680 research outputs found

    Online Multi-Coloring with Advice

    Full text link
    We consider the problem of online graph multi-coloring with advice. Multi-coloring is often used to model frequency allocation in cellular networks. We give several nearly tight upper and lower bounds for the most standard topologies of cellular networks, paths and hexagonal graphs. For the path, negative results trivially carry over to bipartite graphs, and our positive results are also valid for bipartite graphs. The advice given represents information that is likely to be available, studying for instance the data from earlier similar periods of time.Comment: IMADA-preprint-c

    An efficient closed frequent itemset miner for the MOA stream mining system

    Get PDF
    Mining itemsets is a central task in data mining, both in the batch and the streaming paradigms. While robust, efficient, and well-tested implementations exist for batch mining, hardly any publicly available equivalent exists for the streaming scenario. The lack of an efficient, usable tool for the task hinders its use by practitioners and makes it difficult to assess new research in the area. To alleviate this situation, we review the algorithms described in the literature, and implement and evaluate the IncMine algorithm by Cheng, Ke, and Ng (2008) for mining frequent closed itemsets from data streams. Our implementation works on top of the MOA (Massive Online Analysis) stream mining framework to ease its use and integration with other stream mining tasks. We provide a PAC-style rigorous analysis of the quality of the output of IncMine as a function of its parameters; this type of analysis is rare in pattern mining algorithms. As a by-product, the analysis shows how one of the user-provided parameters in the original description can be removed entirely while retaining the performance guarantees. Finally, we experimentally confirm both on synthetic and real data the excellent performance of the algorithm, as reported in the original paper, and its ability to handle concept drift.Postprint (published version

    Variations on Memetic Algorithms for Graph Coloring Problems

    Get PDF
    11 pages, 8 figures, 3 tables, 2 algorithmsInternational audienceGraph vertex coloring with a given number of colors is a well-known and much-studied NP-complete problem.The most effective methods to solve this problem are proved to be hybrid algorithms such as memetic algorithms or quantum annealing. Those hybrid algorithms use a powerful local search inside a population-based algorithm.This paper presents a new memetic algorithm based on one of the most effective algorithms: the Hybrid Evolutionary Algorithm HEA from Galinier and Hao (1999).The proposed algorithm, denoted HEAD - for HEA in Duet - works with a population of only two individuals.Moreover, a new way of managing diversity is brought by HEAD.These two main differences greatly improve the results, both in terms of solution quality and computational time.HEAD has produced several good results for the popular DIMACS benchmark graphs, such as 222-colorings for , 81-colorings for and even 47-colorings for and 82-colorings for
    corecore