49,454 research outputs found
The effect of microstructure on the fracture toughness of titanium alloys
The microstructure of the alpha titanium alloy Ti-5Al-2.5Sn and the metastable beta titanium alloy Beta 3 was examined. The material was from normal and extra low interstitial grade plates which were either air-cooled or furnace-cooled from an annealing treatment. Beta 3 was studied in alpha-aged and omega-aged plates which were heat treated to similar strength levels. Tensile and plane strain fracture toughness tests were conducted at room temperature on the alpha-aged material. The microstructure and fracture mechanisms of alloys were studied using optical metallography, electron microscopy, microprobe analyses, and texture pole figures. Future experiments are described
The Effect of Water Storage on the Bending Properties of Esthetic, Fiber-Reinforced Composite Orthodontic Archwires
Objective: To study the effect of water storage on the bending properties of fiber-reinforced composite archwires and compare it to nickel-titanium (NiTi), stainless steel (SS), and beta-titanium archwires.
Materials and Methods: Align A, B, and C and TorQ A and B composite wires from BioMers Products, 0.014-, 0.016, and 0.018-inch, and 0.019 × 0.025-inch NiTi, 0.016-inch SS, and 0.019 × 0.025-inch beta-titanium archwires were tested (n = 10/type/size/condition). A 20-mm segment was cut from each end of the archwire; one end was then stored in water at 37°C for 30 days, while the other was stored dry. The segments were tested using three-point bending to a maximum deflection of 3.1 mm with force monitored during loading (activation) and unloading (deactivation). Statistical analysis was completed via two-way analysis of variance with wire and condition (dry and water-stored) as factors.
Results: In terms of stiffness and force delivery during activation, in general: beta-titanium was \u3e TorQ B \u3e TorQ A \u3e 0.019 × 0.025-inch NiTi and 0.016-inch SS \u3e Align C \u3e 0.018-inch NiTi \u3e Align B \u3e 0.016-inch NiTi \u3e Align A \u3e 0.014-inch NiTi. Water exposure was detrimental to the larger translucent wires (Align B and C, TorQ A and B) because they were more likely to craze during bending, resulting in decreased forces applied at a given deflection. Align A and the alloy wires were not significantly (P\u3e .05) affected by water storage. Overall, the alloy wires possessed more consistent force values compared to the composite wires
Interface characteristics in an {\alpha}+{\beta} titanium alloy
The alpha/beta interface in Ti-6Al-2Sn-4Zr-6Mo (Ti-6246) is investigated via
centre of symmetry analysis, both as-grown and after 10% cold work.
Semi-coherent interface steps are observed at a spacing of 4.5 +/-1.13 atoms in
the as-grown condition, in good agreement with theory prediction (4.37 atoms).
Lattice accommodation is observed, with elongation along [-1 2 -1 0]alpha and
contraction along [1 0 -1 0]alpha . Deformed alpha exhibited larger, less
coherent steps with slip bands lying in {110}beta. This indicates dislocation
pile-up at the grain boundary, a precursor to globularisation, offering insight
into the effect of deformation processing on the interface, which is important
for titanium alloy processing route design.Comment: Revised after revie
Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy
The effects of pulsed gas tungsten arc weldingparameters on the morphology of
additive layer manufacturedTi6Al4V has been investigated in this study. Thepeak/
base current ratio and pulse frequency are found tohave no significant effect on
the refinement of prior betagrain size. However, it is found that the wire feed
ratehas a considerable effect on the prior beta grainrefinement at a given heat
input. This is due to the extrawire input being able to supply many
heterogeneousnucleation sites and also results in a negative temperaturegradient
in the front of the liquidus which blocks thecolumnar growth and changes the
columnar growth toequiaixal growth
Modelling the influence of the process inputs on the removal of surface contaminants from Ti-6Al-4V linear friction welds
The linear friction welding (LFW) process is finding increasing interest from industry for the fabrication of near-net-shape, titanium alloy Ti–6Al–4V, aerospace components. Currently, the removal of surface contaminants, such as oxides and foreign particles, from the weld interface into the flash is not fully understood. To address this problem, two-dimensional (2D) computational models were developed using the finite element analysis (FEA) software DEFORM and validated with experiments. The key findings showed that the welds made with higher applied forces required less burn-off to completely remove the surface contaminants from the interface into the flash; the interface temperature increased as the applied force was decreased or the rubbing velocity increased; and the boundary temperature between the rapid flash formation and negligible material flow was approximately 970 °C. An understanding of these phenomena is of particular interest for the industrialisation of near-net-shape titanium alloy aerospace components.EPSRC, Boeing Company, Welding Institut
Biomaterial Properties of Titanium in Dentistry
Background Among various dental materials and their successful restorative uses, titanium provides an excellent example of integrating science and technology involving multiple disciplines of dentistry including biomaterials, prosthodontics and surgical sciences. Titanium and its alloys have emerged as a material of choice for dental implants fulfilling all requirements biologically, chemically and mechanically. Several excellent reviews have discussed the properties of titanium and its surface characteristics that render it biocompatible. However, in most patients, titanium implants are used alongside several other metals. Presence of different metals in the same oral environment can alter the properties of titanium. Other influencing factors include intra-oral pH, salivary content, and effect of fluorides. Highlight This review discusses the effect of the above-mentioned conditions on the properties of titanium and its alloys. An extensive literature search encompassing the properties of titanium in an altered oral environment and its interaction with other restorative materials is presented. Specific conditions that could cause titanium to corrode, specifically due to interaction with other dental materials used in oral rehabilitation, as well as methods that can be employed for passivation of titanium are discussed. Conclusion This review presents an overview of the properties of titanium that are vital for its use in implant dentistry. From a restorative perspective, interaction between implant restoration metals, intra-oral fluorides and pH may cause titanium to corrode. Therefore, in order to avoid the resulting deleterious effects, an understanding of these interactions is important for long-term prognosis of implant restorations
An investigation of the effect of surface impurities on the adsorption kinetics of hydrogen chemisorbed onto iron
The goal was to develop an understanding of heterogeneous kinetic processes for those molecular species which produce gaseous hydrogen degradation of the mechanical properties of metallic structural materials. Although hydrogen degradation of metallic materials is believed to result from dissolved protonic hydrogen, the heterogeneous hydrogen interface transport processes often dominate the kinetics of the degradation process. The initial step in the interface transport process is the dissociative chemisorption of the molecular species at the metal surface followed by hydrogen absorption into and transport through the bulk. Modern advanced aerospace applications often require the use of structural materials in high pressure hydrogen environments at temperatures which range from low cryogenic temperatures to very high temperatures (1300 K and greater). Materials proposed for these applications, such as the titanium aluminides, beta-titanium alloys, nickel- and cobalt-based superalloys, molybdenum-rhenium alloys, beryllium, and various beryllides, need to possess a high degree of immunity from hydrogen induced degradation of mechanical properties. In the present program, the interaction of hydrogen with the surfaces of alpha-2 (Ti3Al) titanium aluminide, gamma (TiAl) titanium aluminide, and beryllium were studied. The interaction of low pressure hydrogen with gamma titanium aluminide and beryllium was found to be relatively weak, in the sense that adsorption leads to a low surface concentration of dissociated hydrogen, i.e., the chemisorption process is reversible at room temperature (300 K) for gamma titanium aluminide and the sticking coefficient for chemisorption is extremely small for beryllium. Hydrogen was found to interact readily with alpha-2 titanium aluminide to form a stable surface hydride at 300 K. These results correlate well with other recent studies which show that the mechanical properties for alpha-2 titanium aluminide are readily degraded in hydrogen while gamma titanium aluminide exhibits less degradation and beryllium essentially no degradation. The interaction of oxygen with the surface of these materials has been studied, also, in the present program
- …
