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To appear inTopology Proeedings
THE ANTISYMMETRY BETWEENNESS AXIOM ANDHAUSDORFF CONTINUAPAUL BANKSTONAbstrat. An interpretation of betweenness on a set satis�es theantisymmetry axiom at a point a if it is impossible for eah oftwo distint points to lie between the other and a. In this paper westudy the role of antisymmetry as it applies to the K-interpretationof betweenness in a Hausdor� ontinuum X, where a point c liesbetween points a and b exatly when every subontinuum of Xontaining both a and b ontains c as well.1. IntrodutionAn interpretation of betweenness on a set satis�es the antisymmetryaxiom at a point a, or is antisymmetri at a, if it is impossible for eah oftwo distint points to lie between the other and a. Expressed as a �rst-order formula (see, e.g., [8℄) involving just one ternary relation symboland equality, this axiom isAntisymmetry at a: ∀xy (([a, y, x] ∧ [a, x, y]) → x = y).And from this it is lear that �antisymmetry at a� is the usual order-theoreti notion of antisymmetry for the (generally re�exive and transi-tive) binary relation ≤a, de�ned by saying x ≤a y exatly when x liesbetween a and y. Binary antisymmetry is the very ondition that turns a2010 Mathematis Subjet Classi�ation. Primary 54F15; Seondary 03C05,06A05, 06A06, 08A02, 08A40, 54F05, 54F20, 54F50, 54F55.Key words and phrases. betweenness, interval, R-relation, road system, antisym-metry, gap freeness, entroid, median algebra, tree ordering, Hausdor� ontinuum,omposant, hereditary unioherene, deomposability, aposyndesis, ar, arboroid, den-dron, distal ontinuum. 1



2 PAUL BANKSTONpre-order into a partial order; we say that an interpretetion of betweennessis antisymmetri if it is antisymmetri at eah of its points. This notionhas been around a long time in studies of betweenness (alled �PostulateC� in [9℄, �losure� in [18℄), and is traditionally taken to be as fundamentalan assumption about betweenness relations as is symmetry, the onditionthat lying between a and b is the same as lying between b and a.Here we take a di�erent view of antisymmetry, and treat it as a featureof betweenness that is as �honoured in the breah as in the observane.�Indeed, we onsider interpretations of betweenness for whih this featurefails quite dramatially.In [2, 3℄ (and further in [4℄), we disuss three topologial interpretationsof betweenness, eah re�eting an aspet of onnetedness. The mostrestritive of these was introdued by L. E. Ward [22℄ to study ut pointsin an abstrat setting, and is what we all the Q-interpretation: in atopologial spae X, [a, c, b]Q holds just in ase either c ∈ {a, b} or a and
b lie in di�erent quasiomponents of X \ {c}. That is, there are disjointsets A and B, eah lopen in X \ {c}, suh that a ∈ A and b ∈ B.When we replae �quasiomponent� in the de�nition above with �om-ponent,� we obtain the C-interpretation [·, ·, ·]C of betweenness. The C-interpretation is generally weaker than the Q-interpretation, as quasiom-ponents are unions of omponents; a spae is alled QC-omplete if thetwo interpretations agree. It is easy to show that a onneted T1 spae is
QC-omplete if it is loally onneted, i.e., in possession of an open baseonsisting of onneted sets, but loal onnetedness is not neessary for
QC-ompleteness to our (see Example 3.4 (ii) below). A ut point of aonneted spae is preisely one that lies between two points other thanitself, in either the Q- or the C-interpretation.Example 1.1. In the eulidean plane, we set X = {a, b} ∪

⋃∞

n=1
An,where a = 〈 1

2
, 0〉, b = 〈1, 0〉, and An = {〈x, x

n
〉 : 0 ≤ x ≤ 1}, n = 1, 2, . . .Then X is a onneted metrizable spae. If c = 〈0, 0〉, then [a, c, b]C holdsbeause the omponents of X \{c} onsist of {a}, {b}, and the half-losedsegments An \{c}, n = 1, 2, . . . However, if U is a lopen neighborhood of

a in X \{c}, then An \{c} ⊆ U for all but �nitely many n. Hene we have
b ∈ U , and infer that [a, c, b]Q does not hold. Thus X is not QC-omplete.The following is a diret onsequene of [2, Theorem 6.1.2℄; we inludea simple proof in order to highlight a lassi result from the elementarytheory of onneted spaes.Proposition 1.2. The Q- and C-interpretations of betweenness in a on-neted spae are antisymmetri.Proof. Suppose we have X a onneted topologial spae, with [a, c, b]Cholding for some a, b, c ∈ X, b 6= c. It su�es to �nd a onneted subset



ANTISYMMETRY 3of X that ontains a and c, but not b. Clearly we are done if c = a; sothe alternative is that the three points are distint, and there must bedistint omponents A and B of X \{c} suh that a ∈ A and b ∈ B. Thistells us that X \B is a onneted subset of X \{b} ontaining both a and
c (see [17, Theorem IV.3.3℄, due to K. Kuratowski and B. Knaster), andhene that [a, b, c]C annot hold.Beause the Q-interpretation is more restritive than the C-interpretation,it too must be antisymmetri. �In this paper, a ontinuum is a onneted ompat Hausdor� spae.Thus the terms �ontinuum� and �Hausdor� ontinuum� are synonymous;i.e., we do not assume our ontinua to be metrizable. A ontinuum (orany set) is nondegenerate if it ontains at least two points; a subset of atopologial spae is a subontinuum if it is a ontinuum in its subspaetopology.Note that if c 6∈ {a, b}, then [a, c, b]C holds just in ase no onnetedsubset of X \ {c} ontains both a and b. If we replae �onneted subset�in this ondition with �subontinuum,� we obtain the K-interpretation ofbetweenness: for c 6∈ {a, b}, [a, c, b]K holds just in ase a and b lie inseparate ontinuum omponents of X \ {c}. A point c ∈ X lies betweentwo points other than itself in the K-interpretation preisely when c is aweak ut point of X. (Aspets of the relations ≤a assoiated with the
K-interpretation are also studied in [12℄. There the pre-order≤a is termedthe �weak ut point order� based at a.)The Q- and the C-interpretations of betweenness are antisymmetri;not so the K-interpretation. For if X is the sin( 1

x
)-ontinuum in theeulidean plane (see, e.g., [16℄ and Example 2.3 below), a is a point onthe graph of y = sin( 1

x
), 0 < x ≤ 1, and b and c are any two pointson the vertial segment {0} × [−1, 1], then we have both [a, b, c]K and

[a, c, b]K holding. Generally, it is easy to �nd ontinua that are not K-antisymmetri, and hene not CK-omplete.As an obvious shorthand, when we say that a ontinuum is antisym-metri (at a point), we have the K-interpretation of betweenness �rmly inmind. Thus the sin( 1

x
)-ontinuum is not antisymmetri, but it does havepoints of antisymmetry (see Example 2.3).Remark 1.3. Antisymmetry in metrizable ontinua has also been stud-ied, under the label �Property C,� by B. E. Wilder [24℄.2. Antisymmetri Road SystemsIn [2, 3℄ we view betweenness as arising from the primitive struturegiven by a road system. This is a family R of nonempty subsets of a set

X�the roads of the system�suh that: (1) every singleton subset of X



4 PAUL BANKSTONis a road; and (2) every doubleton subset of X is ontained in a road.Roads �onnet� one point to another in a very minimal sense; the set ofroads onneting a, b ∈ X is denoted R(a, b) := {R ∈ R : a, b ∈ R}. Theternary relation [·, ·, ·]R indued by R is de�ned by saying that [a, c, b]Rholds just in ase c ∈ R for every R ∈ R(a, b). A ternary relation [·, ·, ·]on a set X is an R-relation if it equals [·, ·, ·]R for some road system Ron X.Remark 2.1. If A is any olletion of nonempty subsets of X, we mayde�ne [·, ·, ·]A as above. If A also satis�es the ondition that for eahtwo points a, b ∈ X, there are sets A,B ∈ A with a ∈ A ⊆ X \ {b} and
b ∈ B ⊆ X \ {a}, then R = A ∪ {X} ∪ {{a} : a ∈ X} is a road systemwith [·, ·, ·]R = [·, ·, ·]A.When a and b are points of a road system 〈X,R〉, the R-interval [a, b]Ris de�ned to be the 1-slie [a, ·, b]R (i.e., the intersetion ⋂

R(a, b)). Theroad system is antisymmetri (at a point) if the same an be said for itsindued R-relation. Phrased in interval terms, antisymmetry at a saysthat [a, b]R 6= [a, c]R whenever b 6= c.If X is a onneted topologial spae, it is easy to see that [·, ·, ·]C =
[·, ·, ·]C , where C is the antisymmetri road system omprising the on-neted subsets of X. (In light of Remark 2.1, it is not really neessaryto assume X is onneted: we ould otherwise turn C into a road sys-tem simply by delaring X to be a road.) It is equally easy to see that
[·, ·, ·]K = [·, ·, ·]K, where K is the (not neessarily antisymmetri) roadsystem omprising the subontinua of X (again, with the possibility of
X being thrown in). Both of these road systems satisfy the importantproperty of additivity, whih says that the union of two overlapping roadsis a road.An obvious question at this point is whether there is an additive an-tisymmetri road system Q induing the Q-interpretation of betweennesson a onneted spae. While there is an a�rmative answer to this, noinduing road system so far obtained seems to arise �naturally.�Theorem 2.2. [2, Corollary 6.2.2℄ If X is a onneted topologial spae,then the Q-interpretation of betweenness is indued by an additive anti-symmetri road system Q, whih may be taken to ontain C.As mentioned above, antisymmetry in the betweenness ontext is loselyrelated to the binary notion of antisymmetry that turns pre-orderings intopartial orderings. That is, if 〈X,R〉 is a road system whih is antisym-metri at a ∈ X, and we de�ne the binary relation ≤a to be the 2-slie
[a, ·, ·]R (i.e., c ≤a b just in ase [a, c, b]R holds), then ≤a is a partialordering with bottom element a.



ANTISYMMETRY 5Example 2.3. Let X be the sin( 1

x
)-ontinuum in the eulidean plane;i.e., X = A∪S, where A = {0}×[−1, 1] and S = {〈x, sin( 1

x
)〉 : 0 < x ≤ 1}.Then a ∈ X is a point of antisymmetry for X if and only if a ∈ A. If ais one of the non-ut points of the line segment A, say a = 〈0,−1〉, then

≤a is desribed as follows: (1) for b ∈ A and c ∈ S we have b ≤a c; (2)for b, c ∈ A, say b = 〈0, s〉 and c = 〈0, t〉, we have b ≤a c just when s ≤ t;and (3) for b, c ∈ S, say b = 〈s, sin(1

s
)〉 and c = 〈t, sin(1

t
)〉, we have b ≤a cjust when s ≤ t. Thus ≤a is a total ordering. If it happens that a is aut point of A, say a = 〈0, 0〉, then the new desription of ≤a di�ers fromthat above only in lause 2: for b = 〈0, s〉 and c = 〈0, t〉, b ≤a c just wheneither 0 ≤ s ≤ t or t ≤ s ≤ 0. This ordering is not total beause the twonon-ut points of A are ≤a-inomparable.A partial ordering is a tree ordering if: (1) eah two elements havea ommon lower bound; and (2) no two inomparable elements have aommon upper bound. In Example 2.3, with a a ut point of A, ≤a isnot a tree ordering beause any point of S is a ommon upper bound forthe two ≤a-inomparable non-ut points of A. However, if enough else isgoing on for a road system, the orderings ≤a do turn out to be trees (seeLemma 2.4 below) .If 〈X,R〉 is a road system, it is always the ase that [a, c]R ∪ [c, b]R ⊆

[a, b]R whenever c ∈ [a, b]R. If the reverse inlusion also holds, we saythe road system�or the indued R-relation�is weakly disjuntive. If Ris additive, as is the ase with all three of our topologial betweennessinterpretations, then the indued R-relation is atually disjuntive; i.e.,it satis�es the stronger ondition that [a, b]R ⊆ [a, c]R ∪ [c, b]R for all
a, b, c ∈ X (not just for c ∈ [a, b]R).For any R-relation 〈X, [·, ·, ·]〉 and a, b ∈ X, de�ne the binary relation
≤ab on X to be the restrition of ≤a to the interval [a, b]. The followingtwo results will be used extensively in the sequel.Lemma 2.4. [2, Propositions 5.0.4 and 5.0.5℄ If 〈X, [·, ·, ·]〉 is an R-relation that is antisymmetri and weakly disjuntive, then eah partialordering ≤a is a tree ordering, and eah partial ordering ≤ab is a totalordering. Moreover, ≤ba is the relation-inverse of ≤ab.Lemma 2.5. [2, Theorem 5.0.6℄ For a weakly disjuntive R-relation, thefollowing onditions are equivalent:(i) Antisymmetry.(ii) Slenderness: the property that if c ∈ [a, b], then [a, c]∩ [c, b] = {c}.(iii) Reiproity: the property that if c, d ∈ [a, b] and c ∈ [a, d], then

d ∈ [c, b].(iv) Uniqueness of Centroids: the property that [a, b]∩ [a, c]∩ [b, c] hasat most one element, for eah a, b, c ∈ X.



6 PAUL BANKSTON3. Antisymmetry, Aposyndesis, and DeomposabilityFrom here on, all topologial spaes are assumed to be Hausdor�; asmentioned earlier, this separation axiom�but not metrizability�is built into our de�nition of �ontinuum.� A ontinuum is aposyndeti (see, e.g.,[11℄) if for eah two of its points, there is a subontinuum exluding oneof the points and ontaining the other in its interior. Aposyndesis has thesyntati shape of a souped-up T1 axiom, but is atually a weak form ofloal onnetedness.One onsequene of aposyndesis onerns the betweenness relation [·, ·, ·]Kitself, as a subset of the artesian ube of a ontinuum. De�ne a ontin-uum X to be K-losed if [·, ·, ·]K is losed in X3.Theorem 3.1. All aposyndeti ontinua are K-losed.Proof. Suppose X is aposyndeti and that [a, c, b]K does not hold. Thenthere is a subontinuum M ∈ K(a, b) with c 6∈ M . Using aposyndesis, foreah x ∈ {a, b}, we have an open set Ux and subontinuum Mx suh that
x ∈ Ux ⊆ Mx ⊆ X \{c}. Let Uc be an open neighborhood of c missing thesubontinuum Ma∪M ∪Mb. Then Ua×Uc×Ub is an open neighborhoodof 〈a, c, b〉 in X3 that does not interset [·, ·, ·]K. Hene X is K-losed. �In an aposyndeti ontinuum, not only is [·, ·, ·]K a ompat relation,but so are all of its slies (inluding ≤a= [a, ·, ·]K). Of ourse the 1-slie
[a, ·, b]K is always ompat, but that is the only nontrivial slie of [·, ·, ·]Kguaranteed to be so (see Example 3.4 (ii) below).A seond onsequene of aposyndesis is that there is a ollapsing ofbetweenness interpretations.Theorem 3.2. Aposyndeti ontinua are CK-omplete, and therefore an-tisymmetri. Loally onneted ontinua are QK-omplete.Proof. Assume X is aposyndeti, with a, b ∈ X. If c 6∈ [a, b]C, then thereis a witness A ∈ C(a, b) with c 6∈ A. For eah x ∈ A, use aposyndesis to�nd open set Ux and subontinuum Mx, with x ∈ Ux ⊆ Mx ⊆ X \ {c}.Then U = {Ux : x ∈ A} is a over of the onneted set A by open sets;hene, for some n = 1, 2, . . . , there is an n-tuple 〈Ux1

, . . . , Uxn
〉 from U ,with a ∈ Ux1

, b ∈ Uxn
, and Uxi

∩ Uxi+1
6= ∅ for eah 1 ≤ i ≤ n − 1. Thus

M = Mx1
∪ · · · ∪Mxn

∈ K(a, b), and c 6∈ M . This says c 6∈ [a, b]K, and weonlude that X is CK-omplete.That X is antisymmetri now follows from Proposition 1.2. If X isloally onneted, then, as mentioned earlier, X is QC-omplete as wellas CK-omplete. Hene X is QK-omplete. �Remark 3.3. That antisymmetry in metrizable ontinua is a onsequeneof aposyndesis was previously shown in [24℄.



ANTISYMMETRY 7The following examples show that aposyndesis is a strong assumptionin Theorems 3.1 and 3.2.Examples 3.4.(i) Let X be the topologist's osillosope in the eulidean plane; i.e.,
X = V0 ∪ V1 ∪ H0 ∪ H1 ∪ S,where, for i = 0, 1, Vi = {i}×[−1, 1] and Hi = [0, 1]×{(−1)i}, and

S = {〈x, 1

2
sin(π

x
)〉 : 0 < x ≤ 1}. Then X is both QK-ompleteand K-losed, but not aposyndeti.Failure of aposyndesis is lear. As for the other assertions, notethat [a, c, b]K holds in X if and only if either c = a or c = b. Thus

K-intervals are trivial, and we have QK-ompleteness immediately.Also we see that [·, ·, ·]K = (∆X × X) ∪ (X × ∆X), where ∆X =
{〈x, x〉 : x ∈ X}; and so K-losedness is also immediate.(ii) Let X be the omb spae in the eulidean plane; i.e.,

X = ([0, 1] × {0}) ∪ ({0} × [0, 1]) ∪
∞⋃

n=1

({ 1

n
} × [0, 1]).Then X is antisymmetri without being either CK-omplete or

K-losed. In partiular (Theorem 3.2), X is not aposyndeti. (Xis, however, QC-omplete.)Antisymmetry is easy to see. As for failure of CK-ompleteness,let a = 〈0, 0〉 and b = 〈0, 1〉. Then [a, b]K = {0} × [0, 1], while
[a, b]C = {a, b}. QC-ompleteness is easy to hek; as for failure of
K-losedness, note that if we take c to be 〈0, 1

2
〉, then the 1-slie

[b, c, ·]K is X \ ({0} × ( 1

2
, 1]), whih is learly not losed in X.Remarks 3.5.(i) Theorem 3.2 shows that CK-ompleteness interpolates betweenaposyndesis and antisymmetry; Examples 3.4 (i,ii) show that thethree notions are distint.(ii) The topologist's osillosope (Example 3.4 (i)) shows that aposyn-desis does not follow from K-losedness alone. It does follow, how-ever, if we also assume hereditary unioherene (see Theorem 4.2below).By a deomposition of a ontinuum X we mean a pair 〈M,N〉, where Mand N are proper subontinua of X and X = M ∪N . X is deomposableif it has a deomposition, and indeomposable otherwise.For any ontinuum X and A ⊆ X, reall that X is irrediible about A ifthe only subontinuum of X ontaining A is X itself. X is irreduible if Xis irreduible about a two-point set; i.e., if [a, b]K = X for some a, b ∈ X,



8 PAUL BANKSTON
a 6= b. The point a is a point of irreduibility for X if [a, b]K = X for some
b ∈ X \ {a}.The omposant κa of a in X is the union of all proper subontinua of
X that ontain a. Hene a is a point of irreduibility for X if and only if
κa 6= X. A omposant of ontinuum X is learly onneted; less obviousis the fat that it is also dense in X. (This follows easily from one of theso-alled �boundary bumping� theorems, namely [16, Theorem 5.4℄: if Uis a nonempty proper open subset of ontinuum X and K is a omponentof the losure U of U , then K intersets X \ U .)If X is deomposable, then [16, Theorem 11.13℄ either: (1) X is irre-duible and has preisely three omposants (inluding itself); or (2) X isnot irreduible and has just itself as omposant. In any event, deom-posable ontinua have either one or three omposants, with no two ofthem disjoint. On the other hand, if X is indeomposable, then no twoof its omposants an overlap. Moreover, the number of omposants ofa nondegenerate indeomposable ontinuum that is metrizable is c, theardinality of the real line [14, Theorem 1℄. Metrizability is ruial forthis result, as it is possible for a nondegenerate indeomposable ontin-uum to have either one or two omposants [7, Theorem 1 (& Corollary)℄.Nevertheless, it is still the ase that every nondegenerate indeomposableontinuum ontains an indeomposable subontinuum with c omposants[6, Corollary 5℄.In the sequel, the default notion of betweenness in a ontinuum is the
K-interpretation, and we thus drop the letter �K� from most pre�xes andsubsripts. If M is a subontinuum of X and a, b ∈ M , then the interval
[a, b]M = [a, b]MK relative to M is de�ned to be ⋂

{K ∈ K(a, b) : K ⊆ M}.Clearly [a, b]M ⊆ [a, b]N whenever a, b ∈ N ⊆ M .A ontinuum X is hereditarily antisymmetri (resp., hereditarily de-omposable) if eah of its nondegenerate subontinua is antisymmetri(resp., deomposable).Theorem 3.6. Every hereditarily antisymmetri ontinuum is hereditar-ily deomposable.Proof. Let X be a ontinuum that is not hereditarily deomposable.Then, by de�nition, X must ontain a nondegenerate indeomposabe sub-ontinuum M , whih Bellamy's theorem [6℄ tells us may be assumed toontain two disjoint omposants A and B. Sine omposants are dense,they're nondegenerate; hene we may pik a ∈ A and b, c ∈ B, with b 6= c.Then [a, b]M = [a, c]M = M , so M is not antisymmetri. This shows that
X is not hereditarily antisymmetri. �Remarks 3.7.



ANTISYMMETRY 9(i) The onverse of Theorem 3.6 is false beause the sin( 1

x
)-ontinuumof Example 2.3 is hereditarily deomposable without being (hered-itarily) antisymmetri.(ii) In [24℄, Wilder views the property of antisymmetry for metrizableontinua as interpolating between aposyndesis and deomposabil-ity, muh as Jones [11℄ views aposyndesis as interpolating be-tween loal onnetedness and deomposability. While aposynde-sis implies deomposability for general ontinua, we do not knowwhether antisymmetry does as well. Any indeomposable anti-symmetri ontinuum, however, would neessarily have just oneomposant. 4. The Gap Free AxiomsConsider the following two �rst-order onditions that may be imposedon a ternary struture.Gap Freeness: ∀ ab∃x (a 6= b → ([a, x, b] ∧ x 6= a ∧ x 6= b)); andStrong Gap Freeness: ∀ ab∃x (a 6= b → ([a, x, b] ∧ ¬[x, a, b] ∧

¬[a, b, x])).Gap freeness says that no interval has exatly two points, and is a straight-forward generalization of density as understood in the order-theoreti on-text. Strong gap freeness learly implies gap freeness for any R-relation;and if antisymmetry holds, the onverse is also true. In the setting ofontinua, Q-gap freeness, i.e., gap freeness for [·, ·, ·]Q, is the de�ning on-dition for a ontinuum to be a dendron, and is equivalent [23℄ to theonneted intersetion property : the intersetion if any two onnetedsubsets is onneted.In [3℄ we onsider the problem of obtaining a similar result for the K-interpretation, and so far there is a omplete answer only in the ase ofstrong gap freeness.First note that when the onneted intersetion property is formallyweakened to allow only intersetions of subontinua, we arrive at thewell-studied notion of hereditary unioherene, a property equivalent [3,Proposition 2.1℄ to the ondition that all intervals are onneted. Heredi-tary unioherene learly then implies gap freeness; however the onversedoes not hold: by simply taking two pseudo-ars and sewing them to-gether along two disjoint nondegenerate subontinua [3, Theorem 2.6℄,we obtain a rooked annulus, a ontinuum whih is gap free, with plentyof disonneted intervals. We still do not have a nontrivial topologialharaterization of gap freeness; nor do we know of a �rst-order between-ness statement that aptures hereditary unioherene. For strong gapfreeness, however, there is a satisfying haraterization.



10 PAUL BANKSTONTheorem 4.1. [3, Theorem 4.4 and Corollary 4.5℄ Let X be a ontinuum;the following statements are equivalent:(i) X is strongly gap free.(ii) Every nondegenerate interval in X is a deomposable ontinuum.(iii) X is both hereditarily unioherent and hereditarily deomposable.While K-losedness alone is not enough to ensure aposyndesis in aontinuum (see Example 3.4 (i)), the addition of hereditary unioherenedoes the trik.Theorem 4.2. Every hereditarily unioherent K-losed ontinuum is aposyn-deti.Proof. Assume X is hereditarily unioherent, as well as K-losed, with
a and b distint points of X. Then [a, b, a] does not hold; and by K-losedness, there are open sets Ua and Ub, with a ∈ Ua and b ∈ Ub,suh that if 〈x, z, y〉 ∈ Ua × Ub × Ua, then [x, z, y] does not hold either.In partiular, for eah 〈x, z〉 ∈ Ua × Ub, there is a subontinuum of Xthat ontains both a and x, but not z. Thus, for eah x ∈ Ua we have
[a, x] ∩ Ub = ∅, and so the losed subset

M =
⋃

x∈Ua

[a, x]of X ontains Ua and misses Ub. By hereditary unioherene, eah [a, x]is a subontinuum of X [3, Proposition 2.1℄. Hene M is a subontinuumof X that ontains a in its interior and exludes b; thereby establishingaposyndesis for X. �Next in this setion, we prove an analogue of Theorem 4.1 in whihstrong gap freeness in lause (i) is replaed by the onjuntion of gapfreeness and antisymmetry.Reall (see, e.g., [16, Theorem 6.6℄) that every nondegenerate ontin-uum has at least two non-ut points; a ontinuum with exatly two isalled an ar. (Sometimes alled a Hausdor� ar or a generalized ar. Itis a famous result of ontinuum theory that any two metrizable ars arehomeomorphi.) The next result is well known [16, Theorem 6.16℄, andruial to our immediate endeavor.Lemma 4.3. Let X be a topologial spae, with a, b ∈ X distint. Thefollowing statements are equivalent:(i) X is an ar, with a and b its two non-ut points.(ii) The topology on X is indued by a bounded omplete dense totalordering that has a and b for its two end points.



ANTISYMMETRY 11If X is an antisymmetri ontinuum and a ∈ X, reall from Lemma 2.4that eah binary relation ≤ab is a total ordering on [a, b], and is inverseto the ordering ≤ba.Lemma 4.4. Let X be an antisymmetri ontinuum, with a, b ∈ X. Thenthe order topology on [a, b] indued by ≤ab oinides with the subspaetopology on [a, b].Proof. Fix a, b ∈ X. For x ≤ab y in [a, b], let [x, y]ab be the order interval
{z ∈ [a, b] : x ≤ab z ≤ab y}. Then the order intervals [a, y]ab and [x, b]ab,
x, y ∈ [a, b], subbasially generate the losed sets in the order topologyon [a, b]. So �x x ≤ab y in [a, b]. Then for any z ∈ [a, b], we have:
z ∈ [a, y]ab if and only if a ≤ab z ≤ab y, if and only if z ≤a y, if and onlyif z ∈ [a, y]. Also, z ∈ [x, b]ab if and only if x ≤ab z ≤ab b, if and onlyif b ≤ba z ≤ba x, if and only if z ≤b x, if and only if z ∈ [b, x] = [x, b].Intervals, being intersetions of subontinua, are losed in the subspaetopology. Therefore the order-losed subsets of [a, b] are subspae-losed,implying that the order topology on [a, b] is ompat. The order topologyon [a, b] is also Hausdor�. Sine there annot be two distint ompatHausdor� topologies with one �ner than the other, we onlude that theorder topology and the subspae topology on [a, b] oinide. �Theorem 4.5. Let X be a ontinuum; the following statements are equiv-alent:(i) X is antisymmetri and gap free.(ii) Every nondegenerate interval [a, b] in X is an ar, with non-utpoints a and b.(iii) Every interval in X is a loally onneted ontinuum.(iv) Every interval in X is an aposyndeti ontinuum.(v) Every interval in X is an antisymmetri ontinuum.Proof. The impliations (ii) =⇒ (iii) =⇒ (iv) are immediate, and theimpliation (iv) =⇒ (v) follows from Theorem 3.2; so �rst assume (v)holds, and try to prove (i). If a and b are distint in X, then [a, b] isa nondegenerate ontinuum and hene must ontain a third point. Thisgives us gap freeness. Suppose a, b, c ∈ X, c ∈ [a, b], and c 6= b. Then
[a, b] is an antisymmetri ontinuum; hene b 6∈ [a, c], and we infer that
X is antisymmetri. This proves (i).Now assume (i) holds, and try to prove (ii). If a, b ∈ X are distint,then, by Lemma 4.4, the total order ≤ab indues the subspae topologyon [a, b]. Sine intervals are ompat, the ordering is omplete; and, bygap freeness, the ordering is dense as well. Applying Lemma 4.3, [a, b] isan ar with non-ut points a and b, and we have (ii) holding. �



12 PAUL BANKSTONAs another orollary of the two preeding lemmas, we have the follow-ing.Theorem 4.6. A ontinuum is an ar if and only if it is antisymmetriand irreduible.Proof. Ars are antisymmetri and irreduible. For the onverse, suppose
X is antisymmetri and irreduible about distint points a and b. Then,sine [a, b] = X, the orderings≤a and ≤ab are idential. By Lemma 4.4, Xas a topologial spae is totally ordered by ≤ab. Sine X is a ontinuum,we may apply Lemma 4.3 to infer that X is an ar (with non-ut points
a and b). �Remark 4.7. The version of Theorem 4.6 for the metrizable ase hasalready been proved in [24℄.A topologial spae is arwise onneted if eah two of its points are thenon-ut points of an ar in the spae. Following the oinage in [15℄, all aontinuum an arboroid if it is both hereditarily unioherent and arwiseonneted; all it a λ-arboroid if it is both hereditarily unioherent andhereditarily deomposable. (Then a metrizable arboroid (resp., metriz-able λ-arboroid) is just a dendroid (resp., λ-dendroid) in the usual sense;and if we add loal onnetedness in either ase, we obtain a dendrite(see, e.g., [16℄).) An immediate onsequene of Theorems 4.1 and 4.5 isthe following new haraterization of arboroids and λ-arboroids.Corollary 4.8.(i) A ontinuum is an arboroid if and only if it is antisymmetri andgap free.(ii) A ontinuum is a λ-arboroid if and only if it is strongly gap free.Remarks 4.9.(i) From Corollary 4.8, it is immediate that arboroids are hereditarilydeomposable. This was �rst posed as a question by L. E. Ward[21℄ and answered by D. Bellamy [6, Corollary 11℄.(ii) Dendrons, the ontinua that areQ-gap free, are known [20, Lemma4℄ to be loally onneted. Hene we may use Theorem 3.2 andCorollary 4.8 to see that dendrons are indeed arboroids.More importantly, Corollary 4.8 allows us to view the ontinuum-theoreti notions of dendron, arboroid, and λ-arboroid as di�erentversions of gap freeness. This suggests a notion of �arboriality�for R-relations in general, and is the subjet of ongoing work (see[4℄).Reall that if X is an aposyndeti ontinuum, then X is K-losed (The-orem 3.1), and hene eah 1-slie [a, c, ·] is losed in X. Relative to the



ANTISYMMETRY 13tree ordering ≤a (see Lemma 2.4 and Theorem 3.2), this set is the prin-ipal ≤a-�lter generated by c, and is itself a tree ordering with bottomelement c. As with any partial ordering, a branh is a maximal totallyordered subset.Theorem 4.10. Let X be an aposyndeti ontinuum, with a, c ∈ X. If
B is a branh of [a, c, ·], then B = [c, d] for some (unique) d ∈ X.Proof. We know (Theorem 3.2) that X is antisymmetri, and hene that
[a, c, ·] is a tree with respet to ≤a. Let B be any branh of [a, c, ·], with
b ∈ B. Then the subset [c, b] ∪ [a, b, ·] of [a, c, ·] is the result of �pruning
[a, c, ·] below b.� We �rst laim that

B =
⋂

b∈B

([c, b] ∪ [a, b, ·]).Indeed, �x b ∈ B, and let x ∈ [a, c, ·] be arbitrary. If x ∈ B, then,sine B is totally ≤a-ordered, either x ≤a b or b ≤a x. In the �rst ase
x ∈ [a, b]. But also we have c ≤a x, so c ∈ [a, x]. Thus, by reiproity(Lemma 2.5) we know x ∈ [c, b]. If b ≤a x, then x ∈ [a, b, ·], by de�nition.Thus B ⊆

⋂
b∈B

([c, b]∪[a, b, ·]). On the other hand, assume x ∈ [a, c, ·]\B.Sine any branh in a tree is an order ideal, there is no b ∈ B suh that
x ≤a b. Also, if b ≤a x for every b ∈ B, then B ∪ {x} is a totallyordered subset of [a, c, ·], properly ontaining B; so again we ontraditthe maximality of B. Hene there is some b ∈ B to whih x is ≤a-inomparable; and for this hoie of b, we have x 6∈ [c, b] ∪ [a, b, ·]. Thisproves the laimed equality.Now, beause X is aposyndeti, Theorem 3.1 shows that all 1-slies arelosed in X. Thus any branh B in [a, c, ·] is losed in X, by the equalityabove. This tells us that all branhes of subtrees of the form [a, c, ·] areompat subsets of X, and we may now mimi the proof of Lemma 4.4to infer that the subbasi order-losed sets, being of the form [c, b] and
B ∩ [a, b, ·], b ∈ B, are subspae losed as well.Thus B, with its subspae topology, is a ompat totally ordered spae;hene it has a greatest element d. This greatest element is unique, byantisymmetry; hene we onlude that B is the interval [c, d]. �5. Antisymmetry and TotalityAn obvious restatement of the �rst-order ondition given above to de-�ne antisymmetry for a ternary relation isAntisymmetry at a: ∀xy (x 6= y → (¬[a, y, x] ∨ ¬[a, x, y])).In formal ontrast to this, we de�ne totality at a point as follows.Totality at a: ∀xy (x 6= y → ([a, y, x] ∨ [a, x, y])).



14 PAUL BANKSTONNote that, in any �reasonable� interpretation of betweenness, suh as an R-relation, the anteedent formula in the de�nition of totality is super�uous.Also lear is the fat that an R-relation is both antisymmetri and totalat point a preisely when the pre-ordering ≤a is a total ordering.Example 5.1. If X is an ar and we de�ne betweenness using either the
Q-, the C-, or the K-interpretation, then there are exatly two points atwhih X is both antisymmetri and total, namely the non-ut points of
X.Proposition 5.2. An R-relation an have at most two points at whih itis both antisymmetri and total.Proof. Suppose 〈X, [·, ·, ·]〉 is an R-relation with three points a, b, c ∈ Xat whih it is both antisymmetri and total. By totality at a, we haveeither [a, c, b] or [a, b, c] holding; say it is [a, c, b]. Then, by antisymmetryat a, we have ¬[a, b, c].By antisymmetry at b, and beause [b, c, a] holds, we also have ¬[b, a, c].So ¬[c, b, a] and ¬[c, a, b] both hold, ontraditing the assumption of to-tality at c. �Example 5.3. Realling the sin( 1

x
)-ontinuum in Example 2.3 and the

K-interpretation of betweenness: the points of totality are the two non-utpoints of A (also points of antisymmetry), as well as the unique non-utpoint of S (not a point of antisymmetry). The sin( 1

x
)-ontinuum has nopoints of totality in either the Q- or the C-interpretation (see Theorem5.4 below).Theorem 5.4. Let X be a nondegenerate ontinuum; the following state-ments are equivalent for the Q- or the C-interpretation of betweenness:(i) X has at least one point of totality.(ii) X has exatly two points of totality.(iii) X is an ar.Proof. The impliations (iii) =⇒ (ii) =⇒ (i) are lear; so we assume(i) and prove (iii). Assume X is nondegenerate, and suppose a ∈ X is apoint of totality in either the Q- or the C-interpretation of betweenness.Then, if a point c lies properly between two other points, it must be thease that c is a ut point of X. So let x, y ∈ X \{a}. Then either [a, x, y]Cor [a, y, x]C holds; in either ase, antisymmetry prevents [x, a, y]C fromholding. Thus a is a non-ut point of X.

X has at least one other non-ut point; say it is b. If x is any thirdpoint, we then have either [a, b, x]C or [a, x, b]C. The �rst alternative fores
b to be a ut point, so the seond alternative must hold. Thus x is a utpoint of X, telling us that a and b are the only non-ut points of X. Hene
X is an ar. �



ANTISYMMETRY 15Note that Theorem 5.4 no longer holds for the K-interpretation of be-tweenness beause of the sin( 1

x
)-ontinuum (see Example 5.3). If we takon the assumption of aposyndesis (or even of CK-ompleteness, see The-orem 3.2), then Theorem 5.4 applies. We do not know whether antisym-metry is enough to ensure that a nondegenerate ontinuum with a pointof totality is an ar, but we an get a positive answer if we also assumegap freeness.Theorem 5.5. If X is a nondegenerate antisymmetri ontinuum that isgap free and has a point of totality, then X is an ar.Proof. Assume X is a nondegenerate ontinuum that is both antisymmet-ri and gap free. Then, by Corollary 4.8, X is an arboroid, and is hene[15, Theorem 2℄ nested. This means that if A is a olletion of ars of Xwhih is totally ordered by inlusion, then ⋃

A is ontained in an ar of
X. If a ∈ X is a point of totality, then A = {[a, b] : b ∈ X} is totallyordered by inlusion, and eah member of A is an ar. Sine ⋃

A is all of
X, we infer that X is an ar. �An R-relation is alled total if it satis�es totality at eah of its points; aontinuum is total if its K-interpretation of betweenness is total. A ontin-uum is hereditarily indeomposable if no subontinuum is indeomposable;i.e., if any two of its subontinua are either disjoint or ⊆-omparable. Ahereditarily indeomposable ontinuum is learly hereditarily unioher-ent, and hene all of its intervals are onneted. The rooked annulusmentioned in Setion 4 is the union of two hereditarily indeomposableproper subontinua, and also has some disonneted intervals.Proposition 5.6. A ontinuum is total if and only if it is hereditarilyindeomposable.Proof. Let X be a total ontinuum, with M and N distint subontinuathat overlap; say a ∈ M ∩ N and b ∈ M \ N . For any x ∈ N , totalitygives us either b ∈ [a, x] or x ∈ [a, b]. The �rst alternative is impossible,as it fores b ∈ N . Hene it must be the ase that x ∈ [a, b] ⊆ M . Thisshows N ⊆ M ; hene that X is hereditarily indeomposable.Suppose X is hereditarily indeomposable, with a, b, c ∈ X arbitrary.Sine X is hereditarily unioherent, all intervals are subontinua; heneeither [a, b] ⊆ [a, c] or vie versa. This implies that X is total. �



16 PAUL BANKSTONRemarks 5.7.(i) Beause hereditary indeomposability implies hereditary unio-herene, Proposition 5.6 tells us that the �rst-order ondition oftotality implies the �rst-order ondition of gap freeness for the
K-interpretation of betweenness. This impliation at the levelof betweenness interpretations is not valid for all road systems,however: let the set X inlude the two points a and b, and let Ronsist of the singletons of X, the doubleton {a, b}, and X itself.Then 〈X,R〉 is easily seen to satisfy totality, but not gap freeness.(ii) Note that, sine the C-interpretation is always antisymmetri(Proposition 1.2), Proposition 5.2 implies that totality for thatinterpretation is impossible in any onneted topologial spaewith more than two points. Thus, in the ontinuum ontext, wehave the analogy: �K-total is to C-total, as hereditarily indeom-posable is to degenerate.�(iii) Theorems 5.5 and 4.6 say that a nondegenerate antisymmetriontinuum with a point of totality in the K-interpretation is anar if it is either gap free or irreduible. A tempting onjeture isthat points of totality are also points of irreduibility in general;but if that is the ase, then Proposition 5.6 tells us that all nonde-generate hereditarily indeomposable ontinua have at least twoomposants, and thus answers a long-standing open problem (see[19℄ and [13, Problem 36℄).For R-relations, global antisymmetry allows at most two points of to-tality; and a natural question is to what extent global totality limitspoints of antisymmetry. For the Q- and C-interpretations of betweenness,global totality implies degeneray (see Remark 5.7 (ii)), so this leaves the

K-interpretation.Theorem 5.8. Let X be a nondegenerate total ontinuum. Then X hasno points of antisymmetry.Proof. Suppose X is nondegenerate and total (in the K-interpretation),and let a ∈ X be arbitrary. By another boundary bumping theorem [16,Corollary 5.5℄, there is a nondegenerate subontinuum M ⊆ X \ {a}.Let b, c ∈ M be distint. Then, sine X is hereditarily indeomposable(Proposition 5.6), and a 6∈ M , we know that the subontinuum [b, c] isontained in the subontinuum [a, b]. In partiular, we have c ∈ [a, b].Similarly, b ∈ [a, c], implying that a is not a point of antisymmetry. �6. The Equivalene Relations ≡aFor any point a in a ontinuum X, we de�ne the equivalene rela-tion ≡a by the ondition b ≡a c if [a, b] = [a, c]. Denote by [b]a the



ANTISYMMETRY 17
≡a-blok (equivalene lass) ontaining b. Then learly we always have
[b]a ⊆ [b]a ⊆ [a, b], [a]a = {a}, and [b]a is degenerate for all b ∈ X just inase a is a point of antisymmetry for X. In this setion we are interestedin topologial properties of the ≡a-bloks, both absolute (e.g., nondegen-erate, ompat, onneted) and relative to X (e.g., dense, nowhere dense,having nonempty interior).The following fat about omposants is well known. While it is statedin [16℄ for metrizable ontinua, its proof still works in the more general(Hausdor�) setting.Lemma 6.1. [16, Theorem 11.4℄ The omplement of any omposant of aontinuum is onneted (possibly empty).Proposition 6.2. For any point a in ontinuum X, the omposant κais a union of ≡a-bloks. Moreover, if κa 6= X, then X \ κa is a single
≡a-blok, whih is also onneted.Proof. If b ≡a c and b ∈ κa, then [a, b] 6= X and [a, b] = [a, c]. Hene
c ∈ κa too. If b, c ∈ X \ κa, then [a, b] = [a, c] = X; so b ≡a c. If b 6∈ κa,then [b]a = X \ κa is onneted, by Lemma 6.1. �Reall that a subset of a topologial spae is nowhere dense if its losurehas empty interior.Example 6.3. In the sin( 1

x
)-ontinuum X (see Example 2.3), the ≡a-bloks are degenerate when a ∈ A. When a ∈ S, A itself is the onlynondegenerate ≡a-blok. No matter where a is hosen, however, the ≡a-bloks are nowhere dense subontinua of X.Theorem 6.4. Let X be a nondegenerate ontinuum, with a ∈ X.(i) Eah ≡a-blok has empty interior in X.(ii) The only way for a ≡a-blok to be dense in X is for it to equal

X \ κa, in whih ase it is also onneted. In partiular, no morethan one ≡a-blok an be dense in X.(iii) If X is deomposable, then no ≡a-blok is dense in X.(iv) If X is indeomposable, then all ≡a-bloks ontained in κa arenowhere dense in X. If X is also irreduible, then X \ κa is theunique ≡a-blok that is dense in X.(v) If X is hereditarily unioherent, then eah ≡a-blok is onneted.(vi) If X is hereditarily unioherent and hereditarily deomposable,then eah ≡a-blok is a nowhere dense subontinuum of X.Proof. Ad (i): Singletons are nowhere dense, so we may assume b 6= a.Then (by standard ontinuum theory) we may �nd a subontinuum M ∈
K(a, b) whih is irreduible about {a, b}. Let A be the omposant of a



18 PAUL BANKSTONin M . Then, beause [a, b]M = M , we know, by Proposition 6.2, that
[b]Ma := {x ∈ M : [a, x]M = [a, b]M} = M \ A. Sine A is dense in M ,
[b]Ma an have no interior relative to M , let alone relative to X. Now,
[b]a ⊆ [a, b] ⊆ [a, b]M . If x ∈ [b]a then x ∈ [a, b] ⊆ [a, b]M . But also
b ∈ [a, x] ⊆ [a, x]M ; so [a, x]M = [a, b]M , and we infer that [b]a ⊆ [b]Ma .Hene we know [b]a has empty interior in X.Ad (ii): If b ∈ κa, then [b]a ⊆ [a, b] 6= X, and X \ [a, b] is a nonemptyopen set missing [b]a. So for [b]a to be dense in X, it must be the asethat [b]a = X \ κa, a onneted set, by Proposition 6.2.Ad (iii): Let 〈M,N〉 be a deomposition of X. If a ∈ M ∩ N , then
κa = X; hene, by (ii), no ≡a-blok is dense in X. If a is, say, in M \ N ,then M ⊆ κa, and X \ N is a nonempty open set disjoint from X \ κa.Again, by (ii), no ≡a-blok an be dense in X.Ad (iv): Let X be indeomposable, with b ∈ κa. Then there is a propersubontinuum M ∈ K(a, b). Proper subontinua of indeomposable on-tinua have empty interior, and [b]a ⊆ [a, b] ⊆ M ; hene [b]a is nowheredense in X.If X is also irreduible, then there is at least one omposant of Xdisjoint from κa, and it must be ontained in [b]a for b ∈ X \ κa. Sineomposants are dense, we know [b]a = X \κa is the unique ≡a-blok thatis dense in X.Ad (v): From the argument in (i) above, we have [b]a ⊆ [b]Ma = M \A.By Lemma 6.1, we know [b]Ma is onneted as well as having empty interior.Sine X is hereditarily unioherent, we may take M to be [a, b] itself, inwhih ase [a, b]M = [a, b] and [b]Ma = [b]a. Thus [b]a is onneted.Ad (vi): Assume X is both hereditarily unioherent and hereditarilydeomposable. By (i) and (v) we know that ≡a-bloks have empty interiorin X and are onneted, so what is left is to show they are also losed.Suppose, for the sake of obtaining a ontradition, that [b]a is not losed,and so �x a point x ∈ [b]a \ [b]a. [b]a is onneted and nondegenerate;so [b]a is a nondegenerate subontinuum of [a, b], and it therefore has adeomposition 〈H,K〉. And sine [b]a is dense in its losure, we may �ndpoints y ∈ [b]a \ K and z ∈ [b]a \ H. Assume x ∈ H. Sine H ⊆ [a, b]and x 6∈ [b]a, we know [a, x] is a subontinuum of [a, b] that misses [b]a.Sine x ∈ H, we know M = [a, x] ∪ H is a subontinuum of [a, b]. Sine
z ∈ [b]a \ H and [a, x] 6= [a, b], we know that M does not ontain z, andis hene a proper subontinuum of [a, b]. But a ∈ M , and so M ∩ [b]amust be empty. However, we have y ∈ H ∩ [b]a ⊆ M ∩ [b]a, and ourontradition. �



ANTISYMMETRY 19Corollary 6.5. If X ontains a nondegenerate subontinuum M thatis both hereditarily unioherent and hereditarily deomposable (i.e., a λ-arboroid), then the number of ≡a-bloks is unountable for any a ∈ M .Proof. With ≡M
a denoting ≡a relative to M , we see that the olletionof ≡M

a -bloks overs M ; and Theorem 6.4 (vi) shows that eah of themis nowhere dense in M . Now apply the Baire ategory theorem to inferthat the number of ≡M
a -bloks is unountable. If b ∈ M , then [b]Ma ⊇ [b]a.Hene there are unountably many ≡a-bloks ontained in M . �Question 6.6. Can there ever be just ountably many ≡a-bloks? Thiswould be another strong way of asserting the failure of antisymmetry at

a. De�ne a point a in ontinuum X to be fuzzy if antisymmetry fails at ato the modest extent that [b]a is nondegenerate for all b 6= a. X is fuzzy ifeah of its points is fuzzy. Fuzziness soundly implies the lak of points ofantisymmetry; the following implies Theorem 5.8, but has a ompletelydi�erent proof.Theorem 6.7. Hereditarily indeomposable ontinua are fuzzy; in fat,nondegenerate equivalene lasses are onneted, and hene of ardinality
≥ c.Proof. Let X be hereditarily indeomposable, with a and b distint pointsof X. Then M = [a, b] is a nondegenerate hereditarily indeomposableontinuum that is irreduible about {a, b}. Thus the omposants of Mpartition it into at least two dense sets. Let a be the omposant of Montaining a. Then [b]a = [b]Ma = M \ A (see the proof of Theorem6.4 (v)), and so [b]a ontains a omposant of M . This makes [b]a densein [a, b], so it is nondegenerate. Being the omplement of a omposantalso makes it onneted, by Proposition 6.2. Any subspae of a ompatHausdor� spae is Tyhono�; hene any nondegenerate onneted one hasardinality ≥ c. �Fuzziness, like totality, is a �rst-order betweenness ondition that isneessary for hereditary indeomposability to hold; and it is a naturalquestion whether fuzziness, like totality, is also su�ient. An immediateonsequene of Theorem 6.7 and the following is that the answer is no.A ontinuum Z is a wedge sum of ontinua X and Y if there is adeomposition 〈M,N〉 of Z suh that M is homeomorphi to X, N ishomeomorphi to Y , and M ∩ N is a singleton.Theorem 6.8. A wedge sum of two fuzzy ontinua is fuzzy.



20 PAUL BANKSTONProof. Suppose Z = M ∪ N , where M and N are proper fuzzy subon-tinua, and M ∩N = {c}. If a and b are points in M , then [a, b] ⊆ [a, b]M .We show [a, b] = [a, b]M ; and for this it su�es to prove that if H is anysubontinuum of Z ontaining a and b, then there is a subontinuum K of
M suh that a, b ∈ K ⊆ H. Indeed, suppose H is suh a subontinuum,whih we may assume intersets N \M . Then c must lie in H and be oneof its ut points. Thus H \ N is lopen in H \ {c}; and, by [17, Theorem3.4℄, it follows that K = (H \ N) ∪ {c} is a subontinuum of M . Clearlywe have a, b ∈ K ⊆ H, as desired.So if a ∈ Z is �xed, say a ∈ M , and if b ∈ M \ {a}, then [a, b]M =
[a, b′]M for some b′ ∈ M distint from b, sine M is fuzzy. Sine [a, b] =
[a, b]M , we infer that [b]a is nondegenerate. If b ∈ N \ M , then c ∈
[a, b] beause c is a ut point of Z. Hene [a, b] = [a, c] ∪ [c, b], by weakdisjuntivity. Sine c 6= b and N is fuzzy, there is some b′ ∈ N \ {b}with [c, b]N = [c, b′]N . Thus [a, b′] = [a, c] ∪ [c, b′] = [a, c] ∪ [c, b′]N =
[a, c] ∪ [c, b]N = [a, c] ∪ [c, b] = [a, b]; hene [b]a is nondegenerate in thisase too. �7. Distal ContinuaLet X be a ontinuum, with a ∈ X. The pre-order ≤a suggests thatwe may onsider a as a �vantage point� by de�ning d ∈ X to be a-distalif, for any b ∈ X, d ≤a b implies b ≤a d. If d is a-distal, then d is �asfar away from a as you an go.� If a is a point of antisymmetry, then,the a-distal points are the maximal elements of the partial order ≤a. Theset of a-distal points is denoted δa, and the ontinuum is alled a-distalif eah x ∈ X is between a and some d ∈ δa. Finally, X is distal if X is
a-distal for eah a ∈ X.The following fats are immediate from the de�nitions.Proposition 7.1. Let X be a nondegenerate ontinuum, with a ∈ X.(i) δa is a union of ≡a-bloks.(ii) a 6∈ δa.(iii) If κa 6= X, then δa = X \ κa.Any ≡a-blok ontained in δa is alled an a-diretion. If α is a ardinalnumber, we say a ∈ X is α-diretional if α is the number of ≡a-bloksontained in δa. Sine X \κa is a single ≡a-blok when κa 6= X, we know
a is one-diretional in this ase.Question 7.2. Is δa ever empty?



ANTISYMMETRY 21Here are some examples of distal ontinua.Examples 7.3.(i) If X is an ar with non-ut points a and b, then δa = {b} and
δb = {a}; so non-ut points are one-diretional. If c is a ut point,then δc = {a, b}; so ut points are two-diretional.(ii) Let X be the sin( 1

x
)-ontinuum of Example 2.3. If a ∈ A and bis the non-ut point of S, then δa = {b}, and δb = A, a single

≡b-blok. Thus both b and points of A are one-diretional. If cis a ut point of S, then δc = A ∪ {b}, a union of two ≡c-bloks,and hene two-diretional.(iii) Let X be the omb spae of Example 3.4, with b = 〈0, 1〉 and
bn = 〈 1

n
, 1〉, n ≥ 1. If a ∈ X, then δa = ({b}∪{b1, b2, b3, . . . }\{a},and every point is ℵ0-diretional. We note that δa is losed in Xif and only if a 6= b: indeed b ∈ δb \ δb.(iv) Let X be the unit irle in the eulidean plane. Then, for any

a ∈ X, we have δa = X \ {a}, whih is not losed, even in thepresene of loal onnetedness. Every point of the unit irle is
c-diretional.Theorem 7.4. Let X be a ontinuum, a ∈ X.(i) If X is aposyndeti, then eah member of δa is a non-ut pointof X, and X is a-distal. In partiular, aposyndeti ontinua aredistal.(ii) If X is a-distal, then X is irreduible about {a} ∪ δa.(iii) If κa 6= X, then δa = X\κa, a single (onneted) ≡a-blok. Hene
X is a-distal, and a is one-diretional.(iv) If X is indeomposable and irreduible, then X is distal and eahof its points is one-diretional.Proof. Ad (i): Suppose d ∈ δa is a ut point of X. Then, by Theorem3.2, there exist points x, y ∈ X, with d ∈ [x, y] \ {x, y}. By disjuntivity,we have either d ∈ [a, x] or d ∈ [a, y]. Sine d ∈ δa, we know either

x ∈ [a, d] or y ∈ [a, d]; hene either x = d or y = d, by antisymmetry.This ontradition tells us d must be a non-ut point.To show that X is a-distal, let b ∈ X be arbitrary. We need to show
b ≤a d for some d ∈ δa. Sine [a, b] is a totally ≤a-ordered set, a simplenod to Zorn's lemma shows that [a, b] ⊆ B for some ≤a-branh B. Hene,by Theorem 4.10, B = [a, d] for some d ∈ X. Clearly d ∈ δa sine B is an
≤a-branh, and b ≤a d sine b ∈ B.Ad (ii): Assume X is a-distal, with K a subontinuum of X ontaining
{a} ∪ δa. With b ∈ X arbitrary, �nd d ∈ δa suh that b ∈ [a, d]. Sineboth a and d are in K, so is b. Hene K = X.



22 PAUL BANKSTONAd (iii): This is immediate, from Proposition 6.2.Ad (iv): This follows immediately from (iii) above, and the fat thatevery omposant of X is a proper subset. �8. CentroidsIf [·, ·, ·] is an interpretation of betweenness on a set X, and a, b, c ∈ X,de�ne [abc] to be the intersetion [a, b]∩ [a, c]∩ [b, c]. Elements of [abc] arethe entroids of the triple 〈a, b, c〉; the betweenness struture 〈X, [·, ·, ·]〉is (uniquely) entroidal if eah triple has a (unique) entroid.If 〈X,R〉 is uniquely entroidal, we denote by γ : X3 → X the assoi-ated entroid operation, and often abbreviate γ(a, b, c) simply as abc. ByLemma 2.5, we know that antisymmetri weakly disjuntive R-relationsare uniquely entroidal if they are entroidal at all, and the question ariseswhether, under suh irumstanes, the entroid operation is a �median,�in the sense of [5, 10℄ and elsewhere.From the standpoint of universal algebra, a median on a set X isa ternary operation µ : X3 → X that is symmetri (i.e., ompletelyommutative) and satis�es the following universal equalities:Absorption: ∀xyz (µ(x, y, y) = y); andWeak Assoiativity: ∀wxyz (µ(µ(w, x, y), x, z) = µ(w, x, µ(y, x, z))).A median algebra is a set together with a distinguished median. Suhstrutures most naturally arise in the study of distributive latties, where
µ(x, y, z) is de�ned to be (x ∨ y) ∧ (x ∨ y) ∧ (y ∨ z). (Indeed, abstratmedian algebras may be represented [5℄ as median-subalgebras of powersof the two-element lattie.) In the setting of R-relations, we also �ndmedians in the form of entroids.Lemma 8.1. Let 〈X, [·, ·, ·]〉 be an antisymmetri weakly disjuntive en-troidal R-relation, with a, b, c ∈ X. Then abc = a if and only if a ∈ [b, c].Proof. By de�nition, abc ∈ [b, c], so the �only if� diretion is trivial. As-sume a ∈ [b, c]. Then, by Lemma 2.5 (slenderness), [b, a] ∩ [a, c] = {a}.Hene {abc} = [abc] = [b, a] ∩ [a, c] ∩ [b, c] = {a} ∩ [b, c] = {a}, and wehave abc = a. �Theorem 8.2. In an antisymmetri weakly disjuntive entroidal R-relation, the entroid operation is a median.Proof. Let 〈X, [·, ·, ·]〉 be an antisymmetri weakly disjuntive entroidalR-relation. The de�nition of �entroid set� immediately gives us (setwise)symmetry (i.e., [abc] = [acb] = [bac] = [bca] = [cab] = [cba]) and absorp-tion (i.e., [abb] = {b}), so we onentrate on weak assoiativity: given
a, b, c, d ∈ X, we wish to show that (abc)bd and ab(cbd) are the samepoint.



ANTISYMMETRY 23Both abc and cbd lie in [b, c]; by weak disjuntivity, either abc ∈ [b, cbd]or abc ∈ [cbd, c]. Suppose the �rst ase holds. Then we have [b, cbd] ⊆
[b, d]; hene abc ∈ [b, d], and thus (abc)bd = abc, by Lemma 8.1. On theother hand, [ab(cbd)] = [a, b]∩[a, cbd]∩[b, cbd] ⊆ [a, b]∩[a, cbd]∩[b, c], sine
cbd ∈ [b, c]. By Lemma 2.5 (reiproity), we have cbd ∈ [abc, c] beause
abc ∈ [b, cbd]. Hene cbd ∈ [a, c], and we have [a, cbd] ⊆ [a, c]. Thus weinfer [ab(cbd)] ⊆ [abc]. Sine both sets are singletons, we onlude that
(abc)bd and ab(cbd) both equal abc.Next, suppose the seond ase holds, that abc ∈ [cbd, c]. Then, byreiproity, cbd ∈ [b, abc] ⊆ [a, b]; so ab(cbd) = cbd (again by Lemma 2.5).Also we have [(abc)bd] = [abc, b] ∩ [abc, d] ∩ [b, d] ⊆ [c, b] ∩ [abc, d] ∩ [b, d].But abc ∈ [cbd, c], by assumption; so abc ∈ [c, d], and thus [abc, d] ⊆ [c, d].Hene [(abc)bd] ⊆ [cbd], and we onlude that (abc)bd and ab(cbd) bothequal cbd. �Remark 8.3. Full assoiativity, the statement that (vwx)yz = v(wxy)z =
vw(xyz) universally holds, is generally false for entroids. For assume wehave a linear ordering, where a < b < c < d < e are �ve distint points.Then (abc)de = bde = d, a(bcd)e = ace = c, and ab(cde) = abd = b.In the setting of ontinua, we have a satisfying ondition that su�esfor entroid existene.Lemma 8.4. [3, Proposition 3.1℄ Let X be a ontinuum, with a, b ∈ X.If [a, b] is onneted, then [abc] 6= ∅ for any c ∈ X. In partiular, if X ishereditarily unioherent, then X is entroidal (and all of its entroid setsare subontinua).Remark 8.5. Paraphrasing a well-known result (see [16, Corollary 11.20℄),a metrizable ontinuum is indeomposable if and only if it equals one ofits own entroid sets.When we ombine Lemmas 8.4 and 2.5 with Theorem 8.2, we immedi-ately obtainCorollary 8.6. Let X be an antisymmetri hereditarily unioherent on-tinuum. Then X is uniquely entroidal, and the entroid operation γ is amedian.Sine a ontinuum's being entroidal is so manifestly a onsequene ofhereditary unioherene, it is natural to ask whether the onverse is true.The answer is generally no, as any rooked annulus will attest (see [3,Theorem 3.2℄). So a weaker assertion, one for whih a rooked annulusno longer o�ers a ounterexample, is that entroidality implies gap free-ness. We do not know the answer to this, even under the assumption ofantisymmetry. But we do get a yes answer if we invoke aposyndesis.



24 PAUL BANKSTONTheorem 8.7. In aposyndeti ontinua, being hereditarily unioherent(or gap free) is equivalent to being entroidal.Proof. Assume X is an aposyndeti ontinuum. Then X is antisymmet-ri, by Theorem 3.2. We have already seen that hereditary unioherenegenerally implies being entroidal (Lemma 8.4), and that gap freeness issu�ient for hereditary unioherene in antisymmetri ontinua (Theo-rem 4.5), so it remains to show that being entroidal implies being gapfree.Assume X is entroidal but not gap free. Then there are two points
a 6= b in X suh that [a, b] = {a, b}. For eah c ∈ X, we have abc uniquelyde�ned (Lemma 2.5), and hene either abc = a or abc = b. Thus the sets
Ca = {x ∈ X : abx = a} and Cb = {x ∈ X : abx = b} are disjoint, theyover X, and are both nonempty (sine a ∈ Ca and b ∈ Cb). Sine X isonneted, then, it annot be the ase that both Ca and Cb are losed in
X. But Ca and Cb are the 1-slies [b, a, ·] and [a, b, ·], respetively (Lemma8.1), and are indeed losed by Theorem 3.1. �Question 8.8. In light of Corollary 8.6, is the entroid operation γ foran antisymmetri hereditarily unioherent ontinuum ontinuous in all(any) of its variables? In general, what do the inverse images of a pointor losed set look like?For eah a, b in an antisymmetri hereditarily unioherent ontinuum
X, de�ne γab : X → X to be the funtion x 7→ abx. Clearly γab maps
X onto [a, b], and γab(c) = c if and only if c ∈ [a, b]. This is the de�ningondition for a ontinuous mapping from a spae to a subspae to be aretration, but ontinuity in this instane is not assured.Example 8.9. Referring to the omb spae of Example 3.4, we have anantisymmetri hereditarily unioherent ontinuum. Let a = 〈0, 0〉 and
b = 〈0, 1〉, with bn = 〈 1

n
, 1〉, n ≥ 1. Then b = limn→∞ bn. However,

γab(b) = abb = b, while, for eah n, we have γab(bn) = abbn = a. Thus
γab is not ontinuous at b.Theorem 8.10. Let X be an aposyndeti entroidal ontinuum. For eah
a, b, c ∈ X, with c ∈ [a, b], the inverse image γ−1

ab
(c) is a subontinuum of

X.Proof. Suppose X is a ontinuum that is both aposyndeti and entroidal,with a, b, c ∈ X suh that c ∈ [a, b]. For any x ∈ X, we have abx = cjust in ase c ∈ [a, x] ∩ [b, x]; in the notation of 1-slies, this gives us
γ−1

ab
(c) = [a, c, ·] ∩ [b, c, ·]. (In the proof of Theorem 8.7, the sets Ca and

Cb are γ−1

ab
(a) and γ−1

ab
(b), respetively.) This set is losed for aposyndeti

X, by Theorem 3.1, and so is ompat.



ANTISYMMETRY 25We next show γ−1

ab
(c) is onneted. First observe that if x ∈ [a, c, ·],then [c, x] ⊆ [a, c, ·]. For if y ∈ [a, x], then, sine c ∈ [a, x], we have

c ∈ [a, y], by Lemma 2.5 (reiproity). This says y ∈ [a, c, ·].To �nish the argument, suppose x and y are in γ−1

ab
(c) = [a, c, ·]∩[b, c, ·].Then, by the argument above, both [c, x] and [c, y] are ontained in γ−1

ab
(c).By hereditary unioherene (Theorem 8.7), we infer that [c, x]∪ [c, y] is aonneted subset of γ−1

ab
(c) that ontains both x and y. This ensures that

γ−1

ab
(c) itself is onneted. �We do not know whether the entroid operation is ontinuous foraposyndeti entroidal ontinua. However, if we replae aposyndesis withloal onnetedness, we get an a�rmative answer. Reall that a ontinu-ous mapping between ontinua is monotone if inverse images of subon-tinua are subontinua.Theorem 8.11. Let X be a loally onneted entroidal ontinuum. Thenthe entroid operation γ : X3 → X is ontinuous; and, for eah a, b ∈ X,the mapping γab : X → [a, b] is a monotone retration.Proof. Assume X is a loally onneted entroidal ontinuum. We aim toshow that whenever D is losed in X, its inverse image γ−1(D) is losedin X3.We �rst observe that if D ⊆ X is losed and d ∈ X \ D, we mayuse loal onnetedness to over D with �nitely many subontinua, noneontaining d. Hene the olletion F , onsisting of the losed subsets of

X with �nitely many omponents, forms a losed-set base. We lose nogenerality, then, in showing γ−1(D) is losed in X3 for D ∈ F ; and indeedwe may assume D itself is onneted.So assume D ⊆ X is a subontinuum and that 〈a, b, c〉 ∈ X3 is suhthat abc 6∈ D. Then we need open sets Ua, Ub, Uc, ontaining a, b, and crespetively, suh that a′b′c′ 6∈ D for any 〈a′, b′, c′〉 ∈ Ua × Ub × Uc.Suppose D intersets both [a, abc] and [abc, b], say u ∈ D ∩ [a, abc] and
v ∈ D∩[abc, b]. By weak disjuntivity, we have [a, b] = [a, u]∪[u, v]∪[v, b];hene abc must lie in one of these subintervals. If abc ∈ [a, u], then
abc = u beause u ∈ [a, abc] and antisymmetry holds. Similarly, abc = vif abc ∈ [v, b]. In any event, we have abc ∈ [u, v]. But sine D is asubontinuum, we have [u, v] ⊆ D, ontraditing the assumption that
abc 6∈ D.Hene we infer that D must miss at least two out of the three intervals
[a, abc], [b, abc], and [c, abc], and therefore that D misses at least one of theintervals [a, b], [a, c], and [b, c]. Say it is the ase that D∩ [a, b] = ∅. Then,using loal onnetedness, we may �nd onneted open sets Ua and Ub,neighborhoods of a and b, respetively, suh that D∩(Ua∪Ub) = ∅. Letting
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Uc be any open neighborhood of c, we have that if 〈a′, b′, c′〉 ∈ Ua×Ub×Uc,then a′b′c′ ∈ [a′, b′]. Sine Ua ∪ [a, b] ∪ Ub is a subontinuum ontaining
a′ and b′, it must ontain [a′, b′]; hene a′b′c′ annot lie in D. This shows
γ−1(D) is losed in X3.

γab : X → [a, b] is a retration beause it is ontinuous (and abc = c ifand only if c ∈ [a, b]). It is monotone, by Theorem 8.10, beause loal on-netness implies aposyndesis and ontinuous surjetions between ontinuaare monotone whenever inverse images of singletons are onneted. �Remark 8.12. The fat that dendrons �admit a natural ontinuous me-dian� has long been known, but in a rather disguised ontext (see, e.g.,[1℄). The dendrons, being the Q-gap free ontinua, are preisely the loallyonneted entroidal ontinua (see Theorem 3.2 and [20, Lemma 4℄).Referenes[1℄ H. -J. Bandelt and M. van de Vel, Embedding topologial median algebras inproduts of dendrons, Pro. London Math. So. 58 (1989), 439�453.[2℄ P. Bankston, Road systems and betweenness, Bull. Math. Si. 3(3) (2013), 389�408; doi:10.1007/s13373-013-0040-4 (online �rst),(http://link.springer.om/artile/10.1007/s13373-013-0040-4/fulltext.html).[3℄ , When Hausdor� ontinua have no gaps, Top. Pro. 44 (2014), 177�188(also available at http://www.mss.mu.edu/∼paulb/Paper/bankston.pdf).[4℄ , C-dendrons and their kin (in preparation).[5℄ G. Birkho� and S. A. Kiss, A ternary operation in distributive latties, Bull.Amer. Math. So. 53 (1947), 749�752.[6℄ D. Bellamy, Composants of Hausdor� indeomposable ontinua: a mapping ap-proah, Pai� J. Math. 47 (1973), 303�308.[7℄ , Indeomposable ontinua with one and two omposants, Fund. Math. 101(1978), 129�134.[8℄ C. C. Chang and H. J. Keisler, Model Theory, third ed., North Holland, Amster-dam, 1990.[9℄ E. V. Huntington and J. R. Kline, Sets of independent postulates for betweenness,Trans. Amer. Math. So. 18 (1917), 301�325.[10℄ J. R. Isbell, Median algebra, Trans. Amer. Math. So. 260 (1980), 319�362.[11℄ F. B. Jones, Conerning aposyndeti and non-aposyndeti ontinua, Bull. Amer.Math. So. 58 (1952), 137�151.[12℄ R. J. Koh and I. S. Krule, Weak utpoint ordering on hereditarily unioherentontinua, Pro. Amer. Math. So. 11 (1960), 679�681.[13℄ W. Lewis, Indeomposable ontinua, in: Open Problems in Topology II(E. M. Pearl,ed.), Elsevier, Amsterdam 2007, pp. 303�318.[14℄ S. Mazurkiewiz, Sur les ontinus indéomposables, Fund. Math. 10 (1927), 305�310.[15℄ T. B. Muenzenberger, R. E. Smithson and L. E. Ward, Jr., Charaterizations ofarboroids and dendriti spaes, Pai� J. Math. 102 (1982), 107�121.[16℄ S. B. Nadler, Jr., Continuum Theory, an Introdution, Marel Dekker, New York,1992.[17℄ M. H. A. Newman, Elements of the Topology of Plane Sets of Points, CambridgeUniversity Press, 1939.
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