1,619 research outputs found

    Axiomatization of betweenness in order-theoretic trees

    Get PDF
    The ternary betweenness relation of a tree, B(x,y,z) expresses that y is on the unique path between x and z. This notion can be extended to order-theoretic trees defined as partial orders such that the set of nodes larger than any node is linearly ordered. In such generalized trees, the unique "path" between two nodes can have infinitely many nodes. We generalize some results obtained in a previous article for the betweenness of join-trees. Join-trees are order-theoretic trees such that any two nodes have a least upper-bound. The motivation was to define conveniently the rank-width of a countable graph. We called quasi-tree the structure based on the betweenness relation of a join-tree. We proved that quasi-trees are axiomatized by a first-order sentence. Here, we obtain a monadic second-order axiomatization of betweenness in order-theoretic trees. We also define and compare several induced betweenness relations, i.e., restrictions to sets of nodes of the betweenness relations in generalized trees of different kinds. We prove that induced betweenness in quasi-trees is characterized by a first-order sentence. The proof uses order-theoretic trees

    Axiomatization of betweenness in order-theoretic trees

    Get PDF
    The ternary betweenness relation of a tree, B(x,y,z) expresses that y is on the unique path between x and z. This notion can be extended to order-theoretic trees defined as partial orders such that the set of nodes larger than any node is linearly ordered. In such generalized trees, the unique "path" between two nodes can have infinitely many nodes. We generalize some results obtained in a previous article for the betweenness of join-trees. Join-trees are order-theoretic trees such that any two nodes have a least upper-bound. The motivation was to define conveniently the rank-width of a countable graph. We called quasi-tree the structure based on the betweenness relation of a join-tree. We proved that quasi-trees are axiomatized by a first-order sentence. Here, we obtain a monadic second-order axiomatization of betweenness in order-theoretic trees. We also define and compare several induced betweenness relations, i.e., restrictions to sets of nodes of the betweenness relations in generalized trees of different kinds. We prove that induced betweenness in quasi-trees is characterized by a first-order sentence. The proof uses order-theoretic trees

    Road Systems and Betweenness

    Get PDF
    A road system is a collection of subsets of a set—the roads—such that every singleton subset is a road in the system and every doubleton subset is contained in a road. The induced ternary (betweenness) relation is defined by saying that a point c lies between points a and b if c is an element of every road that contains both a and b . Traditionally, betweenness relations have arisen from a plethora of other structures on a given set, reflecting intuitions that range from the order-theoretic to the geometric and topological. In this paper we initiate a study of road systems as a simple mechanism by means of which a large majority of the classical interpretations of betweenness are induced in a uniform way

    Embedding Graphs under Centrality Constraints for Network Visualization

    Full text link
    Visual rendering of graphs is a key task in the mapping of complex network data. Although most graph drawing algorithms emphasize aesthetic appeal, certain applications such as travel-time maps place more importance on visualization of structural network properties. The present paper advocates two graph embedding approaches with centrality considerations to comply with node hierarchy. The problem is formulated first as one of constrained multi-dimensional scaling (MDS), and it is solved via block coordinate descent iterations with successive approximations and guaranteed convergence to a KKT point. In addition, a regularization term enforcing graph smoothness is incorporated with the goal of reducing edge crossings. A second approach leverages the locally-linear embedding (LLE) algorithm which assumes that the graph encodes data sampled from a low-dimensional manifold. Closed-form solutions to the resulting centrality-constrained optimization problems are determined yielding meaningful embeddings. Experimental results demonstrate the efficacy of both approaches, especially for visualizing large networks on the order of thousands of nodes.Comment: Submitted to IEEE Transactions on Visualization and Computer Graphic

    A Characterization of Uniquely Representable Graphs

    Get PDF
    The betweenness structure of a finite metric space M=(X,d)M = (X, d) is a pair B(M)=(X,βM)\mathcal{B}(M) = (X,\beta_M) where βM\beta_M is the so-called betweenness relation of MM that consists of point triplets (x,y,z)(x, y, z) such that d(x,z)=d(x,y)+d(y,z)d(x, z) = d(x, y) + d(y, z). The underlying graph of a betweenness structure B=(X,β)\mathcal{B} = (X,\beta) is the simple graph G(B)=(X,E)G(\mathcal{B}) = (X, E) where the edges are pairs of distinct points with no third point between them. A connected graph GG is uniquely representable if there exists a unique metric betweenness structure with underlying graph GG. It was implied by previous works that trees are uniquely representable. In this paper, we give a characterization of uniquely representable graphs by showing that they are exactly the block graphs. Further, we prove that two related classes of graphs coincide with the class of block graphs and the class of distance-hereditary graphs, respectively. We show that our results hold not only for metric but also for almost-metric betweenness structures.Comment: 16 pages (without references); 3 figures; major changes: simplified proofs, improved notations and namings, short overview of metric graph theor

    The Antisymmetry Betweenness Axiom and Hausdorff Continua

    Get PDF
    An interpretation of betweenness on a set satisfies the antisymmetry axiom at a point a if it is impossible for each of two distinct points to lie between the other and a. In this paper we study the role of antisymmetry as it applies to the K-interpretation of betweenness in a Hausdorff continuum X, where a point c lies between points a and b exactly when every subcontinuum of X containing both a and b contains c as well
    • …
    corecore