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6 Parameterizations of MaxSat

In the well-known problem MaxSat, we are given a CNF formula F with m clauses and
asked to determine the maximum number of clauses of F that can be satisfied by a truth
assignment. In this section, we overview results on various parameterizations of MaxSat apart
from Max-r-Sat-AA, where r is a constant (see Theorems 16 and 17 for this parameterized
problem).

6.1 MaxSat above m/2
Let us assign True to each variable of F with probability 1/2 and observe that the probability
of a clause to be satisfied is at least 1/2 and thus, by linearity of expectation, the expected
number of satisfied clauses in F is at least m/2. Thus, by the averaging argument, there
exists a truth assignment to the variables of F which satisfies at least m/2 clauses of F .

Let us denote by sat(F ) the maximum number of clauses of F that can be satisfied by
a truth assignment. The lower bound sat(F ) ≥ m/2 is tight as we have sat(H) = m/2 if
H = (x1)∧ (x̄1)∧ · · · ∧ (xm/2)∧ (x̄m/2). Consider the following parameterization of MaxSat
above tight lower bound introduced by Mahajan and Raman [41].

MaxSat-A(m/2)
Instance: A CNF formula F with m clauses (clauses may appear several times in F )
and a nonnegative integer k.
Parameter: k.
Question: sat(F ) ≥ m/2 + k?

Mahajan and Raman [41] proved that MaxSat-A(m/2) admits a kernel with at most 6k+ 3
variables and 10k clauses. Crowston et al. [15] improved this result, by obtaining a kernel
with at most 4k variables and (2

√
5 + 4)k clauses. The improved result is a simple corollary

of a new lower bound on sat(F ) obtained in [15], which is significantly stronger than the
simple bound sat(F ) ≥ m/2. We give the new lower bound below, in Theorem 34.

For a variable x in F , let m(x) denote the number of pairs of unit of clauses (x), (x̄) that
have to be deleted from F such that F has no pair (x), (x̄) any longer. Let var(F ) be the set
of all variables in F and let m̈ =

∑
x∈var(F )m(x). The following is a stronger lower bound

on sat(F ) than m/2.

I Theorem 28. For a CNF formula F , we have sat(F ) ≥ m̈/2 + φ̂(m − m̈), where φ̂ =
(
√

5− 1)/2 ≈ 0.618.

6.2 Max-r(n)-Sat-AA
Max-r(n)-Sat-AA is a generalization of Max-r-Sat-AA, where r(n) is no longer just a
constant, it depends on n. The following results for Max-r(n)-Sat-AA were obtained by
Crowston et al. [13].

I Theorem 29. Max-r(n)-Sat-AA is para-NP-complete for r(n) = dlogne.

Assuming ETH, one can prove the following stronger result.

I Theorem 30. Assuming ETH, Max-r(n)-Sat-AA is not FPT for any r(n) ≥ log logn+
φ(n), where φ(n) is any unbounded strictly increasing function of n.
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The following theorem shows that Theorem 30 provides a bound on r(n) which is not far
from optimal.

I Theorem 31 ([13]). Max-r(n)-Sat-AA is FPT for r(n) ≤ log logn− log log logn− φ(n),
for any unbounded strictly increasing function φ(n).

6.3 Parameterizations for MaxSat with t-Satisfiable CNF Formulas
A CNF formula F is t-satisfiable if for any t clauses in F , there is a truth assignment which
satisfies all of them. It is easy to check that F is 2-satisfiable if and only if m̈ = 0 and clearly
Theorem 28 is equivalent to the assertion that if F is 2-satisfiable then sat(F ) ≥ φ̂m. The
proof of this assertion by Lieberherr and Specker [38] is quite long; Yannakakis [51] gave the
following short probabilistic proof. For x ∈ var(F ), let the probability of x being assigned
True be φ̂ if (x) is in F , 1− φ̂ if (x̄) is in F , and 1/2, otherwise, independently of the other
variables. Let us bound the probability p(C) of a clause C to be satisfied. If C contains
only one literal, then, by the assignment above, p(C) = φ̂. If C contains two literals, then,
without loss of generality, C = (x ∨ y). Observe that the probability of x assigned False is
at most φ̂ (it is φ̂ if (x̄) is in F ). Thus, p(C) ≥ 1− φ̂2. If C containes more than two literals
then it is easy to see that p(C) ≥ 1 − φ̂2. It remains to observe that 1 − φ̂2 = φ̂. Now to
obtain the bound sat(F ) ≥ φ̂m apply linearity of expectation and the averaging argument.

Note that φ̂m is an asymptotically tight lower bound: for each ε > 0 there are 2-satisfiable
CNF formulae F with sat(F ) < m(φ̂+ε) [38]. Thus, the following problem stated by Mahajan
and Raman [41] is natural.

Max-2S-Sat-A(φ̂m)
Instance: A 2-satisfiable CNF formula F with m clauses (clauses may appear several
times in F ) and a nonnegative integer k.
Parameter: k.
Question: sat(F ) ≥ φ̂m+ k?

Mahajan and Raman [41] conjectured that Max-2S-Sat-A(φ̂m) is FPT. Crowston et al. [15]
solved this conjecture in the affirmative; moreover, they obtained a kernel with at most
(7 + 3

√
5)k variables. This result is an easy corollary from a lower bound on sat(F ) given in

Theorem 34, which, for 2-satisfiable CNF formulas, is stronger than the one in Theorem 28.
The main idea of [15] is to obtain a lower bound on sat(F ) that includes the number of
variables as a factor. It is clear that for general CNF formula F such a bound is impossible.
For consider a formula containing a single clause c containing a large number of variables. We
can arbitrarily increase the number of variables in the formula, and the maximum number of
satisfiable clauses will always be 1. We therefore need a reduction rule that cuts out ‘excess’
variables. Our reduction rule is based on the notion of an expanding formula given below.
Lemma 32 and Theorem 33 show the usefulness of this notion.

A CNF formula F is called expanding if for each X ⊆ var(F ), the number of clauses
containing at least one variable from X is at least |X| [20, 50]. The following lemma and
its parts were proved by many authors, see, e.g., Fleischner et al. [20], Lokshtanov [40] and
Szeider [50].

I Lemma 32. Let F be a CNF formula and let V and C be its sets of variables and clauses.
There exists a subset C∗ ⊆ C that can be found in polynomial time, such that the formula
F ′ with clauses C \ C∗ and variables V \ V ∗, where V ∗ = var(C∗), is expanding. Moreover,
sat(F ) = sat(F ′) + |C∗|.
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The following result was shown by Crowston et al. [15]. The proof is nontrivial and
consists of a deterministic algorithm for finding the corresponding truth assignment and a
detailed combinatorial analysis of the algorithm.

I Theorem 33. Let F be an expending 2-satisfiable CNF formula with n variables and m
clauses. Then sat(F ) ≥ φ̂m+ n(2− 3φ̂)/2.

Lemma 32 and Theorem 33 imply the following:

I Theorem 34. Let F be a 2-satisfiable CNF formula and let V and C be its sets of variables
and clauses. There exists a subset C∗ ⊆ C that can be found in polynomial time, such that
the formula F ′ with clauses C \ C∗ and variables V \ V ∗, where V ∗ = var(C∗), is expanding.
Moreover, we have

sat(F ) ≥ φ̂m+ (1− φ̂)m∗ + (n− n∗)(2− 3φ̂)/2,

where m = |C|, m∗ = |C∗|, n = |V | and n∗ = |V ∗|.

Let us turn now to 3-satisfiable CNF formulas. If F is 3-satisfiable then it is not hard
to check that the forbidden sets of clauses are pairs of the form {x}, {x̄} and triplets of the
form {x}, {y}, {x̄, ȳ} or {x}, {x̄, y}, {x̄, ȳ}, as well as any triplets that can be derived from
these by switching positive literals with negative literals.

Lieberherr and Specker [39] and, later, Yannakakis [51] proved the following: if F is 3-
satisfiable then sat(F ) ≥ 2

3w(C(F )). This bound is also asymptotically tight. Yannakakis [51]
gave a probabilistic proof which is similar to his proof for 2-satisfiable formulas, but requires
consideration of several cases and, thus, not as short as for 2-satisfiable formulas. For details
of his proof, see, e.g., Gutin, Jones and Yeo [24] and Jukna [33] (Theorem 20.6). Yannakakis’s
approach was extended by Gutin, Jones and Yeo [24] to prove the following theorem using a
quite complicated probabilistic distribution for a random truth assignment.

I Theorem 35. Let F be an expanding 3-satisfiable CNF formula with n variables and m
clauses. Then sat(F ) ≥ 2

3m+ ρn, where ρ(> 0.0019) is a constant.

This theorem and Lemma 32 imply the following:

I Theorem 36. Let F be a 3-satisfiable CNF formula and let V and C be its sets of variables
and clauses. There exists a subset C∗ ⊆ C that can be found in polynomial time, such that
the formula F ′ with clauses C \ C∗ and variables V \ V ∗, where V ∗ = var(C∗), is expanding.
Moreover, we have

sat(F ) ≥ 2
3m+ 1

3m
∗ + ρ(n− n∗),

where ρ(> 0.0019) is a constant, m = |C|, m∗ = |C∗|, n = |V | and n∗ = |V ∗|.

Using this theorem it is easy to obtain a linear-in-number-of-variables kernel for the
following natural analog of Max-2S-Sat-A(φ̂m), see [24] for details.

Max-3S-Sat-A( 2
3m)

Instance: A 3-satisfiable CNF formula F with m clauses and a nonnegative integer k.
Parameter: k.
Question: sat(F ) ≥ 2

3m+ k?

Now let us consider the following important parameterization of r-Sat below the tight upper
bound m:
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r-Sat-B(m)
Instance: An r-CNF formula F with m clauses (every clause has at most r literals)
and a nonnegative integer k.
Parameter: k. Question: sat(F ) ≥ m− k?

Since Max-r-Sat is NP-hard for each fixed r ≥ 3, r-Sat-B(m) is not FPT unless P=NP.
However, the situation changes for r = 2: Razgon and O’Sullivan [48] proved that 2-Sat-
B(m) is FPT. The algorithm in [48] is of complexity O(15kkm3) and, thus, Max-2-Sat-B(m)
admits a kernel with at most 15kk clauses. Raman et al. [47] and Cygan et al. [17] designed
algorithms for 2-Sat-B(m) of runtime 9k(km)O(1) and 4k(km)O(1), respectively. Kratsch
and Wahlström [37] proved that 2-Sat-B(m) admits a randomized kernel with a polynomial
number of variables. The existence of a deterministic polynomial kernel 2-Sat-B(m) is an
open problem.

7 Ordering CSPs

In this section we will discuss recent results in the area of Ordering Constraint Satisfaction
Problems (Ordering CSPs) parameterized above average. Ordering CSPs include several well-
known problems such as Betweenness, Circular Ordering and Acyclic Subdigraph
(which is equivalent to 2-Linear Ordering). These three problems have applications in
circuit design and computational biology [10, 46], in qualitative spatial reasoning [32], and
in economics [49], respectively. Our main interest are Ordering CSPs parameterized above
average, Ordering CSPs-AA.

2-Linear Ordering-AA was already considered in Subsection 3. In the next subsection,
we give some basic definitions and results on Ordering CSPs. In Subsection 7.2, we give a
proof scheme that Betweenness-AA is fixed-parameter tractable. The proof uses SABEM
supplemented by additional approaches. In Subsection 7.3, we discuss how to combine
fixed-parameter tractability of 2-Linear Ordering-AA and Betweenness-AA to show
that 3-Linear Ordering-AA is fixed-parameter tractable. Finally, in Subsection 7.4, we
briefly discuss the recent paper of Makarychev, Makarychev and Zhou [43], where it was
proved that any Ordering CSP-AA is fixed-parameter tractable. Moreover, the authors of
[43] extended their result to a linear programming generalization of Ordering CSPs-AA.

7.1 Basic Definitions and Results
Let us define Ordering CSPs of arity 3. The reader can easily generalize it to any arity r ≥ 2
and we will do it below for Linear Ordering of arity r. Let V be a set of n variables and
let

Π ⊆ S3 = {(123), (132), (213), (231), (312), (321)}

be arbitrary. A constraint set over V is a multiset C of constraints, which are permutations
of three distinct elements of V . A bijection α : V → [n] is called an ordering of V. For an
ordering α : V → [n], a constraint (v1, v2, v3) ∈ C is Π-satisfied by α if there is a permutation
π ∈ Π such that α(vπ(1)) < α(vπ(2)) < α(vπ(3)). Thus, given Π the problem Π-CSP, is the
problem of deciding if there exists an ordering of V that Π-satisfies all the constraints. Every
such problem is called an Ordering CSP of arity 3. We will consider the maximization version
of these problems, denoted by Max-Π-CSP, parameterized above the average number of
constraints satisfied by a random ordering of V (which can be shown to be a tight bound).
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Table 1 Ordering CSPs of arity 3 (after symmetry considerations).

Π ⊆ S3 Name Complexity

Π0 = {(123)} Linear Ordering-3 polynomial

Π1 = {(123), (132)} polynomial

Π2 = {(123), (213), (231)} polynomial

Π3 = {(132), (231), (312), (321)} polynomial

Π4 = {(123), (231)} NP-comp.

Π5 = {(123), (321)} Betweenness NP-comp.

Π6 = {(123), (132), (231)} NP-comp.

Π7 = {(123), (231), (312)} Circular Ordering NP-comp.

Π8 = S3 \ {(123), (231)} NP-comp.

Π9 = S3 \ {(123), (321)} Non-Betweenness NP-comp.

Π10 = S3 \ {(123)} NP-comp.

Guttmann and Maucher [30] showed that there are in fact only 13 distinct Π-CSP’s of
arity 3 up to symmetry, of which 11 are nontrivial. They are listed in Table 1 together with
their complexity. Note that if Π = {(123), (321)} then we obtain the Betweenness problem
and if Π = {(123)} then we obtain 3-Linear Ordering.

Gutin et al. [23] proved that all 11 nontrivial Max-Π-CSP problems are NP-hard (even
though four of the Π-CSP are polynomial).

Now observe that given a variable set V and a constraint multiset C over V , for a random
ordering α of V , the probability of a constraint in C being Π-satisfied by α equals |Π|6 . Hence,
the expected number of satisfied constraints from C is |Π|6 |C|, and thus there is an ordering
α of V satisfying at least |Π|6 |C| constraints (and this bound is tight). A derandomization
argument leads to |Πi|

6 -approximation algorithms for the problems Max-Πi-CSP [8]. No
better constant factor approximation is possible assuming the Unique Games Conjecture [8].

We will study the parameterization of Max-Πi-CSP above tight lower bound:

Π-Above Average (Π-AA)
Input: A finite set V of variables, a multiset C of ordered triples of distinct variables

from V and an integer κ ≥ 0.
Parameter: κ.
Question: Is there an ordering α of V such that at least |Π|

6 |C|+ κ constraints of C
are Π-satisfied by α?

In [23] it is shown that all 11 nontrivial Π-CSP-AA problems admit kernels with O(κ2)
variables. This is shown by first reducing them to 3-Linear Ordering-AA (or 2-Linear
Ordering-AA), and then finding a kernel for this problem, which is transformed back to
the original problem. The first transformation is easy due to the following:

I Proposition 37 ([23]). Let Π be a subset of S3 such that Π /∈ {∅,S3}. There is a
polynomial time transformation f from Π-AA to 3-Linear Ordering-AA such that an
instance (V, C, k) of Π-AA is a Yes-instance if and only if (V, C0, k) = f(V, C, k) is a
Yes-instance of 3-Linear Ordering-AA.

Proof. From an instance (V, C, k) of Π-AA, construct an instance (V, C0, k) of 3-Linear

Chapte r 07



198 Parameterized Constraint Satisfaction Problems: a Survey

Ordering-AA as follows. For each triple (v1, v2, v3) ∈ C, add |Π| triples (vπ(1), vπ(2), vπ(3)),
π ∈ Π, to C0.

Observe that a triple (v1, v2, v3) ∈ C is Π-satisfied if and only if exactly one of the triples
(vπ(1), vπ(2), vπ(3)), π ∈ Π, is satisfied by 3-Linear Ordering. Thus, |Π|6 |C|+ k constraints
from C are Π-satisfied if and only if the same number of constraints from C0 are satisfied by
3-Linear Ordering. It remains to observe that |Π|6 |C|+k = 1

6 |C0|+k as |C0| = |Π| · |C|. J

r-Linear Ordering (r ≥ 2) can be defined as follows. An instance of such a problem
consists of a set of variables V and a multiset of constraints, which are ordered r-tuples of
distinct variables of V (note that the same set of r variables may appear in several different
constraints). The objective is to find an ordering α of V that maximizes the number of
constraints whose order in α follows that of the constraint (we say that these constraints are
satisfied). It is well-known that 2-Linear Ordering is NP-hard (it follows immediately
from the fact proved by Karp [34] that the feedback arc set problem is NP-hard). It is easy
to extend this hardness result to all r-Linear Ordering problems (for each fixed r ≥ 2).
Note that in r-Linear Ordering Above Average (r-Linear Ordering-AA), given a
multiset C of constraints over V we are to decide whether there is an ordering of V that
satisfies at least |C|/r! + κ constraints.

7.2 Betweenness-AA
Let V = {v1, . . . , vn} be a set of variables and let C be a multiset of m betweenness
constraints of the form (vi, {vj , vk}). For an ordering α : V → [n], a constraint (vi, {vj , vk})
is satisfied if either α(vj) < α(vi) < α(vk) or α(vk) < α(vi) < α(vj). In the Betweenness
problem, we are asked to find an ordering α satisfying the maximum number of constraints
in C. Betweenness is NP-hard as even the problem of deciding whether all betweenness
constraints in C can be satisfied by an ordering α is NP-complete [46].

Let α : V → [n] be a random ordering and observe that the probability of a constraint in
C to be satisfied is 1/3. Thus, the expected number of satisfied constraints is m/3. A triple
of betweenness constraints of the form (v, {u,w}), (u, {v, w}), (w, {v, u}) is called a complete
triple. Instances of Betweenness consisting of complete triples demonstrate that m/3 is a
tight lower bound on the maximum number of constraints satisfied by an ordering α. Thus,
the following parameterization is of interest:

Betweenness Above Average (Betweenness-AA)
Instance: A multiset C of m betweenness constraints over variables V and an integer
κ ≥ 0.
Parameter: The integer κ.
Question: Is there an ordering α : V → [n] that satisfies at least m/3 + κ constraints
from C?

In order to simplify instances of Betweenness-AA we introduce the following reduction
rule.

I Reduction Rule 4. If C has a complete triple, delete it from C. Delete from V all variables
that appear only in the deleted triple.

Benny Chor’s question (see [44, p. 43]) to determine the parameterized complexity
of Betweenness-AA was solved by Gutin, Kim, Mnich and Yeo [25] who proved that
Betweenness-AA admits a kernel with O(κ2) variables and constraints (in fact, [25]



G. Gutin and A. Yeo 199

considers only the case when C is a set, not a multiset, but the proof for the general case is
the same [23]). Below we briefly describe the proof in [25].

Suppose we define a random variable X(α) just as we did for 2-Linear Ordering.
However such a variable is not symmetric and therefore we would need to use Lemma 7 on
X(α). The problem is that α is a permutation and in Lemma 7 we are looking at polynomials,
f = f(x1, x2 . . . , xn), over variables x1, . . . , xn each with domain {−1, 1}. In order to get
around this problem the authors of [25] considered a different random variable g(Z), which
they defined as follows.

Let Z = (z1, z2, . . . , z2n) be a set of 2n variables with domain {−1, 1}. These 2n
variables correspond to n variables z∗1 , z∗2 , . . . , z∗n such that z2i−1 and z2i form the binary
representation of z∗i . That is, z∗i is 0, 1, 2 or 3 depending on the value of (z2i−1, z2i) ∈
{(−1,−1), (−1, 1), (1,−1), (1, 1)}. An ordering: α : V → [n] complies with Z if for every
α(i) < α(j) we have z∗i ≤ z∗j . We now define the value of g(Z) as the average number of
constraints satisfied over all orderings which comply with Z. Let f(Z) = g(Z)−m/3, and
by Lemma 38 we can now use Lemma 7 on f(Z) as it is a polynomial over variables whose
domain is {−1, 1}. We consider variables zi as independent uniformly distributed random
variables and then f(Z) is also a random variable. In [25] it is shown that the following
holds if Reduction Rule 4 has been exhaustively applied.

I Lemma 38. The random variable f(Z) can be expressed as a polynomial of degree 6. We
have E[f(Z)] = 0. Finally, if f(Z) ≥ κ for some Z ∈ {−1, 1}2n then the corresponding
instance of Betweenness-AA is a Yes-instance.

I Lemma 39 ([23]). For an irreducible (by Reduction Rule 4) instance we have E[f(Z)2] ≥
11
768m.

I Theorem 40 ([23]). Betweenness-AA has a kernel of size O(κ2).

Proof. Let (V, C) be an instance of Betweenness-AA. We can obtain an irreducible
instance (V ′, C′) such that (V, C) is a Yes-instance if and only if (V ′, C′) is a Yes-instance
in polynomial time. Let m′ = |C′| and let f(Z) be the random variable defined above. Then
f(Z) is expressible as a polynomial of degree 6 by Lemma 38; hence it follows from Lemma 5
that E[f(Z)4] ≤ 236E[f(Z)2]2. Consequently, f(Z) satisfies the conditions of Lemma 4,
from which we conclude that P

(
f(Z) > 1

4·218

√
11
768m

′
)
> 0, by Lemma 39. Therefore, by

Lemma 38, if 1
4·218

√
11
768m

′ ≥ κ then (V ′, C′) is a Yes-instance for Betweenness-AA.
Otherwise, we have m′ = O(κ2). This concludes the proof of the theorem. J

By deleting variables not appearing in any constraint, we obtain a kernel with O(κ2)
constraints and variables.

7.3 3-Linear Ordering-AA
In this subsection, we will give a short overview of the proof in [23] that 3-Linear Ordering
has a kernel with at most O(κ2) variables and constraints.

Unfortunately, approaches which we used for the 2-Linear Ordering-AA problem and
the Betweenness-AA problem do not work for this problem. In fact, if we wanted to
remove subsets of constraints where only the average number of constraints can be satisfied
such that after these removals we are guaranteed to have more than the average number of
constraints satisfied, then, in general case, an infinite number of reduction rules would be
needed [23].
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However, we can reduce an instance of 3-Linear Ordering-AA to instances of
Betweenness-AA and 2-Linear Ordering-AA as follows. With an instance (V, C)
of 3-Linear Ordering-AA, we associate an instance (V,B) of Betweenness-AA and two
instances (V,A′) and (V,A′′) of 2-Linear Ordering-AA such that if Cp = (u, v, w) ∈ C,
then add Bp = (v, {u,w}) to B, a′p = (u, v) to A′, and a′′p = (v, w) to A′′.

Let α be an ordering of V and let dev(V, C, α) denote the number of constraints satisfied
by α minus the average number of satisfied constraints in (V, C), where (V, C) is an instance
of 3-Linear Ordering-AA, Betweenness-AA or 2-Linear Ordering-AA.

I Lemma 41 ([23]). Let (V,C, κ) be an instance of 3-Linear Ordering-AA and let α be
an ordering of V . Then

dev(V, C, α) = 1
2 [dev(V,A′, α) + dev(V,A′′, α) + dev(V,B, α)] .

Therefore, we want to find an ordering satisfying as many constraints as possible from both of
our new type of instances (note that we need to use the same ordering for all the problems).

Suppose we have a No-instance of 3-Linear Ordering-AA. As above, we replace it by
three instances of Betweenness-AA and 2-Linear Ordering-AA. Now we apply the
reduction rules for Betweenness-AA and 2-Linear Ordering-AA introduced above as
well as the proof techniques described in the previous sections in order to show that the total
number of variables and constraints left in any of our instances is bounded by O(κ2). We then
transform these reduced instances back into an instance of 3-Linear Ordering-AA as
follows. If {v, {u,w}} is a Betweenness constraint then we add the 3-Linear Ordering-
AA constraints (u, v, w) and (w, v, u) and if (u, v) is an 2-Linear Ordering-AA constraint
then we add the 3-Linear Ordering-AA constraints (u, v, w), (u,w, v) and (w, u, v) (for
any w ∈ V ). As a result, we obtain a kernel of 3-Linear Ordering-AA with at most O(κ2)
variables and constraints.

This result has been partially improved by Kim and Williams [36] who showed that
3-Linear Ordering-AA has a kernel with at most O(κ) variables.

7.4 Ordering CSPs AA
Recall that an Ordering CSP of arity r is defined by a set V = {x1, . . . , xn} of variables and
set of constraints. Each constraint is a disjunction of clauses of the form xi1 < xi2 < · · · < xir .
A linear ordering α of V satisfies such a constraint if one of the clauses in the disjunction
agrees with α.

Gutin, Iersel, Mnich and Yeo [23] conjectured that all Ordering CSPs parameterized
above average are fixed-parameter tractable. One of the difficulties in proving this conjecture
is that, as we mentioned in the previous subsection, we may need an infinite number of
reduction rules. The approach of the previous section will not work as it is designed for the
case when some Ordering CSPs of the same arity have already proved to be fixed-parameter
tractable. Recently, Makarychev, Makarychev and Zhou [43] proved the conjecture. Their
proof uses SABEM together the idea to define variables xi not on a discrete domain, but
on the continuous interval [−1, 1]. Such a domain allows to order all the variables with ties
being almost impossible.

Makarychev, Makarychev and Zhou [43] also use the Efron-Stein decomposition instead
of the (standard) Fourier Analysis on [−1,+1]n since “we have no control over the Fourier
coefficients of the functions we need to analyze.” For terminology and results on the Efron-
Stein decomposition, see [43] and for a more detailed account [45]. Here we will only give
some very basic definitions. Let (Ω, µ) be a probability space and consider the product
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probability space (Ωn, µn). Let f : Ωn → R be a function (random variable). Informally, the
Efron-Stein decomposition of f is f =

∑
S⊆[n] fS , where fS depends only on variables xi,

i ∈ S. The functions fS have some very useful properties such as E[fSfT ] = 0 if S 6= T (this
implies that the variance of f equals the sum of the variances of fS in the decomposition).
To use the Efron-Stein decomposition for SABEM, Makarychev, Makarychev and Zhou [43]
obtained the following Hypercontractive Inequality for functions defined on arbitrary product
probability spaces:

I Theorem 42. Consider f ∈ L2(Ωn, µn). Let f =
∑
S⊆[n] fS be the Efron-Stein decomposi-

tion of f and let d = max{t : fS 6= 0 and |S| = d}. Assume that for every S1, S2, S3, S4,

E[fS1fS2fS3fS4 ] ≤ C(E[f2
S1

]E[f2
S1

]E[f2
S1

]E[f2
S1

])1/2 . (3)

Then

E[f(X1, . . . , Xn)4] ≤ 81dCE[f(X1, . . . , Xn)2]2 . (4)

Note that Condition (3) is usually much easier to verify than Inequality (4 [43].
The idea to use a continuous domain allows one to define various systems of linear

inequalities rather than just those of the form xi1 < xi2 < · · · < xir . For example, we
can require that x4 is to the left of the average of x1, x2 and x3, which corresponds to the
system 3x4 − x1 − x2 − x3 < 0. Makarychev, Makarychev and Zhou [43] define the following
generalization of Ordering CSPs. An (r, b)-LP CSP is defined by a set V = {x1, . . . , xn} of
variables taking values in [−1, 1] and set of constraints. Each constraint is a disjunction of
clauses of the form Ax < c, where A is a matrix with integral entries in the range [−b, b]
and there are at most r non-zero columns in A, and c is a vector with integral entries in the
range [−b, b]. The aim is to assign distinct real values to variables xi so as to maximize the
number of satisfied constraints. Makarychev, Makarychev and Zhou [43] proved that every
(r, b)-LP CSP above average is also fixed-parameter tractable.

8 Two Open Problems

Many results described in the previous sections were obtained in order to solve open problems.
Two problems stated a while ago remain unsolved. The first is whether r-Sat-B(m), usually
called Almost 2-Sat, admits a (deterministic) polynomial kernel. It seems it widely believed
to be the case, but no proof is obtained. The second is whether Max-2-Lin-AA admits
a polynomial kernel (in the number of constraints). For the second problem, the possible
answer is unclear.
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