8 research outputs found

    Derandomization of Online Assignment Algorithms for Dynamic Graphs

    Full text link
    This paper analyzes different online algorithms for the problem of assigning weights to edges in a fully-connected bipartite graph that minimizes the overall cost while satisfying constraints. Edges in this graph may disappear and reappear over time. Performance of these algorithms is measured using simulations. This paper also attempts to derandomize the randomized online algorithm for this problem

    Online Assignment Algorithms for Dynamic Bipartite Graphs

    Full text link
    This paper analyzes the problem of assigning weights to edges incrementally in a dynamic complete bipartite graph consisting of producer and consumer nodes. The objective is to minimize the overall cost while satisfying certain constraints. The cost and constraints are functions of attributes of the edges, nodes and online service requests. Novelty of this work is that it models real-time distributed resource allocation using an approach to solve this theoretical problem. This paper studies variants of this assignment problem where the edges, producers and consumers can disappear and reappear or their attributes can change over time. Primal-Dual algorithms are used for solving these problems and their competitive ratios are evaluated

    Improved Online Algorithm for Weighted Flow Time

    Full text link
    We discuss one of the most fundamental scheduling problem of processing jobs on a single machine to minimize the weighted flow time (weighted response time). Our main result is a O(logP)O(\log P)-competitive algorithm, where PP is the maximum-to-minimum processing time ratio, improving upon the O(log2P)O(\log^{2}P)-competitive algorithm of Chekuri, Khanna and Zhu (STOC 2001). We also design a O(logD)O(\log D)-competitive algorithm, where DD is the maximum-to-minimum density ratio of jobs. Finally, we show how to combine these results with the result of Bansal and Dhamdhere (SODA 2003) to achieve a O(log(min(P,D,W)))O(\log(\min(P,D,W)))-competitive algorithm (where WW is the maximum-to-minimum weight ratio), without knowing P,D,WP,D,W in advance. As shown by Bansal and Chan (SODA 2009), no constant-competitive algorithm is achievable for this problem.Comment: 20 pages, 4 figure

    Minimizing Flow-Time on Unrelated Machines

    Get PDF
    We consider some flow-time minimization problems in the unrelated machines setting. In this setting, there is a set of mm machines and a set of nn jobs, and each job jj has a machine dependent processing time of pijp_{ij} on machine ii. The flow-time of a job is the total time the job spends in the system (completion time minus its arrival time), and is one of the most natural quality of service measure. We show the following two results: an O(min(log2n,lognlogP))O(\min(\log^2 n,\log n \log P)) approximation algorithm for minimizing the total-flow time, and an O(logn)O(\log n) approximation for minimizing the maximum flow-time. Here PP is the ratio of maximum to minimum job size. These are the first known poly-logarithmic guarantees for both the problems.Comment: The new version fixes some typos in the previous version. The paper is accepted for publication in STOC 201

    Scheduling with Outliers

    Full text link
    In classical scheduling problems, we are given jobs and machines, and have to schedule all the jobs to minimize some objective function. What if each job has a specified profit, and we are no longer required to process all jobs -- we can schedule any subset of jobs whose total profit is at least a (hard) target profit requirement, while still approximately minimizing the objective function? We refer to this class of problems as scheduling with outliers. This model was initiated by Charikar and Khuller (SODA'06) on the minimum max-response time in broadcast scheduling. We consider three other well-studied scheduling objectives: the generalized assignment problem, average weighted completion time, and average flow time, and provide LP-based approximation algorithms for them. For the minimum average flow time problem on identical machines, we give a logarithmic approximation algorithm for the case of unit profits based on rounding an LP relaxation; we also show a matching integrality gap. For the average weighted completion time problem on unrelated machines, we give a constant factor approximation. The algorithm is based on randomized rounding of the time-indexed LP relaxation strengthened by the knapsack-cover inequalities. For the generalized assignment problem with outliers, we give a simple reduction to GAP without outliers to obtain an algorithm whose makespan is within 3 times the optimum makespan, and whose cost is at most (1 + \epsilon) times the optimal cost.Comment: 23 pages, 3 figure

    Rejecting Jobs to Minimize Load and Maximum Flow-time

    Full text link
    Online algorithms are usually analyzed using the notion of competitive ratio which compares the solution obtained by the algorithm to that obtained by an online adversary for the worst possible input sequence. Often this measure turns out to be too pessimistic, and one popular approach especially for scheduling problems has been that of "resource augmentation" which was first proposed by Kalyanasundaram and Pruhs. Although resource augmentation has been very successful in dealing with a variety of objective functions, there are problems for which even a (arbitrary) constant speedup cannot lead to a constant competitive algorithm. In this paper we propose a "rejection model" which requires no resource augmentation but which permits the online algorithm to not serve an epsilon-fraction of the requests. The problems considered in this paper are in the restricted assignment setting where each job can be assigned only to a subset of machines. For the load balancing problem where the objective is to minimize the maximum load on any machine, we give O(\log^2 1/\eps)-competitive algorithm which rejects at most an \eps-fraction of the jobs. For the problem of minimizing the maximum weighted flow-time, we give an O(1/\eps^4)-competitive algorithm which can reject at most an \eps-fraction of the jobs by weight. We also extend this result to a more general setting where the weights of a job for measuring its weighted flow-time and its contribution towards total allowed rejection weight are different. This is useful, for instance, when we consider the objective of minimizing the maximum stretch. We obtain an O(1/\eps^6)-competitive algorithm in this case. Our algorithms are immediate dispatch, though they may not be immediate reject. All these problems have very strong lower bounds in the speed augmentation model

    Resource Augmentation for Weighted Flow-time explained by Dual Fitting

    Full text link

    Eight Biennial Report : April 2005 – March 2007

    No full text
    corecore