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Minimizing Flow-Time on Unrelated Machines

Nikhil Bansal∗ Janardhan Kulkarni†

Abstract

We consider some flow-time minimization problems in the unrelated machines setting. In this setting,
there is a set ofm machines and a set ofn jobs, and each jobj has a machine dependent processing
time of pij on machinei. The flow-time of a job is the amount of time the job spends in the system
(completion time minus its arrival time), and is one of the most natural quality of service measure. We
show the following two results: anO(min(log2 n, logn logP )) approximation algorithm for minimizing
the total-flow time, and anO(log n) approximation for minimizing the maximum flow-time. HereP is
the ratio of maximum to minimum job size. These are the first known poly-logarithmic guarantees for
both the problems.
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1 Introduction

Scheduling a set of jobs over a heterogeneous collection of machines to optimize some quality of service
(QoS) measure is one of the central questions in scheduling theory. In modern computing environments be it
web-servers, data-centers, clusters of machines or personal computers, heterogeneity of the processors and
architectures is ubiquitous. The most general and widely studied model that incorporates the heterogeneity
of jobs and machines is the so-calledunrelated machinessetting. Here, there is a setJ of n jobs and a set
M of m machines. Each jobj is specified by its release time (or arrival time)rj , which is the first time
instant it is available for processing, and a (machine dependent) processing requirementpij, which is the
time take to executej if run on machinei. In this paper, we consider some flow-time related objectives.
The flow-time of a job, defined as the amount of time the job spends in the system, is one of most natural
measures of quality of a service received by a job. In particular, if a job j completes its processing at time
Cj, then flow-time of the jobFj is definedCj − rj ; i.e., its completion time minus its arrival time.

We consider two basic offline problems in the unrelated machines setting: (i) Minimizing the total
flow-time of jobs and (ii) Minimizing the maximum flow-time. Both these objectives have been studied
extensively in previous works (as we discuss below). However all these results were known only in more
restricted settings, and obtaining non-trivial approximations for the general unrelated machines setting was
wide open.

More restricted settings: For scheduling on multiple machines, various different models have been studied
in the literature. The simplest one is the identical machines setting, where the processing time of a job is
identical on all the machines (pij = pj for all i). A more general model is the related machines setting,
where each machine has a speedsi and a job has sizepj (that is,pij = pj/si). Another model is the
restricted assignment setting, where a jobj has a fixed size, but it can only be processed on some subsetSj

of the machines (that is,pij ∈ {pj ,∞}). Clearly, all of these are special cases of the unrelated machines
setting.

Minimizing Total flow-time: This objective has been studied extensively in both the offline and online
settings, and in various models (see section 1.1 for more references). In the single machine case, it is well
known that the SRPT (Shortest Remaining Processing Time) algorithm is optimal for minimizing the total
flow-time if preemption is allowed, that is, when a job can be interrupted arbitrarily and resumed later
from the point of interruption without any penalty. If preemption is disallowed, the problem becomes much
harder and cannot be approximated better thanΩ(n1/2) unless P=NP [16]. We will consider only preemptive
algorithms in this paper.

For multiple machines, the first breakthrough result was dueto Leonardi and Raz [18] who showed
that SRPT is anO(log(min ( n

m , P ))) competitive (online) algorithm on identical machines. HereP is the
ratio of the maximum to the minimum job size. They also showedthat no deterministic online algorithm
can do better. Subsequently, other algorithms with similarcompetitive ratio, but other desirable properties
such as no-migration and immediate dispatch were also obtained[5, 18, 4]. Later, poly-logarithmic offline
and online guarantees were also obtained for the related machines setting [12, 11]. Interestingly, Garg and
Kumar [14] showed that things do not improve much in the offline setting. In particular, noO(log1−ǫ P )
approximation exists for anyǫ > 0, even for identical machines, unless P=NP.

The above approaches do not seem to help in the restricted assignment case, which is much harder (for
example, any online algorithm here must beΩ(P ) competitive [13]). In an important breakthrough, Garg
and Kumar [13] obtained anO(log P ) approximation for the problem, based on an elegant and non-trivial
LP rounding approach. In particular, they consider a natural LP relaxation of the problem, and round it
based on computing certain unpalatable flows [10] on an appropriately defined graph.
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In an attempt to extend these ideas to the unrelated machinescase, [14] introduce a(α, β)-variability
setting (see [14] for details of the model) and prove a general result that in particular implies logarithmic
approximations for both restricted assignment and relatedmachines setting. For the unrelated case, their
result implies anO(k) approximation where the processing lengthspij (of all jobs, over all machines)
takek different values. This result was also obtained independently by Sitters [20] using matching based
techniques (the definition ofk [20] is slightly different). In general howeverk could be as large asnm, and
hence a key open question (see e.g. [11, 20] has been whether apoly-logarithmic approximation exists for
unrelated machines.

Our first main result gives a positive answer to this question.

Theorem 1.1. There exists a polynomial timeO(log n · log P )-approximation algorithm for minimizing the
sum of flow-times in the unrelated machine setting with preemptions.

Using a standard trick (see section 2.4) this implies anO(log2 n) approximation, which may be better if
P is super-polynomial inn.

Our algorithm is based on applying the iterated rounding framework to a new time-indexed linear pro-
gramming formulation for the problem. The formulation we consider is different from those considered
previously, and has much fewer constraints than the naturaltime-indexed formulation. The fewer con-
straints are critical in allowing the use of iterated rounding. We describe the new formulation and give an
overview of the algorithm in section 2. Theorem 1.1 is provedin section 2.

Maximum flow-time: In many settings, it may be desirable to ensure thateveryjob experiences a low delay,
instead of guaranteeing low average delay (which is equivalent to total flow-time). Thus a natural objective
is to minimize the maximum flow-time over all the jobs. This objective is quite different in flavor from
average flow-time. In particular, most algorithms minimizing average flow-time give priority to smaller jobs
over longer ones, and hence large jobs tend to suffer unfairly huge delays. Maximum flow-time is in fact
closely related to deadline scheduling problems, as the maximum flow-time isD if and only if every jobj
released atrj is completed by timerj +D.

For a single machine, First In First Out (FIFO) is an optimal (online) algorithm for minimizing the
maximum flow-time. For multiple machines, a 3 competitive online algorithm is known in the identical
machine setting [1]. In more general settings, only resultsbased on the resource augmentation analysis are
known (see section 1.1 for more details). In particular, no non-trivial approximation algorithm is known for
the problem in the unrelated machine setting.

Our second main result is the following.

Theorem 1.2. There is anO(log n) polynomial time approximation algorithm for minimizing the maximum
flow-time in the unrelated machine setting.

In fact, the algorithm computes a solution whose maximum flow-time exceeds (additively) the optimum
value by at mostO(log n)pmax, wherepmax is the maximum size of a job in the optimum schedule.

To obtain the result we again write a natural linear programming relaxation of the problem with few
constraints, and then apply the iterated rounding technique. Theorem 1.2 is proved in section 3. The key
difference here from the proof of theorem 1.1 is that in the final schedule we must ensure thatno job is
delayed by too much.

1.1 Additional Related Work

We briefly survey some additional closely related results. While we only consider unweighted total flow-
time, the weighted version has also been extensively studied. For single machine, the best known approxima-
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tion isO(log logP ) [7], and several poly-logarithmic online algorithms are also known [9, 6]. For multiple
machines, nono(1) can exist for total weighted flow-time (via an easy reductionfrom 3d-matching) and
hence all results here are in the so-called resource augmentation setting (see e.g. [8, 3]). A comprehensive
survey of various flow-time related results can be found in [15, 19].

Recently, maximum flow-time was studied by Anand et al. [2] inthe online setting. They showed a
lower bound ofΩ(m,poly(n)) for the restricted assignment case, and gave an algorithm for the unrelated
machines case in the resource augmentation model.

2 Minimizing the total flow-time

In this section, we consider the problem of minimizing totalflow-time on unrelated machines and prove
theorem 1.1.

2.1 Alternate LP relaxation and the high-level idea

Standard LP formulation: Before describing the new LP formulation that we use, we firstdescribe the
standard time indexed linear programming relaxation of theproblem that was used for example in [13, 14].
There is a variablexijt for each machinei ∈ [m], each jobj ∈ [n] and each unit time slott ≥ rj. Thexijt
variables indicate the amount to which a jobj is processed on machinei during the time slott. The first set
of constraints (1) says that every job must be completely processed. The second set of constraints (2) says
that a machine cannot process more than one unit of job duringany time slot. Note that this LP allows a job
to be processed a job on multiple machines, and even at the same time.

min
∑

i,j,t

(

t− rj
pij

+
1

2

)

· xijt

s.t.
∑

i

∑

t≥rj

xijt
pij

≥ 1 ∀j (1)

∑

j : t≥rj

xijt ≤ 1 ∀i, t (2)

xijt ≥ 0 ∀i, j, t ≥ 0

Fractional flow-time: The objective function needs some explanation. The term
∑

i,t xijt is precisely the
total amount of processing done on jobj. The term

∑

i,t(t−rj) ·
xijt

pij
is thefractionalflow-time of jobj and

we denote it byfj. The (integral) flow-time of a jobj can be viewed as summing up 1 during each time step
that j is alive, i.e.

∑

t≥rj :j is alive att 1. The fractional flow-time instead is the sum over time instants of the
remaining (unfinished) fraction of jobj. Note that on machinei, the fraction of jobj that is unfinished at
time t is

∑

t′>t
xijt

pij
(the numerator denotes the amount of work that will be donej on machinei at time after

t). Thus the fractional flow-time on machinei is
∑

t≥rj

∑

t′>t
xijt

pij
, which by collecting thexijt terms is

exactly equal to
∑

i,t(t−rj)·
xijt

pij
. It can be easily checked that the integral flow-time is at least the fractional

flow-time plus half the size of a job. Thus the objective function in the above LP is valid lowerbound on the
optimal solution. For more details on the fractional flow-time and the LP above, see [13].

We assume thatmini,j pij 6= 0 (if pij = 0, we simply schedulej on machinei upon arrival). Define
P = maxi,j pij/mini,j pij . Without loss of generality, we assume henceforth thatmini,j pij = 1. For
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k = 0, 1, . . . , log P , we say that a jobj belongs to classk on machinei if pij ∈ (2k−1, 2k]. Note that
the class of a job depends on the machine. We now give a new LP relaxation for the problem. The main
idea is that we do not enforce the capacity constraints (2) for each time slot, but instead only enforce these
constraints over carefully chosen intervals of time. The advantage of this relaxation is that it has relatively
few constraints, which is will be useful in applying the iterated rounding approach to it. Even though the
number of constraints is fewer, as we will see the quality of the relaxation is not sacrificed much.

New LP formulation: In the new LP relaxation of the problem there is a variableyijt (similar to xijt
before) that denotes the total units of jobj processed on machinei at time t. However, unlike the time
indexed relaxation, we allowyijt to take values greater than one. In fact, we will round the newLP in such
a way that eventuallyyijt = pij for each job, which will have a natural interpretation that job j is scheduled
at timet on machinei.

For each classk and each machinei, we partition the time horizon[0, T ] into intervals of size4 · 2k.
Without loss of generality we can assume thatT ≤ nP (otherwise the input instance can be trivially split
into two disjoint non-overlapping instances). Fora = 1, 2, . . ., let I(i, a, k) denote thea-th interval of class
k on machinei. That is,I(i, 1, k) is the time interval[0, 4 · 2k] andI(i, a, k) = ((4 · 2k)(a− 1), (4 · 2k)a].

We write the new LP relaxation.

∑

i

∑

t≥rj

∑

k

∑

j∈(2k−1,2k]

(

t− rj
pij

+
1

2

)

· yijt (LPnew)

s.t.
∑

i

∑

t≥rj

yijt
pij

≥ 1 ∀j (3)

∑

j : pij≤2k

∑

t∈I(i,a,k)

yijt ≤ Size(I(i, a, k)) ∀i, k, a (4)

yijt ≥ 0 ∀i, j, t : t ≥ rj

Here, Size(I(i, a, k)) denotes the size of the intervalI(i, a, k) which is4 · 2k (but would change in later
iterations of the LP when we apply iterated rounding). Observe that in (4) only jobs of class≤ k contribute
to the left hand side of constraints corresponding to intervals of classk.

Clearly, (LPnew) is a relaxation of the time indexed LP formulation considered above, as any valid
solution there is also a valid solution to (LPnew) (by settingyijt = xijt). Therefore, we conclude that an
optimum solution to (LPnew) lower bounds the value optimal solution.

Remark: When we apply iterative rounding and consider subsequent rounds, we will refer the intervals
I(i, a, k) asI(i, a, k, 0) (to indicate that they are intervals from the 0-th round). However we drop0 from
description above for now.

The high-level approach: The main idea of our algorithm is the following. Let us call a job j to be
integrally assigned to machinei at time t, if yijt = pij (note that this job will be completely executed
on machinei). Let us view this as processing the jobj during [t, t + pij). In the algorithm, we first find
a tentativeintegral assignment of jobs to machines (at certain times) such that the total flow-time of this
solution is at most the LP value. This solution is tentative in the sense that multiple jobs could use the same
time slot; however we will ensure that the effect of this overlap is negligible (in the sense of Lemma 2.1
below).

More precisely, we show the following result.

4



Lemma 2.1. There exists a solutiony∗ = {y∗ijt}i,j,t satisfying the following properties.

• (Integrality:) For each jobj, there is exactly one non-zero variableyijt in y∗, which takes valuepij.
That is, each job is assigned integrally to exactly one machine, and one time slot :y∗ijt = pij.

• (Low cost:) The cost ofy∗ is at most the cost of an optimal solution toLPnew.

• (Low overload:) For any interval of time[t1, t2], every machinei and for every classk,
∑

j : pij≤2k

∑

t∈[t1,t2]

y∗ijt ≤ (t2 − t1) +O(log n) · 2k.

That is, the total size of jobs of class at mostk assigned integrally in any time interval[t1, t2] exceeds
the size of the interval by at mostO(log n) · 2k.

Lemma 2.1 is the core of our algorithm, which will be proved using iterated rounding. In particular,
we show using a counting argument that in each round a basic feasible optimum solution assigns at least a
constant fraction of jobs integrally in each round. Therefore, afterO(log n) rounds every job is integrally
assigned to some machine. In each round as some jobs get integrally assigned, we will fix them permanently
and reduce the free space available in those intervals. Then, we merge these intervals greedily to ensure that
the free space in an interval corresponding to classk staysO(1) ·2k. This merging process adds an overload
of at mostO(1) · 2k to any time interval in each round. This ensures that the total error added for any time
interval isO(log n) · 2k.

The next step is to show that the tentative schedule can be converted to a valid preemptive schedule by
increasing the total flow-time of jobs byO(log P log n) times theLPnew value. To this end, we use ideas
similar to those used by [11, 13] for the related or restricted machines case. In particular, we schedule the
jobs on each machine in the order given by the tentative schedule, while prioritizing the jobs in the shortest
job first (SJF) order. The low overload property of the tentative schedule ensures that a job of classk is
additionally delayed by at mostO(log n) · 2k due to jobs that arrive before it, or is delayed by smaller jobs
(of strictly lower class) that arrive after the time when it is tentatively scheduled. In either case, we show
that this delay can be charged to the total flow-time of other jobs.

We now give the details. We first describe in section 2.2 how toconvert a tentative scheduley∗ satisfying
the conditions of Lemma 2.1 to a proper one, and show how this implies Theorem 1.1. In section 2.3 we
describe the iterated rounding algorithm and prove lemma 2.1.

2.2 Tentative Schedule to Actual Schedule

We show how Theorem 1.1 follows given a solutiony∗ satisfying the conditions of Lemma 2.1. Recall that
in the solutiony∗, for each jobj, we haveyijt = pij for some time instantt and some machinei, but this is
not necessarily a valid schedule. We converty∗ into a valid preemptive scheduleS as follows. Fix a machine
i and letJ(i, y∗) denote the set of jobs which are scheduled on machinei in the solutiony∗ (i.e. jobsj such
thatyijt = pij for some time instantt). In the scheduleS, for each machinei, we imagine that a jobj in
J(i, y∗) becomes available forS at the timet whereyijt = pij . We schedule the jobs inS (after they become
available) using Shortest Job First (SJF) (where jobs in thesame class are viewed as having the same size);
for two jobs belonging to same class we schedule the jobs in the order given byy∗. Let Jk(i, S) denote the
set of jobs of classk which are assigned to machinei in scheduleS, and letJ(i, S) = ∪kJk(i, S) denote
the set of jobs scheduled byS on i. Clearly,Jk(i, S) = Jk(i, y

∗). We also observe that, since jobs within a
class are considered in order, for each classk and on each machinei, there is at most one job belonging to
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classk which is partially processed (due to preemptions by jobs of asmaller class). This directly implies the
following relation between the fractional and integral flow-time of jobs inS. Let FS

j denote the flow-time
of job j in scheduleS andfS

j denote the fractional flow-time.

Lemma 2.2. Fix a machinei and the set of jobs belonging to classk. Then,

∑

j∈Jk(i,S)

FS
j ≤

∑

j∈Jk(i,S)

fS
j +

∑

j∈J(i,S)

pij .

Remark: Note that first two summations are overJk(i, S), while the third summation is overJ(i, S).

Proof. We use the alternate view of integral and fractional flow-times. LetCS
j denote the completion time

of job j in the scheduleS. Then, the integral flow-time ofj isFS
j =

∫ CS
j

t=rj
1 ·dt and the fractional flow-time

is fS
j =

∫ CS
j

t=rj
pij(t)/pijdt, wherepij(t) denotes the remaining processing time of jobj on machinei.

LetJk(i, S, t) denote the set of jobs available for processing at timet of classk on machinei in S, which
have not been completed, andT (i, k) denote the set of time instants whereJk(i, S, t) ≥ 1, i.e. at least one
job of classk is alive. Then,

∑

j∈Jk(i,S)

FS
j =

∫

t∈T (i,k)
|Jk(i, S, t)|dt ≤

∫

t∈T (i,k)



1 +
∑

j∈Jk(i,S)

pij(t)

pij



 dt ≤
∑

j∈J(i,S)

pij +
∑

j∈Jk(i,S)

fS
j .

The first inequality follows as there is at most one partiallyprocessed job of classk at any time in
S. The second inequality follows by observing that

∫

t∈T (i,k) 1dt is simply the time units when at least
one classk job is alive. This can be at most the time when any job (of any class) is alive, which is pre-
cisely equal to

∑

j∈J(i,S) pij , the total processing done on machinei (as the scheduleS is never idle if

there is work to be done). Thus,
∫

t∈T (i,k) 1dt ≤
∑

j∈J(i,S) pij. Moreover,
∫

t∈T (i,k)

∑

j∈Jk(i,S)
pij(t)
pij

dt =
∑

j∈Jk(i,S)

∫

t≥rj

pij(t)
pij

dt which is exactly the total fractional flow-time
∑

j∈Jk(i,S)
fS
j .

Let Vk(y
∗, i, t) denote the total remaining processing time (or volume) of jobs of classk alive at time

t on machinei in the schedule defined byy∗ (i.e. these are precisely the jobs that are released but not yet
scheduled byt); similarly, letVk(S, i, t) denote the total remaining processing time of jobs of classk that
haverj ≤ t, but are unfinished at timet on machinei in the scheduleS. As a job is available forS only
after it is scheduled iny∗, we make the following simple observation.

Observation 1. For any k, Vk(y
∗, i, t) ≤ Vk(S, i, t). Moreover,Vk(S, i, t) − Vk(y

∗, i, t) is the volume of
precisely those jobs of classk that are available toS (i.e. already scheduled iny∗), but have not been
completed byS.

We now show the crucial lemma thatVk(y
∗, i, t) andVk(S, i, t) do not deviate by too much.

Lemma 2.3. For machinei and classk, ∀t, Vk(S, i, t) − Vk(y
∗, i, t) ≤ O(log n) · 2k

Proof. By Observation 1,Vk(S, i, t) − Vk(y
∗, i, t) is the total processing time of jobs of classk that are

available for processing inS at timet and not yet completed. AsVk(S, i, t) − Vk(y
∗, i, t) ≤ V≤k(S, i, t) −

V≤k(y
∗, i, t) (this follows by Observation 1 asVk′(S, i, t) ≥ Vk′(y

∗, i, t) for eachk′), it suffices to bound the
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latter difference. Lett′ ≤ t be the last time beforet when machinei was idle inS, or was processing a job
of class strictly greater thank. This means that no jobs of class≤ k are available toS (as they have either
not arrived or have not yet been made available byy∗). Thus,V≤k(S, i, t

′) = V≤k(y
∗, i, t′) or equivalently

V≤k(S, i, t
′)− V≤k(y

∗, i, t′) = 0. By the low overload property, the total volume of jobs belonging to class
at mostk that becomes available during(t′, t] is at most(t− t′) +O(log n)2k. SinceS processes only jobs
of class at mostk during (t′, t] (by definition oft′), S completes preciselyt − t′ volume of jobs belonging
to class at mostk. This implies thatV≤k(S, i, t) − V≤k(y

∗, i, t) = O(log n)2k.

We are now ready to show how this implies Theorem 1.1

Proof of Theorem 1.1. We first compare the fractional flow-times of schedules defined by y∗ andS and
then use Lemma 2.2 to complete the argument.

DefineySijt variables corresponding to the scheduleS by settingySijt to amount of processing done on
job j on machinei at timet in the scheduleS . LetP (S, i) =

∑

j∈J(i,S)

∑

t y
S
ijt denote the total processing

time of the jobs scheduled on machinei in S. Clearly, since the set of jobs on machinei in y∗ andS is
identical, we haveP (S, i) = P (y∗, i). Let T (i, k) be the times when there is at least one available but
unfinished job inS. Recall that

∫

t∈T (i,k) 1 · dt = P (i, S).
Then, the difference between the fractional flow-times of jobs inS andy∗ can be bounded by

∑

j

(fS
j − f y∗

j ) =
∑

i

∑

t

∑

k

∑

j:pij∈(2k−1,2k]

(ySijt − y∗ijt) ·

(

t− rj
pij

)

≤
∑

i

∑

t

∑

k

∑

j:pij∈(2k−1,2k]

(ySijt − y∗ijt) ·

(

t− rj
2k−1

)

=
∑

i

∑

t

∑

k

∑

j:pij∈(2k−1,2k]

1

2k−1
(Vk(S, i, t) − Vk(y

∗, i, t)) (5)

≤
∑

i

∑

k

∑

t∈T (i,k)

O(log n) [By Lemma (2.3)]

=
∑

i

∑

k

O(log n)P (i, S) (6)

≤
∑

i

O(log n · logP )P (i, S)

= O(log n · log P )P (S)

Here (5) follows as for any scheduleS, the quantity
∑

j:pij∈(2k−1,2k]

∑

t≥rj
ySijt(t− rj) is exactly equal

to
∑

t Vk(S, i, t) (by the two different ways of looking at fractional flow-time).
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Now we can bound the total flow-time as
∑

j

FS
j =

∑

i

∑

k

∑

j∈Jk(i,S)

FS
j

≤
∑

i

∑

k





∑

j∈Jk(i,S)

fS
j +

∑

j∈J(i,S)

pij



 [ By Lemma (2.2)]

=
∑

j

fS
j +

∑

i

∑

k

∑

j∈J(i,S)

pij

≤
∑

j

fS
j +O(log P )P (S)

≤
∑

j

f y∗

j +O(log n · logP )P (S)

which is at mostO(log n · log P ) times the value of optimal solution toLPnew.

2.3 Iterated Rounding ofLPnew and proof of Lemma 2.1

In this section we prove the Lemma 2.1 using iterated rounding. In the iterated rounding technique, we
successively relax theLPnew with a sequence of linear programs, each having fewer constraints than the
previous one while ensuring that optimal solutions to the linear programs is at most the cost of optimal
solution toLPnew. An excellent reference for various applications of this technique is [17].

We denote the successive relaxations ofLPnew by LP (ℓ) for ℓ = 0, 1, . . .. Let J(ℓ) denote the set of
jobs that appear inLP (ℓ). Linear programLP (0) is same asLPnew, andJ(0) = J . We defineLP (ℓ) for
ℓ > 0 inductively as follows.

• Computing a basic optimal solution:Find a basic optimal solutiony∗(ℓ− 1) = {yℓ−1
ijt }i,j,t toLP (ℓ−

1). We useyℓ−1
ijt to indicate the value taken by the variableyijt in the solutiony∗(ℓ− 1). LetSℓ−1 be

the set of variables in the support ofy∗(ℓ− 1). We initializeJ(ℓ) = J(ℓ− 1).

• Eliminating 0-variables:The variablesyijt for LP (ℓ) are defined only for the variables inSℓ−1. That
is, if yℓ−1

ijt = 0 in y∗(ℓ− 1), then these variables are fixed to 0 forever, and do not appearin LP (ℓ).

• Fixing integral assignments:If a variableyℓ−1
ijt = pij in y∗(ℓ−1) for some jobj, thenj is permanently

assigned to machinei at timet in y∗ (as required by Lemma 2.1), and we updateJ(ℓ) = J(ℓ) \ {j}.
We drop all the variables corresponding to the jobj in LP (ℓ), and also drop the service constraint (8)
for the jobj. We useA(ℓ − 1) to denote the set of jobs which get integrally assigned in(ℓ − 1)-th
iteration. We redefine the intervals based on the unassignedjobs next.

Remark: It will be convenient below not to view an interval as being defined by its start and end
times, but by theyijt-variables it contains.

• Defining intervals forℓ-th iteration: Fix a classk and machinei. We define the new intervals
I(i, ∗, k, ℓ) and their sizes as follows.

Consider the jobs inJ(ℓ) (those not yet integrally assigned) belonging to classes≤ k, and order
the variablesyijt in increasing order oft (in case of ties, order them lexicographically). Greedily
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group consecutiveyijt variables (starting from the beginning) such that sum of theyℓ−1
ijt values of the

variables in that group first exceeds4 · 2k.

Each such group will be an interval (which we view as a subset of yijt variables). Define the size of
an intervalI = I(i, ∗, k, ℓ) as

Size(I) =
∑

yijt∈I

yℓ−1
ijt . (7)

As yℓ−1
ijt ≤ 2k for jobs of classk, clearly Size(I) ∈ [4 · 2k, 5 · 2k] for eachI (except possibly the last,

in which case we can add a couple of extra dummy jobs at the end).

Note that the intervals formed inLP (ℓ) for ℓ > 0 are not related to time anymore (unlikeLP (0)), and in
particular can span much longer duration of time that4 · 2k. All we ensure is that the amount of unassigned
volume in an interval isΩ(2k).

Defining the LP for ℓ-th iteration: With the above definition intervalsI(i, a, k, ℓ) and theyijt variables
defined for theℓ-th iteration, we write the linear programming relaxation for ℓ-th round,LP (ℓ).

∑

i

∑

t≥rj

∑

k

∑

j∈J(ℓ):j∈(2k−1,2k]

(

t− rj
pij

+
1

2

)

· yijt (LP(ℓ))

s.t.
∑

i

∑

t≥rj

yijt
pij

≥ 1 ∀j ∈ J(ℓ) (8)

∑

yijt∈I(i,a,k,ℓ)

yijt ≤ Size(I(i, a, k, ℓ)) ∀i, k, a (9)

yijt ≥ 0 ∀i, j ∈ J(ℓ), t : t ≥ rj

2.3.1 Analysis

We note thatLP (ℓ) is clearly a relaxation ofLP (ℓ − 1) (restricted to variables corresponding to jobs in
J(ℓ)). This follows as settingyijt = yℓ−1

ijt is a feasible solution forLP (ℓ) (by the definition of Size(I)).
Moreover, the objective function ofLP (ℓ) is exactly the objective ofLP (ℓ − 1) restricted to variables in
J(ℓ). Let y∗ denote the final integral assignment (assuming it exists) obtained by applying the algorithm
iteratively toLP (0), LP (1), . . .. Then this implies that,

Lemma 2.4. The cost of the integral assignmentcost(y∗) is at most the cost of optimal solution toLPnew.

Bounding the number of iterations: We now show that the sequence ofLP (ℓ) relaxations terminate
after some small number of rounds. LetNℓ = |J(ℓ)| denote the number of jobs inLP (ℓ) (i.e. the one
unassigned after solvingLP (ℓ− 1)).

Lemma 2.5. After each iteration, the number of unassigned jobs decreases by a constant factor. In partic-
ular, for eachℓ: Nℓ ≤ Nℓ−1/2.
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Proof. Consider the basic optimal solutiony∗(ℓ− 1) toLP (ℓ− 1). LetSℓ−1 denote the non-zero variables
in this solution, i.e.yℓ−1

ijt such thatyℓ−1
ijt > 0. Consider a linearly independent family of tight constraints in

LP (ℓ − 1) that generate the solutiony∗(ℓ − 1). As tight constraintsyℓ−1
ijt = 0 only lead to0 variables, it

follows that|Sℓ−1| is at most the number of tight constraints (8) or tight capacity constraints (9). LetCℓ−1

denote the number of tight capacity constraints. Thus,

|Sℓ−1| ≤ Nℓ−1 + Cℓ−1. (10)

Recall thatA(ℓ − 1) denotes the set of jobs that are assigned integrally in the solution y∗(ℓ − 1). As each
job not inA(ℓ− 1) contributes at least two to|Sℓ−1|, we also have

|Sℓ−1| ≥ |A(ℓ− 1)|+ 2(Nℓ−1 − |A(ℓ− 1)|) = Nℓ−1 +Nℓ. (11)

The equality above follows asNℓ = Nℓ−1 − |A(ℓ− 1)| is the number of the (remaining) jobs considered in
LP (ℓ). Together with (10) this gives

Nℓ ≤ Cℓ−1. (12)

We now show thatCℓ−1 ≤ Nℓ−1/2, which together with (12) would imply the claimed result. Wedo this by
a charging scheme. Assign two tokens to each jobj in Nℓ−1. The jobs redistribute their tokens as follows.

Fix a jobj and letk(i) denote the class ofj on machinei. For each machinei, timet and classk′ ≥ k(i),

the jobj gives 1
2k

′−k(i)

yℓ−1
ijt

pij
tokens to the classk′ interval I(i, a, k′, ℓ − 1) on machinei containingyijt. If

there are multiple time slotst in an intervalI(i, a, k′, ℓ− 1) with yℓ−1
ijt > 0, thenI(i, a, k′, ℓ− 1) receives a

contribution from each of these slots. This is a valid token distribution scheme as the total tokens distributed
by the jobj is at most

∑

i

∑

t

∑

k′≥k(i)

yℓ−1
ijt

2k′−k(i) · pij
=

∑

i

∑

t





yℓ−1
ijt

pij
·

∑

k′≥k(i)

1

2k′−k(i)



 ≤ 2 ·
∑

i

∑

t

yℓ−1
ijt

pij
= 2.

Next, we show that each tight constraint of type (9) receivesat least4 tokens. If an intervalI(i, a, k′, ℓ− 1)
of classk′ on machinei is tight, this means that

∑

yijt∈I(i,a,k′,ℓ−1) y
ℓ−1
ijt = Size(I(i, a, k′, ℓ − 1)) which is

at least4 · 2k
′
. Now, the tokens given by variable ayijt in I(i, a, k′, ℓ− 1) wherej is of classk(i) ≤ k′ are

yℓ−1
ijt

(2k′−k(i) · pij)
≥

yℓ−1
ijt

(2k′−k(i) · 2k(i))
=

yℓ−1
ijt

2k′
.

Thus, the tokens obtained byI(i, a, k′, ℓ− 1) are at least
∑

yijt∈I(i,a,k′,ℓ−1) y
ℓ−1
ijt /2k

′
≥ 4 · 2k

′
/2k

′
= 4.

As each job distributes at most 2 tokens and each tight interval receives at least 4 tokens, we conclude that
Cℓ−1 ≤ Nℓ−1/2.

Bounding the Backlog: To complete the proof of Lemma 2.1, it remains to show that forany time period
[t1, t2] and for any classk, the total volume of jobs belonging to class at mostk assigned to[t1, t2] in y∗ is
at mostt2 − t1 + O(log n)2k. Recall thatA(ℓ) denotes the set of jobs which get integrally assigned in the
ℓ-th round. We useA(t1, t2, i, k, ℓ) to denote the set of jobs of class≤ k which get integrally assigned to
the machinei in the interval[t1, t2].

Given the solutiony∗(ℓ) to LP(ℓ) and a time interval[t1, t2], let us define
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Vol(t1, t2, i, k, ℓ) :=
∑

j∈J(ℓ):pij≤2k

∑

t∈[t1,t2]

yℓijt +
∑

ℓ′≤(ℓ−1)

∑

j∈A(t1,t2,i,k,ℓ′)

pij

as the total size of jobs of class≤ k, assigned either integrally or fractionally to the period[t1, t2] after ℓ
rounds. The following key lemma controls how muchVol can get worse in each round.

Lemma 2.6. For any period[t1, t2], machinei, classk and roundℓ,

Vol(t1, t2, i, k, ℓ) ≤ O(1) · 2k + Vol(t1, t2, i, k, ℓ− 1).

Proof. By the definition ofVol this is equivalent to showing that
∑

j∈J(ℓ):pij≤2k

∑

t∈[t1,t2]

yℓijt +
∑

j∈A(t1,t2,i,k,ℓ−1)

pij ≤ O(1) · 2k +
∑

j∈J(ℓ−1):pij≤2k

∑

t∈[t1,t2]

yℓ−1
ijt (13)

Fix a time period[t1, t2]. The main idea is that in each roundℓ, the error toVol can be introduced only
due to the two classk intervals overlapping with the boundary of[t1, t2].

Consider the maximal set of contiguous intervalsI(i, b, k, ℓ), I(i, b + 1, k, ℓ), . . . I(i, b + h, k, ℓ), for
someb, h ≥ 0, that contain the period[t1, t2]. More precisely,b is the smallest index such thatI(i, b, k, ℓ)
contains someyijt with t ∈ [t1, t2], andh is the largest index such thatI(i, b + h, k, ℓ) contains someyijt
with t ∈ [t1, t2]. As these intervals have size at most5 · 2k, we have

∑

yijt∈I(i,b,k,ℓ)

yℓijt +
∑

yijt∈I(i,b+h,k,ℓ)

yℓijt ≤ 10 · 2k. (14)

Now, consider the intervalsI(i, b′, k, ℓ) ∈ {I(i, b + 1, k, ℓ), I(i, b + 2, k, ℓ), . . . I(i, b + h − 1, k, ℓ)}
that are completely contained in[t1, t2] (i.e. for all yijt ∈ I(i, b′, k, ℓ), t ∈ [t1, t2]).By definition of these
intervals and capacity constraints ofLP(ℓ) we have,

b+h−1
∑

b′=b+1

∑

yijt∈I(i,b′,k,ℓ)

yℓijt ≤
b+h−1
∑

b′=b+1

Size(I(i, b′, k, ℓ)) [By the constraints (9) ofLP(ℓ)]

≤
b+h−1
∑

b′=b+1

∑

yijt∈I(i,b′,k,ℓ)

yℓ−1
ijt [By definition (7) of Size]

≤
∑

j∈J(ℓ):pij≤2k

∑

t∈[t1,t2]

yℓ−1
ijt (15)

We now prove (13). Consider,

∑

j∈J(ℓ):pij≤2k

∑

t∈[t1,t2]

yℓijt ≤

b+h
∑

b′=b

∑

yijt∈I(i,b′,k,ℓ)

yℓijt

≤ 10 · 2k +
∑

j∈J(ℓ):pij≤2k

∑

t∈[t1,t2]

yℓ−1
ijt [by (14) and (15)]

≤ 10 · 2k +
∑

j∈J(ℓ−1):pij≤2k

∑

t∈[t1,t2]

yℓ−1
ijt −

∑

j∈A(t1,t2,i,k,ℓ−1)

pij
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The last step follows asJ(ℓ) = J(ℓ−1)\A(ℓ−1) and as
∑

j∈A(t1,t2,i,k,ℓ−1) y
ℓ−1
ijt =

∑

j∈A(t1,t2,i,k,ℓ−1) pij.

This directly implies the following bound on the total errorin any period[t1, t2] in y∗.

Lemma 2.7. For a given time period[t1, t2], machinei and classk, the total volume of jobs of class at most
k, assigned to the interval is at most(t2 − t1) +O(log n)2k.

Proof. Recall the definition of an intervalI(i, a, k, 0) in LP (0). Each intervalI(i, a, k, 0) = (t′, t′′] has
size4 · 2k and contains all theyijt variables for jobs of class at mostk andt ∈ (t′, t′′]. Therefore, for any
period[t1, t2], by considering the capacity constraints (4) of LP (0) for the overlapping intervalsI(i, ∗, k, 0),
we obtain

Vol(t1, t2, i, k, 0) =
∑

j:pij≤2k

∑

t∈[t1,t2]

y0ijt ≤ (t2 − t1) +O(1) · 2k (16)

Applying lemma 2.6 inductively (for the termVol in the above equation) over theO(log n) iterations of
the algorithm gives the result.

Proof of Lemma 2.1. Consider the final solutiony∗ at the end of the algorithm. By our construction, each
job is integrally assigned iny∗. By Lemma (2.4), cost(y∗) is no more than the cost of an optimal solution
to LPnew. By Lemma (2.7), for any time period[t1, t2], machinei and classk, the total volume of jobs
assigned of jobs in class≤ k is at most(t2 − t1) +O(log n)2k. This concludes the proof.

2.4 TheO(log2 n) approximation

TheO(log2 n) approximation follows directly by observing that jobs muchsmallpmax essentially have no
effect.

The algorithm guessespmax, the value of the maximum job size in an optimal solution (say, by trying
out all possiblemn choices), and considers a modified instanceJ ′ where we setpij = pmax/n

2 whenever
pij < pmax/n

2, and applies the previous algorithm forJ ′. Clearly,P ≤ n2 for J ′. Moreover OPT(J ′) ≤
2 OPT(J). Indeed, consider the optimum solution forJ and for each jobj assigned to machinei with size
pij < pmax/n

2, increase its size topmax/n
2 and push all the jobs behind it by the amount by which the size

increases. This gives a valid schedule forJ ′. Each job can be pushed by at mostn jobs, and hence its flow
time increases by at mostn · pmax/n

2. Thus the total flow-time increases by at mostpmax which is at most
OPT(J).

3 Minimizing the Maximum flow-time

We now consider the problem of minimizing the maximum flow-time. By doing binary search, we assume
that we know the value of optimum solution (OPT), say OPT =D. Let us index the jobs by their release
times (breaking ties arbitrarily).

We now write a linear programming relaxation for the problem. In this relaxation, there is a variable
xij denoting the total processing done on jobj on machinei. If pij > D for a jobj on machinei, then we
setxij = 0, asj cannot be scheduled on machinei. The first set of constraints (17) ensure that each job is
completely processed. To see the second constraint (18), wenote that any job released during the interval
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[t, t′] must be completed by timet′ + D. Thus the total size of jobs released in[t, t′] that are assigned to
i can be at most(t′ − t) +D. Moreover, it suffices to consider intervals such thatt, t′ are release dates of
some jobs (as this gives the tightest constraints).

∑

i

xij
pij

≥ 1 ∀j (17)

∑

rj∈[t,t′]

xij ≤ (t′ − t) +D ∀i,∀t, t′ ∈ {r1, . . . , rn} (18)

xij ≥ 0 ∀i, j (19)

xij = 0 ∀i, j with pij > D. (20)

Remark: Note that the variablesxij do not specify the time at which jobj is assigned to machinei.
However, it is instructive to viewxij units of work being assigned at timerj (the release time ofj).

We say that a job isintegrally assigned to machinei in the interval[t1, t2] if xij = pij andrj ∈ [t1, t2].
Similarly, if xij > 0 andxij 6= pij, then job is assigned fractionally to machinei. Let pmax denote the
maximum value ofpij is some optimum schedule (note thatpij ≤ D). For convenience of description later,
let us also assume that the release times are distinct (say, by perturbing them by some infinitesimally small
amount).

As previously, we prove Theorem 1.2 using iterated rounding. To this end, we will show how to create
a “tentative” schedule satisfying the following properties.

Lemma 3.1. There exists a solutionx∗ = {xij}i,j with the following properties:

• x∗ integrally assignseach jobj to a single machinei; i.e.,xij is equal topij for some machinei.

• For any time interval[t1, t2], the total volume of jobs assigned inx∗ is at most(t2 − t1) + D +
O(log n) · pmax. That is,

∑

j:rj∈[t1,t2]

xij ≤ (t2 − t1) +D +O(log n) · pmax.

We first show Theorem 1.2 follows easily from the above lemma.

Proof of Theorem 1.2. Given a solutionx∗ satisfying the properties of Lemma 3.1, we construct a valid
schedule such that flow-time of each job is at mostD + O(log n) · pmax as follows. Fix a machinei.
Consider the jobsJ(i, x∗) = {j | xij = pij} assigned to machinei, and schedule them in First In First Out
(FIFO) order.

To see that every job is completed by timerj +D+O(log n) ·pmax, fix a jobj and consider the interval
[0, rj ]. Let t′ ∈ [0, rj ] be the latest time instant when the machinei is idle. This implies that all the jobs
in J(i, x∗) released in the interval[0, t′] are completed byt′. As the machine is busy during(t′, rj ] and the
total volume of jobs assigned in the interval is at most(rj − t′) +D +O(log n) · pmax, the total volume of
jobs alive atrj is at mostD +O(log n) · pmax, which implies the result.

Henceforth we focus on proving Lemma 3.1.
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3.1 Iterated Rounding and proof of Lemma 3.1

We prove Lemma 3.1 using iterated rounding. Similar to the proof of Lemma (1.1), we write a successive
relaxations of the LP (17-19) denoted byLP (ℓ) (21-23), forℓ = 0, 1, 2..., such that number of constraints
drop by a constant fraction on each iteration. Finally, we obtain a solution where each job is integrally
assigned to a single machine.LP (0) is same as LP (17-19). LetJ(ℓ) denote the set of jobs which are yet to
be integrally assigned at the beginning of iterationℓ. LetJ(0) = J . We now defineLP (ℓ) for ℓ ≥ 1.

• Computing a basic feasible solution:SolveLP (ℓ− 1) and find a basic feasible solutionx∗(ℓ− 1) =
{xℓ−1

ij }i,j to LP (ℓ − 1). We usexℓ−1
ij to indicate the value taken by variablexij in the solution

x∗(ℓ− 1). Initialize J(ℓ) = J(ℓ− 1).

• Eliminating zero variables:Variablesxij of LP (ℓ) are defined with respect to set of positive variables
in the basic feasible solution toLP (ℓ − 1). In other words, ifxℓ−1

ij = 0 in x∗(ℓ − 1), thenxij is not
defined inLP (ℓ).

• Fixing integral assignments:If xℓ−1
ij = pij for some jobj, thenj is permanently assigned to machine

i in the solutionx∗, and we updateJ(ℓ) = J(ℓ) \ {j}.

We drop all the variables involving jobj in LP (ℓ), and the constraint (21). Moreover, we update the
constraints of type (22) as follows.

• Defining Intervals: For each machinei and for each iterationℓ, we define the notion of intervals
I(i, a, ℓ) as follows: Consider the variablesxij for jobsj ∈ J(ℓ) (i.e. the ones not assigned integrally
thus far), in the order of non-decreasing release times. Greedily group consecutivexij variables
(starting from the beginning) such that sum of thexℓ−1

ij values in that group first exceeds2pmax.
We call these groups intervals, and denote thea-th group byI(i, a, ℓ). We sayj ∈ I(i, a, ℓ) if
xij ∈ I(i, a, ℓ), and define Size(I(i, a, ℓ)) =

∑

j∈I(i,a,ℓ) x
ℓ−1
ij .

Note that Size(I(i, a, ℓ)) ∈ [2 · pmax, 3 · pmax) (except possibly for the last interval, in which case we
add a dummy job of size2pmax.)

LP(ℓ): We are now ready to writeLP (ℓ).

∑

i

xij
pij

≥ 1 ∀j ∈ J(ℓ) (21)

∑

j∈I(i,a,ℓ)

xij ≤ Size(I(i, a, ℓ)) ∀i, a, ℓ (22)

xij ≥ 0 ∀i, j ≥ 0 (23)

By the definition of intervals and their sizes, it is clear that the feasible solutionx∗(ℓ− 1) toLP (ℓ− 1) also
is a feasible solution toLP (ℓ). Next we show that each job is integrally assigned afterO(log n) iterations.

Bounding the number of iterations: LetNℓ denote the number of jobs during theℓ-th iteration.

Lemma 3.2. For all ℓ > 1, Nℓ ≤
Nℓ−1

2 .
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Proof. Consider the basic optimal solutionx∗(ℓ− 1) toLP (ℓ− 1). LetSℓ−1 denote the non-zero variables
in this solution, i.e.xij such thatxℓ−1

ij > 0. Consider a linearly independent family of tight constraints in

LP (ℓ− 1) that generate the solutionx∗(ℓ− 1). Since tight constraints of the type ofxℓ−1
ij = 0 only lead to

0 variables, it follows that|Sℓ−1| is at most the number of tight constraints (21) or tight capacity constraints
(22). LetCℓ−1 denote the number of tight capacity constraints. Thus,

|Sℓ−1| ≤ Nℓ−1 + Cℓ−1 (24)

Recall thatA(ℓ − 1) denotes the set of jobs that are assigned integrally in the solution x∗(ℓ − 1). Then,
Nℓ = Nℓ−1 − |A(ℓ− 1)| is the number of remaining jobs that are considered inLP (ℓ). As each job not in
A(ℓ− 1) contributes at least a value of two to|Sℓ−1|, we also have

|Sℓ−1| ≥ |A(ℓ− 1)| + 2(Nℓ − |A(ℓ− 1)|) = Nℓ−1 +Nℓ (25)

Together with (24) this gives
Nℓ ≤ Cℓ−1 (26)

We now show thatCℓ−1 ≤ Nℓ−1/2, which together with (26) would imply the claimed result. Weknow
that size of each interval in(ℓ − 1)-th iteration is at least2 · pmax. As each tight intervalI(i, a, ℓ − 1) has
∑

j∈I(i,a,ℓ−1) x
ℓ−1
ij = Size(I(i, a, ℓ)), we have

Nℓ−1 ≥

∑

i,j x
ℓ−1
ij

pmax
≥

2 · pmax · Cℓ−1

pmax
≥ 2Cℓ−1

Thus we getCℓ−1 ≤ Nℓ−1/2.

Therefore, number of jobs which are integrally assigned at each iterationℓ is at leastNℓ/2. Now note
that number of constraints inLP (1) is at mostn/2 since size of each interval is at least2 · pmax. Hence, the
algorithm terminates inO(log n) rounds.

Bounding the overload: It remains to show that for any time interval[t1, t2], the total size of jobs assigned
in the interval[t1, t2] in x∗ is at most(t2 − t1) +O(log n) · pmax +D.

Let Vol(t1, t2, i, ℓ) be the total volume of jobs assigned (both fractionally and integrally) during the
period[t1, t2] at the end ofℓ-th iteration. Moreover, letA(t1, t2, i, ℓ − 1) be the set of jobs assigned in the
period[t1, t2] in the(ℓ− 1)-th iteration, i.e.xℓ−1

ij = pij andrj ∈ [t1, t2].
Given the solutionx∗(ℓ) toLP (ℓ). Clearly,

Vol(t1, t2, i, ℓ) =
∑

rj∈[t1,t2]

xℓij +
∑

ℓ′<ℓ

∑

j∈A(t1,t2,i,ℓ′)

pij. (27)

The following lemma shows that for any time period, the volume does not increase much in each round.

Lemma 3.3. For any iterationℓ, machinei, and any time period[t1, t2],

Vol(t1, t2, i, ℓ) ≤ Vol(t1, t2, i, ℓ− 1) + 6 · pmax
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Proof. Consider the maximal contiguous set of intervalsI = {I(i, b, ℓ), I(i, b + 1, ℓ), . . . I(i, b + h, ℓ)}
such that for every intervalI(i, b′, ℓ) ∈ I, there exists a jobj ∈ I(i, b′, ℓ) andrj ∈ [t1, t2]. Recall that
size of each interval inLP (ℓ) is at most3 · pmax. Hence, the intervalsI(i, b, ℓ) andI(i, b + h, ℓ) which
overlap[t1, t2] at the left and right boundaries respectively, contribute at most6 · pmax to the interval[t1, t2].
Therefore,

∑

rj∈[t1,t2]

xℓij ≤
b+h−1
∑

a=b+1

Size(I(i, a, ℓ)) + 6 · pmax from (22)

≤
∑

rj∈[t1,t2]

xℓ−1
ij −

∑

j∈A(t1,t2,i,ℓ−1)

pij + 6 · pmax from def. of intervals

≤ Vol(t1, t2, i, ℓ − 1)−
∑

ℓ′≤(ℓ−1)

∑

j∈A(t1,t2,i,ℓ′)

pij + 6 · pmax from (27)

The lemma now follows by rearranging the terms and using (27).

Lemma 3.4. In the solutionx∗, the total volume of jobs assigned in any interval[t1, t2] is at most(t2 −
t1) +D +O(log n) · pmax.

Proof. Consider the interval[t1, t2]. From the constraints ofLP (0) over the interval[t1, t2] and definition
of Vol(i, a, 0) (equation 27), we have,

Vol(t1, t2, i, 0) =
∑

rj∈[t1,t2]

x0ij = ≤ t2 − t1 +D

The result now follows by applying Lemma 3.3 for theO(log n) iterations of the algorithm.

Proof of Lemma 3.1. From lemma 3.2 we know that each job is integrally assigned toa single machine.
Lemma 3.4 guarantees that total volume of jobs assigned in each time interval[t1, t2] is bounded by(t2 −
t1) +D +O(log n) · pmax. This gives us the desiredx∗ and concludes the proof.
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[1] Christoph Ambühl and Monaldo Mastrolilli. On-line scheduling to minimize max flow time: an opti-
mal preemptive algorithm.Oper. Res. Lett., 33(6):597–602, 2005.

[2] S. Anand, Karl Bringmann, Tobias Friedrich, Naveen Garg, and Amit Kumar. Minimizing maximum
(weighted) flow-time on related and unrelated machines. InICALP (1), pages 13–24, 2013.

[3] S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted flow-time explained
by dual fitting. InSODA, pages 1228–1241, 2012.

[4] Nir Avrahami and Yossi Azar. Minimizing total flow time and total completion time with immediate
dispatching. InIn Proc. 15th Symp. on Parallel Algorithms and Architectures (SPAA, pages 11–18.
ACM, 2003.

[5] Baruch Awerbuch, Yossi Azar, Stefano Leonardi, and OdedRegev. Minimizing the flow time without
migration.SIAM J. Comput., 31(5):1370–1382, 2002.

16



[6] Nikhil Bansal and Kedar Dhamdhere. Minimizing weightedflow time. ACM Transactions on Algo-
rithms, 3(4), 2007.

[7] Nikhil Bansal and Kirk Pruhs. The geometry of scheduling. In IEE Symposium on the Foundations of
Computer Science, pages 407–414, 2010.

[8] Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Muralidhara. A competitive algorithm for
minimizing weighted flow time on unrelatedmachines with speed augmentation. InSymposium on
Theory of Computing, pages 679–684, 2009.

[9] Chandra Chekuri, Sanjeev Khanna, and An Zhu. Algorithmsfor minimizing weighted flow time. In
STOC, pages 84–93, 2001.

[10] Yefim Dinitz, Naveen Garg, and Michel X. Goemans. On the single-source unsplittable flow problem.
In FOCS, pages 290–299, 1998.

[11] N. Garg and A. Kumar. Better algorithms for minimizing average flow-time on related machines. In
ICALP (1), 2006.

[12] Naveen Garg and Amit Kumar. Minimizing average flow timeon related machines. InSTOC, pages
730–738, 2006.

[13] Naveen Garg and Amit Kumar. Minimizing average flow-time : Upper and lower bounds. InFOCS,
pages 603–613, 2007.

[14] Naveen Garg, Amit Kumar, and V. N. Muralidhara. Minimizing total flow-time: The unrelated case.
In ISAAC, pages 424–435, 2008.

[15] Sungjin Im, Benjamin Moseley, and Kirk Pruhs. A tutorial on amortized local competitiveness in
online scheduling.SIGACT News, 42(2):83–97, 2011.

[16] Hans Kellerer, Thomas Tautenhahn, and Gerhard J. Woeginger. Approximability and nonapproxima-
bility results for minimizing total flow time on a single machine. InSTOC, pages 418–426, 1996.

[17] Lap-Chi Lau, R. Ravi, and Mohit Singh.Iterative Methods in Combinatorial Optimization. Cambridge
University Press, New York, NY, USA, 1st edition, 2011.

[18] Stefano Leonardi and Danny Raz. Approximating total flow time on parallel machines.J. Comput.
Syst. Sci., 73(6):875–891, 2007.

[19] Kirk Pruhs, Jiri Sgall, and Eric Torng.Handbook of Scheduling: Algorithms, Models, and Performance
Analysis, chapter Online Scheduling. CRC Press, 2004.
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