334 research outputs found

    Exploring brain functions in autism spectrum disorder : a systematic review on functional near-infrared spectroscopy (fNIRS) studies

    Get PDF
    A growing body of research has investigated the functional development of the brain in autism spectrum disorder (ASD). Functional near-infrared spectroscopy (fNIRS) is increasingly being used in this respect. This method has several advantages over other functional neuroimaging techniques in studying brain functions in ASD, including portability, low cost, and availability in naturalistic settings. This article reviews thirty empirical studies, published in the past decade, that used fNIRS in individuals with ASD or in infants with a high risk of developing ASD. These studies investigated either brain activation using multiple tasks (e.g., face processing, joint attention and working memory) or functional organization under a resting-state condition in ASD. The majority of these studies reported atypical brain activation in the prefrontal cortex, inferior frontal gyrus, middle and superior temporal gyrus. Some studies revealed altered functional connectivity, suggesting an inefficient information transfer between brain regions in ASD. Overall, the findings suggest that fNIRS is a promising tool to explore neurodevelopment in ASD from an early age

    Investigating emerging self-awareness : its neural underpinnings, the significance of self-recognition, and the relationship with social interactions

    Get PDF
    Up until now, self-recognition in the mirror, achieved at around 18 months, has been used to assess self-awareness in infancy. Even though the significance of this test is not universally accepted, this field has progressed very little over the last decades, in contrast to a broad volume of literature on the self in adults. However, a relationship between self-other differentiation and social cognitive abilities has been recently hypothesized, renewing the interest in mechanisms underlying emerging self-awareness. Adult studies have highlighted that brain networks, instead of isolated brain areas, support self-processing. Therefore, the first two studies of this thesis validated the use of advanced connectivity analyses on infant fNIRS data. Making use of these methods, one study demonstrated that functional connectivity between regions belonging to a network that has been related to abstract self-processing in adults gradually increases over the first two years of life. The same network was found to characterise infants who recognise themselves in the mirror. In another study, crucial regions of this network were shown to be engaged during self-recognition in 18-month-olds. As social interactions have been suggested to be fundamental for the construction of the self, the last two studies of this thesis investigated the relationship between emerging self-awareness and social interactions. To test this, I focused on mimicry, known to play an important role in affiliation and in mediating relationships. One study demonstrated that emerging selfawareness may affect infants’ tendency to selectively mimic in-group members, which may indicate a possible role of self-comparison and identification processes. The last study did not find evidence for a relationship between mothers’ tendency to imitate their infants at 4 months and emerging selfawareness. Taken together, these studies enrich our understanding of the mechanisms underlying emerging self-awareness and they represent a pioneering starting point for further investigations into this topic

    Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies

    Get PDF
    Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method

    Two is better than one: The effects of strategic cooperation on intra- and inter-brain connectivity by fNIRS

    Get PDF
    Inter-brain synchronization during joint actions is a core question in social neuroscience, and the differential contribution of intra- and inter-brain functional connectivity has yet to be clarified along with the role of psychological variables such as perceived self-efficacy. The cognitive performance and the neural activation underlying the execution of joint actions were recorded by functional Near-Infrared imaging during a synchronicity game. An 8-channel array of optodes was positioned over the frontal and prefrontal regions. During the task, the dyads received reinforcing feedback that was experimentally manipulated to induce adoption of common strategies. Intra- and inter-brain connectivity indices were computed along with an inter-brain/intra-brain connectivity index (ConIndex). Finally, correlation analyses were run to assess the relationship between behavioral and physiological levels. The results showed that the external feedback could modulate participant responses in both behavioral and neural components. After the reinforcing manipulation, there were faster response times and increased inter-brain connectivity, and ConIndex emerged primarily over the dorsolateral prefrontal cortex. Additionally, the presence of significant correlations between response times and inter-brain connectivity revealed that only the \ue2\u80\u9ctwo-players connection\ue2\u80\u9d may guarantee an efficient performance. The present study provides a significant contribution to the identification of intra- and inter-brain functional connectivity when social reinforcement is provided

    Social cognition in the age of human–robot interaction

    Get PDF
    Artificial intelligence advances have led to robots endowed with increasingly sophisticated social abilities. These machines speak to our innate desire to perceive social cues in the environment, as well as the promise of robots enhancing our daily lives. However, a strong mismatch still exists between our expectations and the reality of social robots. We argue that careful delineation of the neurocognitive mechanisms supporting human–robot interaction will enable us to gather insights critical for optimising social encounters between humans and robots. To achieve this, the field must incorporate human neuroscience tools including mobile neuroimaging to explore long-term, embodied human–robot interaction in situ. New analytical neuroimaging approaches will enable characterisation of social cognition representations on a finer scale using sensitive and appropriate categorical comparisons (human, animal, tool, or object). The future of social robotics is undeniably exciting, and insights from human neuroscience research will bring us closer to interacting and collaborating with socially sophisticated robots

    Prefrontal cortex activation upon a demanding virtual hand-controlled task: A new frontier for neuroergonomics

    Get PDF
    open9noFunctional near-infrared spectroscopy (fNIRS) is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR) real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) in subjects while performing a demanding VR hand-controlled task (HCT). Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3-dimensional (3D) hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB) over a virtual route (VROU) reproducing a 42 m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2 ± 37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found between the distance traveled by the guided VB and the corresponding cortical activation. These results confirm the suitability of fNIRS technology to objectively evaluate cortical hemodynamic changes occurring in VR environments. Future studies could give a contribution to a better understanding of the cognitive mechanisms underlying human performance either in expert or non-expert operators during the simulation of different demanding/fatiguing activities.openCarrieri, Marika; Petracca, Andrea; Lancia, Stefania; Basso Moro, Sara; Brigadoi, Sabrina; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, ValentinaCarrieri, Marika; Petracca, Andrea; Lancia, Stefania; BASSO MORO, Sara; Brigadoi, Sabrina; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentin

    Cognitive mechanisms for responding to mimicry from others

    Get PDF
    Compared to our understanding of neurocognitive processes involved producing mimicry, the downstream consequences of being mimicked are less clear. A wide variety of positive consequences of mimicry, such as liking and helping, have been reported in behavioural research. However, an in-depth review suggests the link from mimicry to liking and other positive outcomes may be fragile. Positive responses to mimicry can break down due to individual factors and social situations where mimicry may be unexpected. It remains unclear how the complex behavioural effects of mimicry relate to neural systems which respond to being mimicked. Mimicry activates regions associated with mirror properties, self-other processing and reward. In this review, we outline three potential models linking these regions with cognitive consequences of being mimicked. The models suggest that positive downstream consequences of mimicry may depend upon self-other overlap, detection of contingency or low prediction error. Finally, we highlight limitations with traditional research designs and suggest alternative methods for achieving highly ecological validity and experimental control. We also highlight unanswered questions which may guide future research
    • …
    corecore