1,861 research outputs found

    Formal Desingularization of Surfaces - The Jung Method Revisited -

    Get PDF
    In this paper we propose the concept of formal desingularizations as a substitute for the resolution of algebraic varieties. Though a usual resolution of algebraic varieties provides more information on the structure of singularities there is evidence that the weaker concept is enough for many computational purposes. We give a detailed study of the Jung method and show how it facilitates an efficient computation of formal desingularizations for projective surfaces over a field of characteristic zero, not necessarily algebraically closed. The paper includes a generalization of Duval's Theorem on rational Puiseux parametrizations to the multivariate case and a detailed description of a system for multivariate algebraic power series computations.Comment: 33 pages, 2 figure

    Discrete spheres and arithmetic progressions in product sets

    Full text link
    We prove that if BB is a set of NN positive integers such that BBB\cdot B contains an arithmetic progression of length MM, then for some absolute C>0C > 0, π(M)+CM2/3log2MN, \pi(M) + C \frac {M^{2/3}}{\log^2 M} \leq N, where π\pi is the prime counting function. This improves on previously known bounds of the form N=Ω(π(M))N = \Omega(\pi(M)) and gives a bound which is sharp up to the second order term, as Pach and S\'andor gave an example for which N<π(M)+O(M2/3log2M). N < \pi(M)+ O\left(\frac {M^{2/3}}{\log^2 M} \right). The main new tool is a reduction of the original problem to the question of approximate additive decomposition of the 33-sphere in F3n\mathbb{F}_3^n which is the set of {0,1}\{0,1\} vectors with exactly three non-zero coordinates. Namely, we prove that such a set cannot have an additive basis of order two of size less than cn2c n^2 with absolute constant c>0c > 0.Comment: An updated version with an essentially sharp bound. To appear in Acta Arithmetic

    Algebraic Problems Equivalent to Beating Exponent 3/2 for Polynomial Factorization over Finite Fields

    Get PDF
    The fastest known algorithm for factoring univariate polynomials over finite fields is the Kedlaya-Umans (fast modular composition) implementation of the Kaltofen-Shoup algorithm. It is randomized and takes O~(n3/2logq+nlog2q)\widetilde{O}(n^{3/2}\log q + n \log^2 q) time to factor polynomials of degree nn over the finite field Fq\mathbb{F}_q with qq elements. A significant open problem is if the 3/23/2 exponent can be improved. We study a collection of algebraic problems and establish a web of reductions between them. A consequence is that an algorithm for any one of these problems with exponent better than 3/23/2 would yield an algorithm for polynomial factorization with exponent better than 3/23/2

    Flavor Structure in F-theory Compactifications

    Full text link
    F-theory is one of frameworks in string theory where supersymmetric grand unification is accommodated, and all the Yukawa couplings and Majorana masses of right-handed neutrinos are generated. Yukawa couplings of charged fermions are generated at codimension-3 singularities, and a contribution from a given singularity point is known to be approximately rank 1. Thus, the approximate rank of Yukawa matrices in low-energy effective theory of generic F-theory compactifications are minimum of either the number of generations N_gen = 3 or the number of singularity points of certain types. If there is a geometry with only one E_6 type point and one D_6 type point over the entire 7-brane for SU(5) gauge fields, F-theory compactified on such a geometry would reproduce approximately rank-1 Yukawa matrices in the real world. We found, however, that there is no such geometry. Thus, it is a problem how to generate hierarchical Yukawa eigenvalues in F-theory compactifications. A solution in the literature so far is to take an appropriate factorization limit. In this article, we propose an alternative solution to the hierarchical structure problem (which requires to tune some parameters) by studying how zero mode wavefunctions depend on complex structure moduli. In this solution, the N_gen x N_gen CKM matrix is predicted to have only N_gen entries of order unity without an extra tuning of parameters, and the lepton flavor anarchy is predicted for the lepton mixing matrix. We also obtained a precise description of zero mode wavefunctions near the E_6 type singularity points, where the up-type Yukawa couplings are generated.Comment: 148 page
    corecore