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Minimizing Flow-Time on Unrelated Machines

Nikhil Bansal* Janardhan Kulkarri

Abstract

We consider some flow-time minimization problems in the latezl machines setting. In this setting,
there is a set ofn machines and a set af jobs, and each joh has a machine dependent processing
time of p;; on machine.. The flow-time of a job is the amount of time the job spends & shistem
(completion time minus its arrival time), and is one of thestieatural quality of service measure. We
show the following two results: af(min(log? n, log n log P)) approximation algorithm for minimizing
the total-flow time, and a®(log n) approximation for minimizing the maximum flow-time. HeFeis
the ratio of maximum to minimum job size. These are the firgtvkm poly-logarithmic guarantees for
both the problems.
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1 Introduction

Scheduling a set of jobs over a heterogeneous collectionachimes to optimize some quality of service
(QoS) measure is one of the central questions in schedllewy. In modern computing environments be it
web-servers, data-centers, clusters of machines or pgrsomputers, heterogeneity of the processors and
architectures is ubiquitous. The most general and widelgisti model that incorporates the heterogeneity
of jobs and machines is the so-calledrelated machinesetting. Here, there is a sétof n jobs and a set
M of m machines. Each job is specified by its release time (or arrival timg) which is the first time
instant it is available for processing, and a (machine déget) processing requiremeny;, which is the
time take to executg if run on machinei. In this paper, we consider some flow-time related objestive
The flow-time of a job, defined as the amount of time the job dpén the system, is one of most natural
measures of quality of a service received by a job. In pdeicif a job j completes its processing at time
C};, then flow-time of the jokF; is definedC; — r;; i.e., its completion time minus its arrival time.

We consider two basic offline problems in the unrelated nreghisetting: (i) Minimizing the total
flow-time of jobs and (ii) Minimizing the maximum flow-time. d8h these objectives have been studied
extensively in previous works (as we discuss below). Howallghese results were known only in more
restricted settings, and obtaining non-trivial approxXiores for the general unrelated machines setting was
wide open.

More restricted settings: For scheduling on multiple machines, various different giethave been studied

in the literature. The simplest one is the identical machisetting, where the processing time of a job is
identical on all the machineg = p; for all 7). A more general model is the related machines setting,
where each machine has a speedind a job has sizg; (that is, p;; = p;/s;). Another model is the
restricted assignment setting, where a jdias a fixed size, but it can only be processed on some stpset
of the machines (that ig;; € {p;,o0}). Clearly, all of these are special cases of the unrelatethmes
setting.

Minimizing Total flow-time: This objective has been studied extensively in both theneffind online
settings, and in various models (see sedfioh 1.1 for moezarefes). In the single machine case, it is well
known that the SRPT (Shortest Remaining Processing Tinge)iim is optimal for minimizing the total
flow-time if preemption is allowed, that is, when a job can bteirupted arbitrarily and resumed later
from the point of interruption without any penalty. If preption is disallowed, the problem becomes much
harder and cannot be approximated better than'/2) unless P=NF[16]. We will consider only preemptive
algorithms in this paper.

For multiple machines, the first breakthrough result was tdukeeonardi and Raz [18] who showed
that SRPT is arD(log(min (7, P))) competitive (online) algorithm on identical machines. &iéris the
ratio of the maximum to the minimum job size. They also showed no deterministic online algorithm
can do better. Subsequently, other algorithms with sintitanpetitive ratio, but other desirable properties
such as no-migration and immediate dispatch were alsorautéfl [18, [4]. Later, poly-logarithmic offline
and online guarantees were also obtained for the relatedinescsetting[[12, 11]. Interestingly, Garg and
Kumar [14] showed that things do not improve much in the ddfletting. In particular, n®(log'=¢ P)
approximation exists for any> 0, even for identical machines, unless P=NP.

The above approaches do not seem to help in the restrictephasnt case, which is much harder (for
example, any online algorithm here must®eP) competitive [13]). In an important breakthrough, Garg
and Kumar|[[13] obtained af?(log P) approximation for the problem, based on an elegant and moatt
LP rounding approach. In particular, they consider a natuiParelaxation of the problem, and round it
based on computing certain unpalatable fldws [10] on an apiately defined graph.



In an attempt to extend these ideas to the unrelated mactases/[14] introduce &, 3)-variability
setting (see [14] for details of the model) and prove a gémesalt that in particular implies logarithmic
approximations for both restricted assignment and relatadhines setting. For the unrelated case, their
result implies anO(k) approximation where the processing lengths (of all jobs, over all machines)
take k different values. This result was also obtained indepethgdry Sitters [20] using matching based
techniques (the definition df [20] is slightly different). In general howevércould be as large asm, and
hence a key open question (see e.gl [11, 20] has been wheatlér-garithmic approximation exists for
unrelated machines.

Our first main result gives a positive answer to this question

Theorem 1.1. There exists a polynomial tint@(log n - log P)-approximation algorithm for minimizing the
sum of flow-times in the unrelated machine setting with ppiems.

Using a standard trick (see section]2.4) this implie©&lg® n) approximation, which may be better if
P is super-polynomial im.

Our algorithm is based on applying the iterated roundingh&a&ork to a new time-indexed linear pro-
gramming formulation for the problem. The formulation wensmler is different from those considered
previously, and has much fewer constraints than the natumal-indexed formulation. The fewer con-
straints are critical in allowing the use of iterated roungdi We describe the new formulation and give an
overview of the algorithm in sectidd 2. Theoréml1.1 is prowesectior 2.

Maximum flow-time: In many settings, it may be desirable to ensure ¢vatyjob experiences a low delay,
instead of guaranteeing low average delay (which is eqemab total flow-time). Thus a natural objective
is to minimize the maximum flow-time over all the jobs. Thigeattive is quite different in flavor from
average flow-time. In particular, most algorithms minimgiaverage flow-time give priority to smaller jobs
over longer ones, and hence large jobs tend to suffer upfairge delays. Maximum flow-time is in fact
closely related to deadline scheduling problems, as themem flow-time isD if and only if every jobj
released at; is completed by time; + D.

For a single machine, First In First Out (FIFO) is an optimatline) algorithm for minimizing the
maximum flow-time. For multiple machines, a 3 competitivdiran algorithm is known in the identical
machine settind J1]. In more general settings, only resadised on the resource augmentation analysis are
known (see sectidn 1.1 for more details). In particular, an-trivial approximation algorithm is known for
the problem in the unrelated machine setting.

Our second main result is the following.

Theorem 1.2. There is arO(log n) polynomial time approximation algorithm for minimizingetmaximum
flow-time in the unrelated machine setting.

In fact, the algorithm computes a solution whose maximumtilom exceeds (additively) the optimum
value by at mosP (log n)pmax, Wherep,,.x is the maximum size of a job in the optimum schedule.

To obtain the result we again write a natural linear programgmelaxation of the problem with few
constraints, and then apply the iterated rounding tecknidiheoreni 112 is proved in sectibh 3. The key
difference here from the proof of theorédm]1.1 is that in thalfsthedule we must ensure tht job is
delayed by too much.

1.1 Additional Related Work

We briefly survey some additional closely related resultilgve only consider unweighted total flow-
time, the weighted version has also been extensively stuéfier single machine, the best known approxima-
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tion is O(log log P) [[7], and several poly-logarithmic online algorithms arscaknown [9] 6]. For multiple
machines, na°!) can exist for total weighted flow-time (via an easy reductimm 3d-matching) and
hence all results here are in the so-called resource augtimensetting (see e.d.|[8, 3]). A comprehensive
survey of various flow-time related results can be found B)/[9].

Recently, maximum flow-time was studied by Anand et(al. [2}fie online setting. They showed a
lower bound ofQ2(m, poly(n)) for the restricted assignment case, and gave an algorithtindounrelated
machines case in the resource augmentation model.

2 Minimizing the total flow-time

In this section, we consider the problem of minimizing tdtalv-time on unrelated machines and prove
theoreni 111.

2.1 Alternate LP relaxation and the high-level idea

Standard LP formulation: Before describing the new LP formulation that we use, we €lestcribe the
standard time indexed linear programming relaxation ofttudolem that was used for example [in|[L3} 14].
There is a variable;;; for each machine € [m/|, each jobj € [n] and each unit time sldt> r;. Thex;;;
variables indicate the amount to which a jpls processed on machin@uring the time slot. The first set

of constraints[{l1) says that every job must be completelggassed. The second set of constraints (2) says
that a machine cannot process more than one unit of job danggime slot. Note that this LP allows a job
to be processed a job on multiple machines, and even at the thaim

. t—rj 1)
min + =) Xy
> (S +s)

i?j7t

st S0Y sy vj (1)

[ tZT’j ng
Z wijr <1 Vi, t 2)
Jjit>r;
xijtzo V’i,j,tzo

Fractional flow-time: The objective function needs some explanation. The @m xi;¢ IS precisely the
total amount of processing done on jpbThe termzi,t(t —rj)- % is thefractional flow-time of job; and
we denote it byf;. The (integral) flow-time of a joh can be viewed as summing up 1 during each time step
that; is alive, i.e.} >, . isaive ay 1- The fractional flow-time instead is the sum over time intstaof the
remaining (unfinished) fraction of joj Note that on maching the fraction of jobj that is unfinished at
timetis) , -, “’;—J]’f (the numerator denotes the amount of work that will be dooe machine at time after
t). Thus the fractional flow-time on machines th” Dot Z—Jf which by collecting ther;;; terms is
exactly equal t(ZM(t—rj) . “’;—J]’f It can be easily checked that the integral flow-time is atléze fractional
flow-time plus half the size of a job. Thus the objective fimttn the above LP is valid lowerbound on the
optimal solution. For more details on the fractional flomi and the LP above, see [13].

We assume thahin; ; p;; # 0 (if p;; = 0, we simply schedulg on machine; upon arrival). Define
P = max; ; p;;/ min; ; p;;. Without loss of generality, we assume henceforth that; ; p;; = 1. For
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kE =0,1,...,log P, we say that a joly belongs to clas& on machinei if p;; € (2F=1,2%]. Note that
the class of a job depends on the machine. We now give a newla&®ation for the problem. The main
idea is that we do not enforce the capacity constraiits (22¢dah time slot, but instead only enforce these
constraints over carefully chosen intervals of time. Theaathge of this relaxation is that it has relatively
few constraints, which is will be useful in applying the @&rd rounding approach to it. Even though the
number of constraints is fewer, as we will see the qualityhefrelaxation is not sacrificed much.

New LP formulation: In the new LP relaxation of the problem there is a variaple (similar to z;;;
before) that denotes the total units of jgplprocessed on machineat timet. However, unlike the time
indexed relaxation, we allow;;; to take values greater than one. In fact, we will round the bBvin such
a way that eventually;;; = p;; for each job, which will have a natural interpretation ttuit j is scheduled
at timet on machine.

For each clasg and each maching we partition the time horizoff0, 7] into intervals of sizet - 2.
Without loss of generality we can assume tiia nP (otherwise the input instance can be trivially split
into two disjoint non-overlapping instances). koe 1,2, ..., let (i, a, k) denote the:-th interval of class
k on machine. Thatis, (i, 1, k) is the time interval0,4 - 2*] andI(i,a, k) = ((4 - 2¥)(a — 1), (4 - 2¥)a].

We write the new LP relaxation.

YYY X (Seg) (Pre)

i t>ry koje(2k—12k)

st YN Yty vj A3)

i t>r) Pij
> > wije<Sizel(i,a.k) Viok,a %)
Jipij <2k tel(i,ak)
Yijt =2 0 Vi, j,t :t>r;

Here, Siz€I(i, a, k)) denotes the size of the intervB(i, a, k) which is4 - 2¥ (but would change in later
iterations of the LP when we apply iterated rounding). Obeséinat in [4) only jobs of class & contribute
to the left hand side of constraints corresponding to itisref class:.

Clearly, [CPLey) is a relaxation of the time indexed LP formulation consédeabove, as any valid
solution there is also a valid solution (by settingy;;s = ;). Therefore, we conclude that an
optimum solution to[l(P.,)) lower bounds the value optimal solution.

Remark: When we apply iterative rounding and consider subsequeantds)y we will refer the intervals
I(i,a,k) asl(i,a, k,0) (to indicate that they are intervals from the 0-th round)wdeer we drop) from
description above for now.

The high-level approach: The main idea of our algorithm is the following. Let us callabjj to be
integrally assignedto machine: at timet, if y;;; = p;; (note that this job will be completely executed
on machinei). Let us view this as processing the jglaluring [t,t + p;;). In the algorithm, we first find
a tentativeintegral assignment of jobs to machines (at certain timesh shat the total flow-time of this
solution is at most the LP value. This solution is tentativéhie sense that multiple jobs could use the same
time slot; however we will ensure that the effect of this dapris negligible (in the sense of Lemmal2.1
below).

More precisely, we show the following result.



Lemma 2.1. There exists a solutiop* = {yjjt}z-vj,t satisfying the following properties.

e (Integrality) For each joby, there is exactly one non-zero variabjg; in y*, which takes valug;;.
That is, each job is assigned integrally to exactly one maghand one time sloty;;, = p;;.

e (Low cost) The cost of/* is at most the cost of an optimal solutioniB .|

e (Low overload) For any interval of timdty, 2], every machine and for every clasg,

Z Z Yije < (t2 —t1) + O(logn) - 2k

J1pij <2k t€[t1,t2]

That is, the total size of jobs of class at mbstssigned integrally in any time intervit , t;] exceeds
the size of the interval by at maStlog n) - 2.

Lemmal[Z.1 is the core of our algorithm, which will be provedhgsterated rounding. In particular,
we show using a counting argument that in each round a bassihbfe optimum solution assigns at least a
constant fraction of jobs integrally in each round. Theref@fterO(logn) rounds every job is integrally
assigned to some machine. In each round as some jobs getlhiyegsigned, we will fix them permanently
and reduce the free space available in those intervals., T\emerge these intervals greedily to ensure that
the free space in an interval corresponding to clastaysO(1) - 2¢. This merging process adds an overload
of at mostO(1) - 2* to any time interval in each round. This ensures that thé éotar added for any time
interval isO(logn) - 2.

The next step is to show that the tentative schedule can heted to a valid preemptive schedule by
increasing the total flow-time of jobs by (log Plogn) times thelLP,,, value. To this end, we use ideas
similar to those used by [11, 13] for the related or restdatgachines case. In particular, we schedule the
jobs on each machine in the order given by the tentative st@gdhile prioritizing the jobs in the shortest
job first (SJF) order. The low overload property of the taméaschedule ensures that a job of class
additionally delayed by at mo§(log n) - 2* due to jobs that arrive before it, or is delayed by smallesjob
(of strictly lower class) that arrive after the time whengtténtatively scheduled. In either case, we show
that this delay can be charged to the total flow-time of otbbs

We now give the details. We first describe in seclion 2.2 hogotivert a tentative schedujé satisfying
the conditions of Lemm@a 2.1 to a proper one, and show how niydiés Theoreni 111. In sectiGn .3 we
describe the iterated rounding algorithm and prove leinfia 2.

2.2 Tentative Schedule to Actual Schedule

We show how Theoreifn 1.1 follows given a solutighsatisfying the conditions of Lemnia 2.1. Recall that
in the solutiony*, for each jobj, we havey;;; = p;; for some time instantand some maching but this is
not necessarily a valid schedule. We conygrinto a valid preemptive scheduteas follows. Fix a machine

i and letJ (¢, y*) denote the set of jobs which are scheduled on machimée solutiony* (i.e. jobs; such
thaty;;; = p;; for some time instant). In the scheduley, for each maching, we imagine that a job in
J(i,y*) becomes available fdf at the timet wherey;;; = p;;. We schedule the jobs il (after they become
available) using Shortest Job First (SJF) (where jobs irséime class are viewed as having the same size);
for two jobs belonging to same class we schedule the jobsiottier given by *. Let Ji (i, S) denote the
set of jobs of clas& which are assigned to machinén scheduleS, and letJ (i, S) = Uy Ji (i, .S) denote
the set of jobs scheduled Isyoni. Clearly, Ji. (i, S) = Ji(i,y*). We also observe that, since jobs within a
class are considered in order, for each cfassid on each machingthere is at most one job belonging to
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classk which is partially processed (due to preemptions by jobssshaller class). This directly implies the
following relation between the fractional and integral fiime of jobs inS. Let Fjs denote the flow-time

of job j in scheduleS andff denote the fractional flow-time.

Lemma 2.2. Fix a machine and the set of jobs belonging to classThen,

Z FP < Z 77+ Z Pij-

JEJIC(Z7S) ]eJk(7'7S) JEJ(ZVS)
Remark: Note that first two summations are ov&f(7, S), while the third summation is ovek(i, S).

Proof. We use the alternate view of integral and fractional rowem';mLetCS denote the completion time
of job j mthe schedule. Then, the integral flow-time of is FS ft ; 1 dt and the fractional flow-time

is fS ft ” pi;(t)/pijdt, wherep;;(t) denotes the remaining processing time of jadn machine.

Let Jx (1, S t) denote the set of jobs available for processing at timfeclassk on machine in S, which
have not been completed, afid:, k) denote the set of time instants whefgi, S,¢) > 1, i.e. at least one
job of classk is alive. Then,

> Ff:/ | \Jk(i,S,t)\dtg/
teT (i,k)

JE(,S) tET (k)

<1+ > p” )dt< Somit Y.

Jj€J(1,5) jeJ(4,5) Jj€J(1,5)

The first inequality follows as there is at most one partigiipcessed job of clasks at any time in
S. The second inequality follows by observing thj@é )1dt is simply the time units when at least
one classk job is alive. This can be at most the time When any job (of aags) is alive, which is pre-
cisely equal toZJEJ (i,8) Pij» the total processing done on machings the schedul® is never idle if

there is work to be done). Thug,- . 1dt < 3. ;. s) Pij- MOT€OVeT, [, 13 s i s) ”Zl_(jt) dt =

D iedu(i,S) fter pljii)dt which is exactly the total fractional flow-timg; ;. ; ; <) f7 - O

Let Vi(y*,4,t) denote the total remaining processing time (or volume) b$ jof class: alive at time
t on machine; in the schedule defined hy* (i.e. these are precisely the jobs that are released butetot y
scheduled by); similarly, letV;(.S,4,t) denote the total remaining processing time of jobs of cladsat
haver; < t, but are unfinished at timeon machine; in the schedule5. As a job is available fo5 only
after it is scheduled ip*, we make the following simple observation.

Observation 1. For any k, Vi.(v*,i,t) < Vi(S,4,t). MoreoveVy(S,i,t) — Vi(y*,i,t) is the volume of
precisely those jobs of clagsthat are available toS (i.e. already scheduled ip*), but have not been
completed bys.

We now show the crucial lemma the (y*, i, t) andV (S, i,¢) do not deviate by too much.
Lemma 2.3. For machinei and classk, Vt, Vi.(S,i,t) — Vi(y*,i,t) < O(logn) - 2

Proof. By Observatiod 1V} (S, i,t) — Vi(y*,4,t) is the total processing time of jobs of clakghat are
available for processing iff at timet and not yet completed. A8, (S,i,t) — Vi(y*,i,t) < V<i(S,i,t) —
V<r(y*,4,t) (this follows by Observationl1 &g (S, i,t) > Vi (y*, i, t) for eachk’), it suffices to bound the
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latter difference. Let’ < ¢ be the last time beforewhen machine was idle inS, or was processing a job
of class strictly greater thala This means that no jobs of classk are available t&' (as they have either
not arrived or have not yet been made availablg/By Thus,V<(S,i,t") = V<i(y*,4,t’) or equivalently
Ver(S,i,t") — Ver(y*,i,t") = 0. By the low overload property, the total volume of jobs bejioigy to class
at mostk that becomes available durirgf, ¢] is at most(t — t') + O(log n)2*. SinceS processes only jobs
of class at mosk during (¢, ¢] (by definition oft’), S completes precisely — ¢’ volume of jobs belonging
to class at most. This implies that/< (S, i,t) — Vi (y*,i,t) = O(logn)2k. O

We are now ready to show how this implies Theotenh 1.1

Proof of Theorem[L.1l We first compare the fractional flow-times of schedules ddfimgy* and .S and
then use Lemmla 2.2 to complete the argument.

Defineyfjt variables corresponding to the schedtldy settingyfjt to amount of processing done on
job 7 on machine at timet in the schedules . Let P(S, ) = ZJEJ(Z.’S) > yfjt denote the total processing
time of the jobs scheduled on machine S. Clearly, since the set of jobs on maching y* and S is
identical, we haveP(S,i) = P(y*,i). LetT(i,k) be the times when there is at least one available but
unfinished job inS. Recall thatfteT (i) L dt = P(i,S).

Then, the difference between the fractional flow-times bkjm .S andy* can be bounded by

S = XYY el (57

J Lk jipiye(2k—1,2K)

ZZZ Yo i) (;—ff)

t k]p€2k 121@}

- ZZZ Z %(Vk(svﬁt) Vk( 7Z> )) (5)

t k Jipi; € (2k lgk}

ZZ Z O(logn) [By Lemma[(2.3]

vk teT (i,k)

= > > O(logn)P(i,S) (6)
i k
< ZO(logn-logP)P(i,S)

= O(logn -log P)P(S)

IN

IN

Here [3) follows as for any schedutg the quantityzjzpije(zk,lzk} thrj yfjt(t — ;) is exactly equal
to >, Vi(S,1,t) (by the two different ways of looking at fractional flow-tifne



Now we can bound the total flow-time as

ZF =22 > F

vk jedi(i,S)

IN

zz( S ey ) oy Lemma iz
7 k

JeJk(sz) ]EJ(Z,S)

222 2 P

ik jeJ(i,S)
> 7+ 0(log P)P(S)
J

IN

< Z "+ O(logn - log P)P(S)
J

which is at mosO(log n - log P) times the value of optimal solution [fd° ..} O

2.3 lterated Rounding of LP,.,, and proof of Lemmal2.1

In this section we prove the LemrhaR.1 using iterated roundim the iterated rounding technique, we
successively relax theP,,, with a sequence of linear programs, each having fewer @intrthan the
previous one while ensuring that optimal solutions to tinedr programs is at most the cost of optimal
solution toLP .. An excellent reference for various applications of theht@que is[[17].

We denote the successive relaxations Bfe,w by LP(¢) for ¢ = 0,1,.... Let J(¢) denote the set of
jobs that appear i, P(¢). Linear programLP(0) is same a$Pyew, and.J(0) = J. We defineLP(¢) for
£ > 0 inductively as follows.

e Computing a basic optimal solutiorftind a basic optimal solutiog*(¢ — 1) = {yfjgl}ivj,t to LP(¢—
1). We useyfﬁl to indicate the value taken by the variable; in the solutiony*(¢ — 1). LetS,_; be
the set of variables in the support®f(¢ — 1). We initialize J(¢) = J(¢{ — 1).

¢ Eliminating O-variables:The variablesy;;; for LP(¢) are defined only for the variablesd_;. That
is, if yfﬁl = 0iny*(¢ — 1), then these variables are fixed to O forever, and do not ajipdaP (¢).

e Fixing integral assignmentdf avariableyfj‘t1 = p;j iny*(¢—1) for some jobj, then; is permanently
assigned to machineat timet in y* (as required by Lemnia2.1), and we updafé) = J(¢) \ {j}.
We drop all the variables corresponding to the jah L P(¢), and also drop the service constraidt (8)
for the jobj. We useA(¢ — 1) to denote the set of jobs which get integrally assigneffin 1)-th
iteration. We redefine the intervals based on the unassigischext.

Remark: It will be convenient below not to view an interval as beindied by its start and end
times, but by they;;;-variables it contains.

e Defining intervals for/-th iteration: Fix a classk and machinei. We define the new intervals
I(i,*, k,¢) and their sizes as follows.

Consider the jobs in/(¢) (those not yet integrally assigned) belonging to classek, and order
the variablesy;;; in increasing order of (in case of ties, order them lexicographically). Greedily



group consecutivg;;; variables (starting from the beginning) such that sum o@ﬁ]q‘gé values of the
variables in that group first exceeds 2*.
Each such group will be an interval (which we view as a subfegt;pvariables). Define the size of
an intervall = I(i,*,k,¢) as

Slqu Z yzgt : (7)

yLJtEI

Asy;" < 2 for jobs of classk, clearly Sizél) € [4- 2,5 - 2¥] for eachl (except possibly the last,
in which case we can add a couple of extra dummy jobs at the.end)

Note that the intervals formed ibhP(¢) for ¢ > 0 are not related to time anymore (unlike”(0)), and in
particular can span much longer duration of time tha2*. All we ensure is that the amount of unassigned
volume in an interval i$2(2%).

Defining the LP for ¢-th iteration:  With the above definition intervals(i, a, k, £) and they;;; variables
defined for the/-th iteration, we write the linear programming relaxation 4-th round,L P(¢).

EYY Y () wP(e)

i t>ry ko jed(0):je(2k—1,2%] Pij

i >y p”
> i < SizeI(i, a, k. 0)) Vi, k,a 9)
Yijt €1(1,a,k L)
Yijt = 0 Vi,je JW),t : t>r;

2.3.1 Analysis

We note that.P(?) is clearly a relaxation of. P(¢ — 1) (restricted to variables corresponding to jobs in
J(0)). This follows as setting;j; = yfﬁl is a feasible solution fof. P(¢) (by the definition of Siz€l)).
Moreover, the objective function di P(¢) is exactly the objective oL, P(¢ — 1) restricted to variables in
J(¢). Lety* denote the final integral assignment (assuming it existgimdd by applying the algorithm
iteratively toLP(0), LP(1),.... Then this implies that,

Lemma 2.4. The cost of the integral assignmeiatst(y*) is at most the cost of optimal solution t@ e, -

Bounding the number of iterations: We now show that the sequence bP(¢) relaxations terminate
after some small number of rounds. L&t = |J(¢)| denote the number of jobs ihP(¢) (i.e. the one
unassigned after solvingP (¢ — 1)).

Lemma 2.5. After each iteration, the number of unassigned jobs deeay a constant factor. In partic-
ular, for eacht: Ny, < Ny_1/2.



Proof. Consider the basic optimal soluti@f‘i(e —1)to LP(¢ —1). LetS,_, denote the non-zero variables
in this solution, |eym such thatym > 0. Consider a linearly independent family of tight consttsiiim

LP(¢ — 1) that generate the solutigff (¢ — 1). As tight constrednts;;fjg1 = 0 only lead to0 variables, it
follows that|S,_1| is at most the number of tight constrairit$ (8) or tight cayamonstraints[(9). Le€,_,
denote the number of tight capacity constraints. Thus,

|Se—1] < Np—1 + Cy_y. (10)

Recall thatA(¢ — 1) denotes the set of jobs that are assigned integrally in théioy* (¢ — 1). As each
job notin A(¢ — 1) contributes at least two t&,_1|, we also have

|Se—1| = |A(€ = 1)| 4+ 2(No—y — |A(L = 1)|) = N1 + Ny (11)

The equality above follows a8, = N,_; — |A(¢ — 1)] is the number of the (remaining) jobs considered in
LP(¢). Together with[(ID) this gives
Ng < Cg_l. (12)

We now show tha€,_; < N,_/2, which together with[(T2) would imply the claimed result. Aéethis by
a charging scheme. Assign two tokens to eachjjobN,_;. The jobs redistribute their tokens as follows.
Fix a jobj and Ietk( ) denote the class gfon machine. For each maching timet and clasg’ > k(i),

IZ
the job; gives ———— e k() ;{t tokens to the clask’ interval I (i, a, k', ¢ — 1) on machine containingy;;;. If
ij

there are multiple time slotsin an intervall (i, a, k', ¢ — 1) with yfjtl > 0, thenI(i,a,k’,¢ — 1) receives a
contribution from each of these slots. This is a valid tokestridbution scheme as the total tokens distributed
by the jobj is at most

y, yz yz
2.2 2 j-t by T2 Loy S | <2 2.2 T
2 2 Pij

it K>k t Pij =k t

Next, we show that each tight constraint of type (9) receatdsast! tokens. If an interval (i, a, k', ¢ — 1)
of classk’ on machinei is tight, this means thatC, =/ 401 yfj_tl = SizgI(i,a,k',£ — 1)) which is
at least! - 2F'. Now, the tokens given by variableyg; in I(i,a, k', ¢ — 1) wherej is of classk(i) < k' are

/—1 (-1 (-1
yzgt > yzgt o yijt

9K k(i) . R k(i) . ok(D)) ~ K
( i) ( )

Thus, the tokens obtained Byi, a, k',¢ — 1) are at1easy>,  crq ou o1y Uiy /27 > 42V /2% =
jt J
As each job distributes at most 2 tokens and each tight ialteeceives at Ieast 4 tokens, we conclude that
Co—1 < Ny_1/2. O

Bounding the Backlog: To complete the proof of Lemnia 2.1, it remains to show thagfortime period
[t1,t2] and for any clasg, the total volume of jobs belonging to class at mesissigned tdtq, to] in y* is
at mostty — t; + O(logn)2”. Recall thatA(¢) denotes the set of jobs which get integrally assigned in the
¢-th round. We usel(ty, 9,1, k, ¢) to denote the set of jobs of classk which get integrally assigned to
the machine in the intervalty, ts].

Given the solutiorny*(¢) to LP(¢) and a time intervalt,, t5], let us define

10



Vol(ty, t,i k,0) == >ovnt D > py

jEJ(Z):pijgzk tE[tth] Z'S(Z—l) jeA(tl,tQ,i,k),é')

as the total size of jobs of class k, assigned either integrally or fractionally to the perjod ¢2] after ¢
rounds. The following key lemma controls how muébl can get worse in each round.

Lemma 2.6. For any period|t, t2], machinei, classk and round/,
Vol(ty, tg, i, k,0) < O(1) - 28 4 Vol(ty, to, i, k, £ — 1).

Proof. By the definition ofVol this is equivalent to showing that

3 ST+ S oo -2y Y oyt (13

jEJ(Z):pijSQk te[tlth] jeA(t17t27i7k7Z_1) jeJ(Z_l):pijSTC te[tht?}

Fix a time periodty, t2]. The main idea is that in each roufidthe error toVol can be introduced only
due to the two clasa intervals overlapping with the boundary [of, ¢2].

Consider the maximal set of contiguous intervals, b, k,¢), I(i,b + 1,k,£),... I(i,b + h,k,£), for
someb, h > 0, that contain the perioft;, t2]. More preciselyp is the smallest index such thati, b, k, ¢)
contains some;;; with ¢ € [t1,t2], andh is the largest index such thati, b + h, k, ) contains some; ;;
with t € [t1,t5]. As these intervals have size at mds2*, we have

S e X s o)
yijtel(i,b,k,g) yijtel(i,b+h,k,£)

Now, consider the interval(i, b, k,¢) € {I(i,b + 1,k,€),I(i,b0 + 2,k,£),... 1(i,b+h — 1,k £)}
that are completely contained jty, 5] (i.e. for all y;;; € I(i,V',k,¢), t € [t1,12]).By definition of these
intervals and capacity constraintsld?(¢) we have,

bth—1 bth—1
> > wly <) SizelI(i,b,k,0)  [Bythe constraint<{9) dfP(¢)]
b =b+1 y €1(i,0/ kL) b=bt1
b+h—1
< > > yh' [By definition [7) of Sizé

b =b+1y;;.€I(i,b' kL)

> D> vt (15)

jEJ(Z)p“ §2k te [t1 7t2}

IN

We now prove[(13). Consider,

b+h
Z Z yfjt < Z Z yfjt
JEJ(0):pi <2k te[ta,ta] b'=by,; €1(i,b kL)
< 10-284+ ) > it [by @3) and[(IE)
JEJ(0):pi; <2k te[ty ta]
< 102+ ) POR D DR

JEJ(6—1):p; <2k te[ty ta] JEA(t1,t2,i,k,0—1)
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The last step follows ag(¢) = J(¢—1)\A({—1) and astGA(tm,i,k’g_l) yfﬁl = ZjeA(tht%i’k,z_l)pij.
]

This directly implies the following bound on the total erinrany periodty, t2] in y*.

Lemma 2.7. For a given time periodt, , t2], machine; and classk, the total volume of jobs of class at most
k, assigned to the interval is at mags — ¢1) + O(log n)2*.

Proof. Recall the definition of an interval(i, a, k,0) in LP(0). Each intervall (i, a, k,0) = (¢',t"] has
size4 - 2% and contains all the, ;; variables for jobs of class at mastandt¢ € (¢/,¢”]. Therefore, for any
period[ty, t2], by considering the capacity constraifii} ¢f L P(0) for the overlapping intervals(i, *, k, 0),
we obtain

Vol(ty, to,,k,0) = Y Yy < (o —t1) +0(1) - 2* (16)

§ipi; <2F te[t ta]

Applying lemmd2.5 inductively (for the teriviol in the above equation) over tli&(log n) iterations of
the algorithm gives the result. O

Proof of Lemma[2dl Consider the final solutiop* at the end of the algorithm. By our construction, each
job is integrally assigned ip*. By Lemma[2.4), cosi(*) is no more than the cost of an optimal solution
to LP,w. By Lemmal[(2.V), for any time periof;, t2], machinei and class, the total volume of jobs
assigned of jobs in class & is at most(t> — t1) + O(log n)2*. This concludes the proof. O

2.4 TheO(log? n) approximation

The O(log? n) approximation follows directly by observing that jobs musthall p,,,., essentially have no
effect.

The algorithm guesseas,.., the value of the maximum job size in an optimal solution ($gytrying
out all possiblenn choices), and considers a modified instadtavhere we sep;; = pmax /n? whenever
pij < Pmax/n?, and applies the previous algorithm ff. Clearly, P < n? for J’. Moreover OPTJ') <
2 OPT(J). Indeed, consider the optimum solution fbiand for each joly assigned to machinewith size
Dij < Pmax/n?, inCrease its size to,.x/n? and push all the jobs behind it by the amount by which the size
increases. This gives a valid schedule for Each job can be pushed by at magbbs, and hence its flow
time increases by at most: p,,.x/n?. Thus the total flow-time increases by at mpst, which is at most
OPT(J).

3 Minimizing the Maximum flow-time

We now consider the problem of minimizing the maximum floméi By doing binary search, we assume
that we know the value of optimum solution (OPT), say OPD=Let us index the jobs by their release
times (breaking ties arbitrarily).

We now write a linear programming relaxation for the probleim this relaxation, there is a variable
x;; denoting the total processing done on jobn machine. If p;; > D for a jobj on machine, then we
setz;; = 0, asj cannot be scheduled on machin€eThe first set of constraints {{L7) ensure that each job is
completely processed. To see the second constfaiht (18)pteethat any job released during the interval

12



[t,t'] must be completed by timé + D. Thus the total size of jobs released[int'] that are assigned to
i can be at mosf{t’ — t) + D. Moreover, it suffices to consider intervals such that are release dates of
some jobs (as this gives the tightest constraints).

Y Msg v 17)
i Pij
> m < —t)+D Vi, Vit e {ry,...,rn} (18)
rj€lt,t’]
Ty 20 Vi, j (19)
Tij = 0 Vi,j  with Dij > D. (20)

Remark: Note that the variables;; do not specify the time at which jop is assigned to maching
However, it is instructive to view;; units of work being assigned at time (the release time of).

We say that a job istegrally assigned to machingin the interval(t,, to] if z;; = p;; andr; € [tq, t2].
Similarly, if z;; > 0 andxz;; # p;;, then job is assigned fractionally to machineLet p,,,.x denote the
maximum value op;; is some optimum schedule (note that < D). For convenience of description later,
let us also assume that the release times are distinct (gagrturbing them by some infinitesimally small
amount).

As previously, we prove Theorelm 1.2 using iterated roundirogthis end, we will show how to create
a “tentative” schedule satisfying the following propestie

Lemma 3.1. There exists a solution* = {x;;}; ; with the following properties:
e 7" integrally assigngach jobj to a single maching; i.e., z;; is equal top;; for some machiné

e For any time interval[t,, t2], the total volume of jobs assigned irf is at most(te — t1) + D +
O(logn) - pmax. Thatis,

Z zij < (t2 —t1) + D + O(logn) - Pmax-

j:TjG[tl,tz}

We first show Theoreiin_11.2 follows easily from the above lemma.

Proof of Theorem[I.2l Given a solutionz* satisfying the properties of Lemnha B.1, we construct a valid
schedule such that flow-time of each job is at mbstt O(logn) - pmax as follows. Fix a machine.
Consider the jobd (i, 2*) = {j | z;; = pi; } assigned to maching and schedule them in First In First Out
(FIFO) order.

To see that every job is completed by time+ D + O(log n) - pmax, fix @ job j and consider the interval
[0,7;]. Lett’ € [0,r;] be the latest time instant when the machirig idle. This implies that all the jobs
in J(i,z*) released in the interval, ¢'| are completed by'. As the machine is busy during', ;] and the
total volume of jobs assigned in the interval is at most—t') + D + O(log n) - pmax, the total volume of
jobs alive atr; is at mostD + O(log n) - pmax, Which implies the result. O

Henceforth we focus on proving Lemial3.1.
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3.1 lIterated Rounding and proof of Lemma[3.1

We prove Lemma_3]1 using iterated rounding. Similar to theopof Lemmal(1.ll), we write a successive

relaxations of the LH.(A7-19) denoted by’ (¢) @1423), for¢ = 0, 1,2..., such that number of constraints

drop by a constant fraction on each iteration. Finally, weawba solution where each job is integrally
assigned to a single machineP(0) is same as LA (1[7-19). L&t ¢) denote the set of jobs which are yet to

be integrally assigned at the beginning of iteratiohet .J(0) = .J. We now definel P(¢) for ¢ > 1.

e Computing a basic feasible solutioBolve LP(¢ — 1) and find a basic feasible solutiari(¢ — 1) =

{xfj‘l}i,j to LP({ —1). We usexfj‘l to indicate the value taken by variahig; in the solution
z*(¢ —1). Initialize J(¢) = J(£ —1).

Eliminating zero variablesVariablesz;; of LP(¢) are defined with respect to set of positive variables
in the basic feasible solution tbP(¢ — 1). In other words, itrfj‘l = 0inz*(¢ — 1), thenz;; is not
defined inLP(¢).

Fixing integral assignmentdf acffl = p;; for some joby, thenj is permanently assigned to machine
i in the solutionz*, and we updatd (¢) = J(¢) \ {j}.

We drop all the variables involving jopin LP(¢), and the constrainf(21). Moreover, we update the
constraints of typ(22) as follows.

Defining Intervals: For each machiné and for each iteratiod, we define the notion of intervals
I(i,a,t) as follows: Consider the variables; for jobs;j € J(¢) (i.e. the ones not assigned integrally
thus far), in the order of non-decreasing release times.eddyegroup consecutive;; variables
(starting from the beginning) such that sum of ttft;‘ ! values in that group first excee@g,,,x.
We call these groups intervals, and denote ¢k group byI(i,a,¢). We sayj € I(i,a,/) if

a5 € 1(i,a,¢), and define Sizd (i, a,£)) = ¢ ;.00 xfj—l.

Note that Siz€l (i, a,f)) € [2- pmax, 3 - Pmax) (€XCept possibly for the last interval, in which case we
add a dummy job of siz8p,.x.)

LP(¢): We are now ready to writé P(¢).

PR Vi € J(f) (1)
;. Pij
> @y < SizeI(i,a,0)) Vi, a, ! (22)
JjEI(i,a,0)
zi; 20 Vi, j >0 (23)

By the definition of intervals and their sizes, it is clearttte feasible solution* (¢ — 1) to LP(¢ — 1) also
is a feasible solution té P(¢). Next we show that each job is integrally assigned afténg n) iterations.

Bounding the number of iterations: Let N, denote the number of jobs during th¢h iteration.

Lemma3.2. Forall £ > 1, N, < =5

Ne—y
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Proof. Consider the basic optimal solutiari(¢ — 1) to LP(¢ — 1). LetS,_; denote the non-zero variables
in this solution, i.ex;; such thatqcfj‘1 > 0. Consider a linearly independent family of tight consttsiim
LP(¢—1) that generate the solutiarf (¢ — 1). Since tight constraints of the type nﬁj‘l = 0 only lead to

0 variables, it follows thatS, 1| is at most the number of tight constrairiisi(21) or tight cépamonstraints
(22). LetC,_; denote the number of tight capacity constraints. Thus,

|Se—1| < Ne—1 +Coq (24)

Recall thatA(¢ — 1) denotes the set of jobs that are assigned integrally in théi@o z*(¢ — 1). Then,
Ny = Ny—1 — |A(¢ — 1)] is the number of remaining jobs that are considerefi #{¢). As each job not in

A(¢ — 1) contributes at least a value of two|t§_ |, we also have
|Se—1] = [A(C = 1) + 2(Ne — [A(£ = 1)]) = Ne—1 + N, (25)
Together with[(2}) this gives
Ny < Cpy (26)

We now show tha€,_; < N,_;/2, which together with[{26) would imply the claimed result. Wew
that size of each interval i(f — 1)-th iteration is at leas? - p,,ax. As each tight interval (i, a, ¢ — 1) has
> el (iat—1) xfj‘l = SizgI(i,a,!)), we have

(-1
Zi,j wij > 2. Pmax - CZ

pmax pmax

Ny_q > = >2C;

Thus we getC;_; < N;_1/2. O

Therefore, number of jobs which are integrally assignedaahéteratiorV is at leastNV,/2. Now note
that number of constraints ibP(1) is at most:/2 since size of each interval is at le@stp,,.. Hence, the
algorithm terminates i®(log n) rounds.

Bounding the overload: It remains to show that for any time intenj&, ¢-], the total size of jobs assigned
in the interval[t, to] in z* is at most(ts — t1) + O(log n) - Prax + D.

Let Vol(ty,t9,7,¢) be the total volume of jobs assigned (both fractionally amegrally) during the
period|ty, t2] at the end of-th iteration. Moreover, letd(t1,t2,7,¢ — 1) be the set of jobs assigned in the
period[t;, to] in the (¢ — 1)-th iteration, i.exfj‘l = p;j andr; € [t1,ta].

Given the solution:*(¢) to LP(¢). Clearly,

Vol(ty,te,i,0) = Z xfj + Z Z Dij- (27)

T €E€[t1,t2] V<l jeA(tr,ta,i,0")
The following lemma shows that for any time period, the vodudoes not increase much in each round.

Lemma 3.3. For any iteration?, machinei, and any time periodk; , to],

VO|(t1,t2,i,£) < VO|(t1,t2,i,€ — 1) + 6 - Pmax
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Proof. Consider the maximal contiguous set of intervals= {I(i,b,¢),1(i,b + 1,¢),...1(i,b+ h,{)}

such that for every interval(i,b’,¢) € Z, there exists a jo € I(i,V',¢) andr; € [t1,ts]. Recall that
size of each interval iLP(¢) is at most3 - pmax. Hence, the intervalg(i, b, ¢) andI(i,b + h,¢) which

overlaplty, to] at the left and right boundaries respectively, contribtit®ast6 - ...« to the intervalty, to].

Therefore,

b+h—1
Z xfj < Z SizeI(i,a,f)) + 6 - pmax  from (22)
ri€(t1,t2] a=b+1
< Z xfj_ t— Z Pij + 6+ Pmax from def. of intervals

€[t t2] FEA(t,t2,i,0—1)

S VOI(tla t27 Z7£ - 1) - Z Z ng + 6 - Pmax from m)

U<(—1) GEA(t t2,i,0)
The lemma now follows by rearranging the terms and uging. (27) O

Lemma 3.4. In the solutionz*, the total volume of jobs assigned in any interifal ¢,] is at most(to —
t1) + D + O(log n) - prax.

Proof. Consider the intervdk;, t2]. From the constraints df P(0) over the intervalt;, t2] and definition
of Vol(i, a, 0) (equatior 27), we have,

Vol(ty,to,,0) = Z a;= < ty—t1+D
Tje[tl,tz]

The result now follows by applying LemriaB.3 for tbélog n) iterations of the algorithm. O

Proof of Lemma3.dl From lemmd_ 32 we know that each job is integrally assigneal smgle machine.
Lemma 3.4 guarantees that total volume of jobs assignedcim tqae intervallty, 2] is bounded by(ty —
t1) + D + O(log n) - pmax. This gives us the desired and concludes the proof. O
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