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a b s t r a c t

In this paper we propose the concept of formal desingularizations as
a substitute for the resolution of algebraic varieties. Though a usual
resolution of algebraic varieties provides more information on the
structure of singularities there is evidence that the weaker concept
is enough for many computational purposes. We give a detailed
study of the Jung method and show how it facilitates an efficient
computation of formal desingularizations for projective surfaces
over a field of characteristic zero, not necessarily algebraically
closed. The paper includes a constructive extension of the Theorem
of Jung–Abhyankar, a generalization ofDuval’s Theoremon rational
Puiseux parametrizations to the multivariate case and a detailed
description of a system for multivariate algebraic power series
computations.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Smooth varieties are (in general) well understood. By contrast (or simply because of that) the
objects of interest are often singular varieties. From the theoretical point of view, a remedy for this
situation is the celebrated Theorem of Hironaka (1964a,b) (or Hauser (2003) for a more modern
treatment) on the resolution of singularitieswhich is ubiquitous in algebraic geometry: If X is a variety
over a field of characteristic zero, then there always exists a smooth variety Y and a proper birational
morphism π : Y → X . So for proving theorems and defining birational invariants, one can often
argue on Y rather than on X and finally transfer the result back to the singular variety. This theorem
has beenmade constructive by Villamayor (1989), Bierstone andMilman (1991) and others. There are
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also two implementations of the desingularization algorithm in Singular (Greuel and Pfister, 2002),
one by Bodnár and Schicho (2000) and another one by Frübis-Krüger (Frühbis-Krüger and Pfister,
2004). In principal this makes many theoretical results algorithmic, but any algorithm relying on a
desingularization suffers from the high computational complexity of the desingularization process.
There are also specialized constructive methods for the surface case (for a list see Cossart et al. (1984)
and Kollár (2007, Chp. 2)), in particular, the Method of Jung which originates in Jung (1908) and has
been further developed in Walker (1935) and Hirzebruch (1953). But – to the best of our knowledge
– there are no implementations available.
From the computational point of view, it is not always necessary to describe a desingularization

completely. In the case of algebraic curves over a field E, series expansions have proven to be
an important algorithmic tool. Here the preimage of the singular locus w.r.t. a desingularization
is a finite set of points. The idea is to describe the desingularization by power series expansions
that determine ‘‘formal neighborhoods’’ of these points. If E has characteristic zero, Puiseux
expansions can be used, and the Newton–Puiseux algorithm is implemented in many computer
algebra systems including Magma (Bosma et al., 1997), Maple and Singular. The latter system
also has an implementation of Hamburger–Noether expansions (Campillo and Farrán, 2002) that
provides a similar tool for positive characteristic. Applications are for example the computation
of an integral basis of the function field (van Hoeij, 1994) and Riemann–Roch spaces of divisors
(Haché and Le Brigand, 1995).
The purpose of this paper is to provide a similar tool for hypersurfaces of P3E, where E is a

field of characteristic zero. We emphasize algorithmic aspects and proceed as follows: In Section 2
we define formal desingularizations for schemes of arbitrary dimension. They can be interpreted
as sufficiently large sets of local parametrizations by formal maps. Formal desingularizations offer
a lot of flexibility because during computation one can always switch to formally isomorphic
schemes. Then in Section 3 we show how to compute them for surfaces using the method of
Jung that depends crucially on the Theorem of Jung–Abhyankar. We define and use rational
Puiseux parametrizations whose existence and computability we assume for that moment. We
also give a description of the algorithm in mathematical pseudo-code. Finally Section 4 shows
in detail how to implement a system that represents and computes with multivariate algebraic
power series in Magma. (Locally smooth systems, as proposed in Alonso et al. (1992), were
insufficient from the complexity point of view.) Folklore indicates that the concept of rational
Puiseux parametrizations introduced by Duval (1989) should be extensible to multivariate quasi-
ordinary polynomials. We give a new and more elementary proof of that fact and show how
to compute parametrizations using our representation. We end with an open problem and an
outlook in Section 5. In a short appendix we collect results from local commutative algebra for
reference.
Before we proceed we recall and fix some notions. Let E be a field of characteristic zero and X

and Y integral E-schemes. By E(X) and E(Y ) we denote the respective function fields. A rational map
π : Y 99K X is given by a tuple (V , π) s.t. V ⊆ Y is open and π : V → X is a regular morphism.
Note that we do not restrict to schemes of finite type here. In particular all regular morphisms are
rational maps. Two tuples (V1, π1) and (V2, π2) are equivalent, or define the same rational map, if
π1|V1∩V2 = π2|V1∩V2 .
Assume that twomaps send the generic point of Y to p ∈ X (its image is always defined for rational

maps). Then (V1, π1) and (V2, π2) are equivalent iff the induced inclusions of fieldsOX,p/mX,p ↪→ E(Y )
are the same (where mX,p ⊂ OX,p is the maximal ideal). In particular if π is dense, i.e., p is the generic
point of X , we get an inclusion E(X) ↪→ E(Y ) determining π .
Note, however, that not all such field inclusions yield rational maps under our assumption since

we have not yet restricted to schemes of finite type over E. E.g., let X := SpecE[x], Y := SpecE[x]〈x〉
and π : Y → X be themorphism induced by localization. Then π induces an isomorphism of function
fields E(X) ∼= E(Y ). Nevertheless π has no rational inverse. A rational map with inverse is called
birational (or also a birational transformation).
Further it is easy to see that dense rational maps may be composed. A rational map has a domain

of definition, which is the maximal open set on which it can be defined (equivalently, the union of all
such open sets).
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2. Formal desingularizations

For this section we denote by X and Y separated, integral schemes of finite type over E. Further we
assume that both are of dimension n. All (rational) maps will be relative over E.
Let (A,m) be a valuation ring of E(X) over E (wherem is the maximal ideal). If A is discrete of rank

1 and the transcendence degree of A/m over E is n − 1 then it is called a divisorial valuation ring of
E(X) over E or a prime divisor of E(X) (see, e.g., Spivakovsky (1990, Def. 2.6)). It is an essentially finite,
regular, local E-algebra of Krull dimension 1 (i.e., the localization of a finitely generated E-algebra at
a prime ideal; see Zariski and Samuel (1975, Thm. VI.14.31)).
Let (A,m) be a divisorial valuation ring of E(X) over E. By (Hartshorne, 1977, Lem. II.4.4.) the

inclusion A ⊂ E(X) defines a unique morphism Spec QF(A) → X and therefore a rational map
Spec A 99K X sending generic point to generic point. Composing this with the morphism obtained
by the m-adic completion A→ Âwe get a rational map Spec Â 99K X .

Definition 1 (Formal Prime Divisor). Let (A,m) be a divisorial valuation ring of E(X) over E. Assume
that the rational map Spec Â 99K X (as above) is actually a morphism ϕ : Spec Â → X (i.e., defined
also at the closed point). Then ϕ is a representative for a class of schemes up to X-isomorphism.
This class (and, by abuse of notation, any representative) will be called a formal prime divisor
on X .

Hence we may compose a representative ϕ with an isomorphism Spec B → Spec Â to get
another representative for the same formal prime divisor. We have an isomorphism Â ∼= FϕJtK with
Fϕ := Â/m̂A ∼= A/m. In the sequel we will sometimes assume that Â is already of this form, i.e.,
ϕ : Spec FϕJtK → X . The isomorphism is an instance of Cohen’s Structure Theorem for regular rings;
see Theorem 43.
Formal prime divisors provide an algorithmic way for dealing with divisorial valuations; a formal

prime divisor yields an inclusion of function fields E(X) ↪→ Fϕ ((t)). Vice versa, by what was said
above, ϕ is determined by this inclusion. So it is this piece of information that one has to represent.
Composing this inclusion with the order function ordt : Fϕ ((t)) → Z we get the corresponding
divisorial valuation.
We want to single out a special class of formal prime divisors.

Definition 2 (Realized Formal Prime Divisors). Let p ∈ X be a regular point of codimension 1. The
formal prime divisor

Spec ÔX,p → X

(given by composing the canonic morphism SpecOX,p → X with the morphism induced by the
completion OX,p → ÔX,p) is called realized.

If X is normal then all generic points of closed subsets of codimension 1 are nec-
essarily regular (Hartshorne, 1977, Thm II.8.22A). Therefore there is a one–one correspon-
dence of realized formal prime divisors and prime Weil divisors. Another important fact is
that we can compare formal prime divisors of birationally equivalent schemes under certain
conditions.

Lemma 3 (Pullback of Formal Prime Divisors). Let X and Y be S-schemes with structure morphisms ρX :
X → S, ρY : Y → S and assume that ρY is proper. Let π : Y 99K X be a birational transformation of
S-schemes (meaning that ρY = ρXπ as rational maps).
Then each formal prime divisor ϕ : Spec Â→ X lifts uniquely to a formal prime divisor on Y , i.e., there

is a unique formal prime divisor π∗ϕ : Spec Â→ Y s.t. π(π∗ϕ) = ϕ as rational maps.
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Proof. Consider the commuting diagram

Spec QF(̂A) //

��

SpecE(X) //

��

SpecE(Y )

��
Spec Â

ϕ // X

ρX
##GG

GG
GG

GG
GG

G
π−1 //__________ Y

ρY
{{www

ww
ww

ww
ww

S

where the vertical arrows are given by restricting identity maps to the germs at the generic points
and the upper arrows are induced by ϕ and π−1 respectively. The two squares trivially commute and
the triangle commutes because π was assumed to be a birational transformation of S-schemes.
Now assume that a lift π∗ϕ as in the claim exists; then we must have π∗ϕ = π−1ϕ because π is

birational. This (a priori only rational) map would fit into the following contracted diagram:

Spec QF(̂A) //

��

Y

ρY

��
Spec Â

ρXϕ //

π∗ϕ

;;w
w

w
w

w
S

Now there exists a unique regular morphismψ : Spec Â→ Y which fits into this diagram by applying
the valuative criterion of properness to ρY (see Hartshorne (1977, Thm. II.4.7)). Since a rational map
is uniquely determined by the inclusion of function fields we see that π∗ϕ = ψ . �

Corollary 4 (Pullback along Proper Morphisms). Let π : Y → X be a proper, birational morphism. A
formal prime divisor on X lifts to a unique formal prime divisor on Y . Vice versa a formal prime divisor on
Y extends to a unique formal prime divisor on X; hence π∗ is a bijection.

Proof. This is obtained by applying Lemma 3 to π and π−1 where S := X . �

We will apply the operator π∗ also to sets of formal prime divisors.

Definition 5 (Center and Support). Let ϕ : Spec Â→ X be a formal prime divisor.We define its center,
in symbols center(ϕ), to be the image of the closed point. Further the support of a finite set of formal
prime divisorsS is defined as suppX (S) := {center(ϕ) | ϕ ∈ S}, i.e., the closure of the set of all centers.

Example 6. Let X := Spec A with A := Q[x, y, z]/〈x2 + y2 − z2〉 be the cone over the circle and
Y := Spec Bwith B := Q[x′, y′, z ′]/〈x′2+ y′2− 1〉 the cylinder. The strict transform π under the blow
up of the origin has an affine chart Y → X given by the homomorphism A → B : x 7→ x′z ′, y 7→
y′z ′, z 7→ z ′. The generic point of the exceptional divisor in Y is the prime ideal 〈z ′〉. In this case we
have a trivial isomorphism B̂〈z′〉 ∼= QF(Q[x′, y′]/〈x′2 + y′2 − 1〉)Jz ′K. Then a formal prime divisor is
induced by the homomorphism

A→ QF(Q[x′, y′]/〈x′2 + y′2 − 1〉)Jz ′K : x 7→ x′z ′, y 7→ y′z ′, z 7→ z ′.

We can compose this homomorphism with an arbitrary isomorphism of rings to get another
representative of the same formal prime divisor. E.g., since the circle is a rational curve we can change
the coefficient field via QF(Q[x′, y′]/〈x′2 + y′2 − 1〉)→ Q(s) : x′ 7→ 2s

1+s2
, y′ 7→ −1+s2

1+s2
and map, say,

z ′ 7→ t + t2 + · · · . Now a formal prime divisor ϕ : SpecQ(s)JtK→ X is induced by

A→ Q(s)JtK : x 7→
2s(t + t2 + · · · )

1+ s2
, y 7→

(−1+ s2)(t + t2 + · · · )
1+ s2

, z 7→ t + t2 + · · · .

One finds centerX (ϕ) = 〈x, y, z〉 (which is the preimage of the prime ideal 〈t〉) and by construction
we know that π∗ϕ is realized with center 〈z ′〉 in Y .
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Now we are in a situation to define formal desingularizations.

Definition 7 (Formal Description of a Desingularization). Let π : Y → X be a desingularization, i.e., π
is proper, birational and Y is regular. Let S be a finite set of formal prime divisors on X . We say that S
is a formal description of π iff

(1) all divisors in π∗S are realized,
(2) π−1(suppX (S)) = suppY (π∗S) and
(3) the induced morphism Y \ suppY (π∗S)→ X \ suppX (S) is an isomorphism.

For this definition we do not require π to be a strong desingularization, in the sense that the
preimage of the singular locus is a normal crossing divisor. The algorithm described in Section 3.3
will in fact produce the formal description of a strong desingularization, though we do not prove it.
The set S itself consists of formal prime divisors on X and makes no reference to the morphism π .

By another definition we can avoidmentioning an explicit π .

Definition 8 (Formal Desingularization). Let S be a finite set of formal prime divisors on X . Then S
is called a formal desingularization of X iff there exists some desingularization π s.t. S is a formal
description of it.

Informally speaking the set S makes it possible to treat divisors on Y effectively, although we
haven’t explicitly represented Y as a whole; indeed, realized formal prime divisors correspond
bijectively to usual prime divisors on the regular scheme Y . The set of formal prime divisors now
divides into two classes: those within π∗S and those with center in Y \ suppY (π∗S). The latter can be
dealt with in the isomorphic scheme X \ suppX (S). Therefore formal descriptions are an appropriate
algorithmic tool for working with invertible sheaves on Y .
In the case of surfaces it is easy to see that the existentially quantified π in the above definition is

actually unique up to isomorphism. Therefore S really identifies a desingularization in the common
sense. Vice versa, every desingularization can be described formally by completing the stalks along
the exceptional divisors.

Theorem 9 (Uniqueness of Surface Desingularization). Let S be a formal desingularization of X. If π1 :
Y1 → X and π2 : Y2 → X are two desingularizations described by S (in the sense of Definition 7) then Y1
and Y2 are isomorphic as X-schemes.

Proof. Let b(0) : X (0) → X be a minimal desingularization (see Lipman (1969, Cor. 27.3)) of X and let
S(0) be obtained from (b(0))∗S by subtracting all realized formal prime divisors. Then π1 and π2 factor
through X (0) yielding a commuting diagram

Y1

π
(0)
1   BB

BB
BB

BB

(
π
(0)
2

)−1
π
(0)
1 //_______ Y2

π
(0)
2~~||

||
||

||

X (0)

and π (0)1 and π (0)2 are both described by S(0).
Moreover these maps are proper, birational morphisms between regular surfaces, so they factor

into a finite sequence of point blowups (seeHartshorne (1977, Cor. V.5.4)which holds also for the case
of a non-closed ground field). The set of possible centers for the first blow up is exactly suppX(0)(S

(0)).
Choose a center, compute the blow up b(1) : X (1) → X (0) and set S(1) to be the set (b(1))∗S(0) excluding
the unique formal prime divisor that is turned realized and centered along the exceptional divisor.
Again π (0)1 and π (0)2 factor through morphisms π (1)1 : Y1 → X (1) and π (1)2 : Y2 → X (1) described by
S(1). Going on like this and setting l := #S(0), we find that π (l)1 and π

(l)
2 are described by S(l) = ∅ and

hence are isomorphisms by Definition 7. �
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It is not so clearwhether a similar statement holds in higher dimensionswhenminimal resolutions
are not available.
Remark 10 (Formal Desingularization of Reduced Schemes). The above definitions can and will be
used in amore general setting. Namely, if X =

⋃
i Xi is the decomposition of a reduced, equidimensional

(no longer integral) scheme into irreducible closed subschemes then any morphism Spec FJtK → X
is actually a morphism to one of the Xi. We call it a formal prime divisor if the corresponding
Spec FJtK→ Xi is a formal prime divisor. We call it again realized iff it corresponds to the completion
at the germ of a regular codimension 1 point in X (not in Xi!). Lemma 3 and Corollary 4 remain valid in
this setting (where a birational morphism between two reduced schemes is a morphism that induces
birational morphisms on all irreducible components). The definitions of center, support and formal
desingularization carry over straightforwardly.

3. The method of Jung revisited

In this section we describe the desingularization of surfaces after Jung. The following material is
largely covered also in a book (Kiyek and Vicente, 2004b) which gives a very detailed presentation of
Jung’s method.

3.1. Theory of the method

First we will view a projective surface as a certain covering of a smooth surface. Then we modify
the covering such that after passing to the integral closure the remaining singularities are very simple
and can be resolved by point blow ups.

3.1.1. Projective surfaces as ramified coverings of the plane
Consider a projective hypersurface X ⊆ P3E. We want to view X in a slightly different way. Let

p0 ∈ P3E \ X be a closed rational point (i.e., its residue field is isomorphic to E) and π : W → V the
linear projection from p0 whereW := P3E \ p0 and V := P2E. This projection defines a line bundle. Its
restriction π |X : X → V is a Noether normalization of X , i.e., a finite morphism onto the projective
plane. We subsume the governing properties in the following definition:
Definition 11 (Ramified Coverings). Let π : W → V be a line bundle s.t. V is a regular, integral surface
over E. Further let X ⊂ W be a reduced hypersurface s.t. π |X : X → V is finite. The tuple (π, X) is then
called a ramified covering.
That is our notion of ramified covering comprises that we are dealing with surfaces and that the

covering surface is embedded in a line bundle over the base. Now we want to define the ramification
locus of such a covering, i.e., the locus where the covering π |X is ‘‘not locally trivial’’ (more precisely,
not étale). Since π is a line bundle and π |X is finite, we can find a covering {Ui}i of V by affine open
subsets s.t. OW (π−1(Ui)) ∼= OV (Ui)[z] is a polynomial ring in one variable and X is given by a monic,
squarefree polynomial fi ∈ OV (Ui)[z].
Definition 12 (Discriminant Curve). Let (π : W → V , X) be a ramified covering. Let {Ui}i be a
covering of V as above and fi ∈ OV (Ui)[z] polynomials defining X . The ideals 〈discz(fi)〉 ⊆ OV (Ui)
define an invertible sheaf of ideals and the corresponding subscheme is called the discriminant curve
Dπ |X ⊆ V .
The discriminant curve is actually a concept independent of the concrete covering and embedding

of X intoW . It depends only on π |X . Further the covering is locally trivial except over Dπ |X .

Example 13. Consider the surface X ⊂ P3Q given by F = 0 with F := x
6
0 + 3x

4
0x2x3 + x

3
0x
2
1x2 +

3x20x
2
2x
2
3 + x

3
2x
3
3 ∈ Q[x0, x1, x2, x3]. Since F is monic in x0 the surface X doesn’t contain the point

p := (1 : 0 : 0 : 0). The line bundle defined by the projection of X \ {p} to the plane x0 = 0 is
given by dehomogenizing with respect to x1, x2 and x3.
In the last chart, the defining equation has the form f := w6 + 3vw4 + u2vw3 + 3v2w2 + v3 ∈

Q[u, v][w] where we have mapped x0 7→ w, x1 7→ u, x2 7→ v and x3 7→ 1. We have the local
discriminant discw(f ) = 729u8v12(u4 − 64v). Fig. 1 left displays the surface.
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Fig. 1. Embedded desingularization of the discriminant. The left side shows the local picture of the example surface X together
with its discriminant curve. On the rightwe depict a chart X0 obtained from the embedded desingularization of the discriminant
curve.

3.1.2. Embedded desingularization of the discriminant curve
We would like to give a more detailed study of the covering, but for general ramified coverings

(π, X) this is hard. The complexity of X and of the covering map is partially reflected in the
discriminant curve Dπ |X . Recall that a closed point p is called normal crossing for the embedded curve
Dπ |X ⊆ V if the curve is locally defined by d

ex
x d
ey
y u ∈ OV ,p where u is a unit, {dx, dy} is a local system of

parameters and ex, ey ≥ 0. The whole curve is called normal crossing if it is normal crossing at every
closed point.

Definition 14 (Nicely Ramified Coverings). Let (π, X) be a ramified covering. IfDπ |X is normal crossing
then we call (π, X) nicely ramified.

We can alwaysmodify a ramified covering to becomenicely ramified. If we speak of normal crossing
singularities of the discriminant curve of a nicely ramified covering, we mean the closed points where
two components intersect.

Lemma 15 (Simplification of Coverings). Let (π : W → V , X) be a ramified covering. There is a proper,
birationalmorphism ρ : V ′ → V s.t. the ramified covering (π ′ : W ′ → V ′, X ′) is nicely ramified (where
W ′ := W ×V V ′ and X ′ := X ×W W ′). Further ρ is given by a finite succession of blow ups at closed
points.

Proof. The theorem on embedded desingularization of curves (see Kollár (2007, Thm. 1.47)) shows
the existence of the morphism ρ; indeed it says that after a finite number of blow ups in the singular
points of the reduced curve the pullback of Dπ |X is normal crossing. For showing the lemma it remains
to prove that constructing the discriminant curve commutes with base extension. This is left to the
reader. �

Example 13 (Continued). The curve defined by discw(f ) has a complicated singularity at the origin
which needs to be resolved. One of the chart maps is given by u 7→ uv, v 7→ u2v3 and transforms
discw(f ) to 729u34v47(u2v − 64) which describes a curve with a normal crossing intersection at the
origin.
The embedded desingularization of the discriminant curve can be applied to the surface X (by

mapping w 7→ w) to obtain a surface with chart X0. We obtain the new local equation f0 =
w6+ 3u2v3w4+ u4v5w3+ 3u4v6w2+ u6v9 with discw(f0) = 729u34v47(u2v− 64); see Fig. 1 (right).
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Fig. 2. Lattice and dual lattice. We show the non-negative quadrant of a lattice Γ and its dual Γ ∨ (i.e., the set of all linear forms
to Z identified via scalar multiplication of vectors). In the dual we have inscribed a minimal sequence of generators n1, . . . , n4 .
Indices are chosen s.t. subsequent pairs correspond to neighboring vectors.

3.1.3. Desingularization of toroidal surface singularities
The structure of nicely ramified coverings depends crucially on the celebrated Theorem of Jung–

Abhyankar (see Theorem 47). A polynomial fulfilling the conditions of the theorem is called quasi-
ordinary. In its original form the theorem is not precise enough for our purposes, for example, because
the statement doesn’t involve the coefficient fields of the power series solutions. In the sequel EJxΓ K
will denote the ring of power series with coefficients in a field E, variables x1, . . . , xn and exponents
in Γ ∩ Rn

≥0 (the non-negative orthant of a full rational lattice). We need the concept of rational
parametrizations (for a refined version see Definition 36):

Definition 16 (Parametrizations). Let f ∈ EJx1, . . . , xnK[z] be quasi-ordinary. I.e., f is monic,
squarefree and s.t. discz(f ) = x

e1
1 · · · x

en
n u(x)where u(0, . . . , 0) 6= 0.

We call (σ , α) with σ ∈ Aut(E′Jx1, . . . , xnK | E′) and α ∈ E′JxΓ K a parametrization of f if E ⊆ E′,
Zn ⊆ Γ and σ ↑z(f )(α) = 0. Let g|f be an irreducible factor s.t. σ ↑z(g)(α) = 0. We call (σ , α) rational
if the inducedhomomorphism IC(EJx1, . . . , xnK[z]/〈g〉)→ E′JxΓ Kwhichmaps z 7→ α and γ 7→ σ(γ )
for γ ∈ EJx1, . . . , xnK is an isomorphism. A set of rational parametrizations for f is called complete if
it is in bijective correspondence with the irreducible factors of f .

Here we used σ ↑z for the lifting of the automorphism to the polynomial ring by coefficientwise
application. We will show later that we can actually compute such rational parametrizations.

Theorem 17 (Existence of Rational Parametrizations). Let f ∈ EJx1, . . . , xnK[z] be a quasi-ordinary
polynomial. Then a complete set of rational parametrizations of f exists and can be computed. Moreover,
if actually discz(f ) = x

e1
1 · · · x

em
m u(x) where m ≤ n and u(0, . . . , 0) 6= 0 then the exponent lattices of the

power series rings will be of the form Γ × Zn−m for some m-dimensional rational lattice Γ .

Proof. For the first statement see Algorithm 11 and Corollary 42 of Section 4.1. In Lemma 41 the
relation between the computed parametrizations and the fractionary power series roots of f is
explored. Together with Theorem 47 this gives the statement about the exponent lattice. �

Example 13 (Continued). The transformed polynomial f0 ∈ Q[u, v][w] is quasi-ordinary. In this case
a complete set of rational parametrizations is given by only a single parametrization (σ , α) with
σ : QJu, vK→ QJu, vK : u 7→ −8u, v 7→ −v and

α := −8u
6
6 v

9
6 + 8u

8
6 v

10
6 − 4u

10
6 v

11
6 + u

14
6 v

13
6 −

1
2
u
18
6 v

15
6 +

5
16
u
22
6 v

17
6 −

7
32
u
26
6 v

19
6 + · · · .

We will see later that the simple form of σ is no coincidence. We further have α ∈ QJ(u, v)Γ K with
Γ := Z(0, 12 )+ Z( 13 ,

1
6 ). This lattice is shown in Fig. 2.

Complete sets of rational parametrizations describe very explicitly the structure of the integral
closure of EJx1, . . . , xnK[z]/〈f 〉.
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Lemma 18 (Decomposition by Rational Parametrizations). Let f ∈ EJx1, . . . , xnK[z] be aquasi-ordinary
polynomial and P = {(σi, αi)}i with (σi, αi) ∈ Aut(EiJx1, . . . , xnK | Ei) × EiJxΓiK a complete set of
rational parametrizations of f . Then the homomorphisms

ψi : EJx1, . . . , xnK[z]/〈f 〉 → EiJxΓiK : γ 7→ σi(γ ) for γ ∈ EJx1, . . . , xnK and z 7→ αi

can be composed to a homomorphism

ψ : EJx1, . . . , xnK[z]/〈f 〉 →
∏
i

EiJxΓiK : a 7→ (. . . , ψi(a), . . . )

which lifts to an isomorphism ψ : IC(EJx1, . . . , xnK[z]/〈f 〉)→
∏
i EiJx

ΓiK.

Proof (Sketch of Proof). By the definition of rational parametrizations it is enough to show

IC(EJx1, . . . , xnK[z]/〈f 〉) ∼=
∏
i

IC(EJx1, . . . , xnK[z]/〈fi〉)

where the right-hand side runs over all irreducible factors fi of f . By Eisenbud (1995, Exer. 2.26) this
can be shown using orthogonal idempotents. More precisely, if f = h1h2 where h1 and h2 are factors
without common divisor then set e1 := h2/(h1 + h2) and e2 := h1/(h1 + h2) to be elements in
QF(EJx1, . . . , xnK[z]/〈f 〉). (For this one checks that the denominators are not zero-divisors.) Then one
easily computes e1 + e2 = 1, e1e2 = 0 and ei = ei(e1 + e2) = e2i + e1e2 = e

2
i . The idempotency

relations imply in particular that e1, e2 ∈ IC(EJx1, . . . , xnK[z]/〈f 〉). So the integral closure splits:

IC(EJx1, . . . , xnK[z]/〈f 〉) ∼= e1 IC(EJx1, . . . , xnK[z]/〈f 〉)× e2 IC(EJx1, . . . , xnK[z]/〈f 〉).

Finally one shows that ei IC(EJx1, . . . , xnK[z]/〈f 〉) ∼= IC(EJx1, . . . , xnK[z]/〈hi〉). �

Corollary 19 (Singularities of Ramified Coverings). Let (π, X) be a ramified covering, ν : X̃ → X the
normalizationmorphism. Then the (isolated) singular points of X̃ lie over the singularities of the (reduced)
discriminant curve. Moreover, over normal crossing singularities the singularities of X̃ are toroidal.

Proof. Let q ∈ X̃ be a closed point and p := π(ν(q)). Assume that p either does not lie at all on Dπ |X ,
or lies on a regular point of the reduced curve, or is a normal crossing singularity. In each of these
cases Dπ |X can locally be defined by d

ex
x d
ey
y u ∈ OV ,p where {dx, dy} is a local system of parameters and

ex ≥ 0, ey ≥ 0. There is an isomorphism between the completion of OV ,p and FJx, yK (where F is the
residue field of OV ,p) which maps dx 7→ x and dy 7→ y; see Theorem 43. We can as well assume that
ÔV ,p = FJx, yK, dx = x and dy = y.
The completion of the fiber of π |X can be defined by the vanishing of a polynomial f ∈ FJx, yK[z]

which is quasi-ordinary. Building the integral closure commutes with completion; see Lemma 45.
Then the completion of OX̃,q is isomorphic to one component of the product in Lemma 18. But such
a power series ring with fractionary exponents corresponds to the completion of the distinguished
stalk of an affine toric surface. Hence, all points q as above can at most be toroidal.
If p does not lie onDπ |X then ex = ey = 0. If it is a regular point ofDπ |X then, say, ex > 0 and ey = 0.

By Theorem 17, in both cases, the power series rings in the parametrizations have exponent lattices
of the form ( 1eZ)× Z. These rings are regular and by faithful flatness OX̃,q must be regular itself. �

Example 13 (Continued). For our example this means that the integral closure of QJu, vK[w]/〈f0〉 is
isomorphic to QJ(u, v)Γ K. This fits well with the picture in Fig. 1 that suggests that the surface X0,
though singular, has only a single analytic branch at the origin.

Modifying a ramified covering to become nicely ramified is constructive, since embedded
desingularization of curves is. Passing to the normalization of a scheme of finite type over E is
constructive, since computing the integral closure of finitely generated E-algebras is (see, e.g., de Jong
(1998)). By the above corollary we are left with the task of desingularizing normal toroidal surface
singularities.
These singularities were first studied by Jung (1908). As noted in Cossart et al. (1984, Lect. 2,

Section 2) a normal toric surface can be desingularized by a finite sequence of point blow ups.
This property can be transferred to toroidal singularities by Lemma 46. So we could obtain a
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desingularization by computing a sequence of point blowups of the normalization X̃ and, hence, Jung’s
method is already constructive.
However, computing normalizations is not cheap. Lemma 18 shows that rational parametrizations

anyway describe the integral closure. In the following section we will therefore follow a different
approach, always with formal desingularizations in mind. We will also benefit in other places from
the additional flexibility obtained by applying formal isomorphisms.
The final lemmaof this section has its origins inHirzebruch (1953) (see also Laufer (1971))who first

gave explicit formulas for the desingularization of toric surface singularities using continued fractions.
Afterwards the arrival of toric geometry (cf. Fulton (1993)) introduced new terminology and means
of description. Recall that the dual Γ ∨ of a full lattice Γ ⊂ Qn is the set of all linear forms n ∈ Qn with
n(m) ∈ Z for all m ∈ Γ .

Lemma 20 (Formal Desingularization of Toric Surfaces). Let SpecE[xΓ ] for some rational lattice Γ ⊂
Q2 be a toric surface and n1, . . . , nl ∈ Γ

∨
∩R2
≥0 an ordered andminimal sequence of monoid generators

as in Fig. 2. Then the set of morphisms ψi : SpecE(s)JtK → SpecE[xΓ ] given by the E-algebra
homomorphisms

E[xΓ ] → E(s)JtK : xm 7→ sni(m)tni+1(m)

for 1 ≤ i ≤ l− 2 is a formal desingularization of SpecE[xΓ ].

Proof. Desingularizations of toric schemes can be constructed using special fans in the dual cone and
lattice Γ ∨∩R2

≥0 (see, e.g., Fulton (1993) and Cox (2000)). Applying this construction to the fan whose
one-dimensional faces are given by the ni one obtains a desingularization π . In fact the morphisms
πi : SpecE[s, t] → SpecE[xΓ ] given by E[xΓ ] → E[s, t] : xm 7→ sni(m)tni+1(m) for 1 ≤ i ≤ l − 1 are
isomorphic to the restriction of π to an open covering by affine charts.
The exceptional locus (i.e., the π-preimage of the isolated singularity) is a finite union of divisors.

We get a formal description of π by completing the local rings along these divisors. They are given,
for example, by the prime ideals 〈t〉 ⊂ E[s, t] in each of the charts 1, . . . , l − 2. For the completions
of the local rings we then have trivially ̂E[s, t]〈t〉 ∼= E(s)JtK. �

Remark 21 (Minimal Desingularization by Point Blow Ups). The desingularization described by the
above set of morphisms is theminimal one obtained (up to isomorphism) by subsequently blowing up
isolated singular points. To show this one observes that every single such blow up gives (non-affine)
toric surfaces that are described by fans in Γ ∨ ∩ R2

≥0. Elementary arguments about the lattice and
its dual show that the one-dimensional faces of these lattices are always given by one of the vectors
ni. On the other hand any fan defined by a proper subset of the generators is associated with a still
singular surface.

Example 13 (Continued). This lemma can be applied as follows. The normalization X̃0 of X0 has an
isolated singularity which is formally isomorphic to the distinguished germ of a toric surface with
coordinate ring Q[(u, v)Γ ].
The lemma says that this toric surface is formally desingularized by mapping (u, v)m 7→

sni(m)tni+1(m) ∈ Q(s)JtK for i ∈ {1, 2} with ni as in Fig. 2. Let’s look at this for i = 1 in terms of algebra
generators v1/2, u1/3v1/6, u ∈ Q[(u, v)Γ ]. We have to map

v
1
2 7→ s〈(0,6),(0,1/2)〉t〈(1,4),(0,1/2)〉 = s3t2,

u
1
3 v

1
6 7→ s〈(0,6),(1/3,1/6)〉t〈(1,4),(1/3,1/6)〉 = st,

u 7→ s〈(0,6),(1,0)〉t〈(1,4),(1,0)〉 = t.

Composing with the homomorphism induced by the rational parametrization (σ , α) we get
homomorphisms ϕi : Q[u, v][w]/〈f0〉 → Q(s)JtK:

ϕ1 : u 7→ −8s6t, v 7→ −t4, w 7→ −8s6t7 + 8s8t8 − 4s10t9 + s14t11 −
1
2
s18t13 + · · · ,

ϕ2 : u 7→ −8st2, v 7→ −s4t2, w 7→ −8s7t5 + 8s8t6 − 4s9t7 + s11t9 −
1
2
s13t11 + · · · .
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The two induced morphisms SpecQ(s)JtK→ X0 are the formal prime divisors centered at the origin
that become realized on a desingularization of X̃0 by point blow ups.
But this is not yet a formal desingularization of X0. As can be seen in Fig. 1, the singular locus of X0

is the union of the u-axis and the v-axis. So there should also be formal prime divisors supported
on these lines. Let’s first consider u = 0. By mapping u 7→ t and v 7→ s we transform f0 to
w6 + 3s3t2w4 + s5t4w3 + 3s6t4w2 + s9t6 ∈ Q(s)[t][w]. Now we compute a univariate rational
parametrization (σ , α):

σ : t 7→
−8
s5
t,

α = −
8
s5
γ t

1
2 −

8
s5
t
2
3 +

4
s8
γ t

5
6 +

1
s11
γ t

7
6 +

1
2s14

γ t
3
2 + · · · ∈ Q(s)[γ ]Jt(1/6)ZK.

Here γ is an algebraic element satisfying γ 2 + s3 = 0. Canceling exponent denominators this yields
a homomorphism ϕ0 : Q[u, v][w]/〈f0〉 → Q(s)[γ ]JtK:

ϕ0 : u 7→
−8
s5
t6, v 7→ s, w 7→ −

8
s5
γ t3 −

8
s5
t4 +

4
s8
γ t5 +

1
s11
γ t7 +

1
2s14

γ t9 + · · · .

This homomorphism corresponds to completing the germ at a generic point in X̃0 above u = 0 by
Lemma 45. This germ is not modified by subsequent point blow ups. So we get a further formal prime
divisor. A last one is supported on v = 0:

ϕ3 : u 7→ s, v 7→ −64s10t6, w 7→ −512s16t9 + 512s18t10 − 256s20t11 + 64s24t13 + · · · .

Note that this procedure explicitly produces the residue fields at the generic points of the
exceptional divisors in a desingularization. They correspond to the coefficient fields of the power
series. Finally, composing all four formal prime divisors with the morphism X0 → X which was
obtained by the desingularization of the discriminant curve,we get a part of a formal desingularization
of X .

3.2. A divide and conquer approach

Now we want to cast the theory of the previous paragraph into explicit algorithms. We want to
give a formal description of a Jung desingularization of a ramified covering (π : W → V , X). Note
that such a desingularization is always relative to an embedded desingularization ρ : Vρ → V of the
discriminant curveDπ |X . Because then (πρ : Wρ → Vρ, Xρ) forWρ := W×V Vρ and Xρ := X×WWρ is
a nicely ramified covering and we can define the Jung desingularizationΠρ : Yρ → X to be obtained
by normalizing Xρ and successively blowing up singular points; see Remark 21.
If we wanted to avoid redundant blow ups, we could already fix the embedded desingularization

ρ to be minimal, i.e., obtained by blowing up a point of the discriminant curve only when it
is a non-normal crossing singularity. For computational reasons, we choose a slightly different
desingularization; see Remark 27. Also, the definition of a formal description S of Πρ leaves a
bit of choice for S, e.g., one may always add formal prime divisors which are realized on the
desingularization. We get rid of this ambiguity by requiring that suppX (S) = π−1(Dπ |X ) and say we
compute a formal description ofΠρ above Dπ |X .

Remark 22 (Divide and Conquer Paradigm). We will desingularize the discriminant curve and
compute the formal prime divisors for the surface at the same time. The substitutions involved in
computing the curve desingularizationmake the defining equations more complicated. Therefore our
paradigmmust be to compute formal prime divisors ‘‘as early’’ as possible. In other words, if we know
that the surface (and its normalization) remains unchanged in a subset (up to isomorphism) by further
blow ups of the discriminant curve we immediately compute the formal prime divisors centered in
that set.
Let ρ : Vρ → V be an embedded desingularization of the discriminant curve. Our divide and

conquer approach (in particular Algorithm 3) relies on the following facts:
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• Let p ∈ Dπ |X be a point s.t. ρ is not an isomorphism at p. Let ρ0 : V
′
→ V be the blow up at

p and (π ′ : W ′ → V ′, X ′) the induced ramified covering. Then ρ factors as ρ = ρ1ρ0 where
ρ1 : Vρ → V ′ is an embedded desingularization of Dπ ′|X ′ , Xρ → X factors through X ′ → X and
also π ′−1(Dπ ′|X ′ )must be equal to the support of the pullback of S. So it is equivalent to compute
the formal description ofΠρ1 above Dπ ′|X ′ .
• Now ρ0 is an isomorphism everywhere except at p. We can split the computation of the formal
desingularization Πρ into two parts; the computation of formal prime divisors which are not
centered above p on the one hand and those which are centered above p, or equivalently, whose
pullbacks (see Corollary 4) are centered above the exceptional divisor ρ−10 (p). Computing the latter
will be delegated to a recursive call.
• When blowing up the (not necessarily rational) point p we may first apply a morphism to the
projection plane that induces a formal isomorphism at p because of Lemma 45 and Lemma 46;
compare Remark 24.

Finally, Example 13 has shown that in the case of nicely ramified coverings we have to compute
formal prime divisors in two ways: Those which are centered above the components of the
discriminant curve are obtained using Lemma 18with n = 1, and those which are centered above the
normal crossings of the discriminant curve using a combination of Lemma 18 with n = 2, Lemma 20
and Lemma 46.

3.3. The algorithm

In the following algorithmic descriptions we allow subsets of a set A, which in our notation will
be elements of 2A, as data types. These will either be finite sets or they will be finitely generated
ideals of a ring A. So it is clear that they can be represented. For simplicity of notation, we also allow
passing of homomorphisms from polynomial rings in a finite number of variables. They can obviously
be represented by the images of their generators. We assume that we can represent power series
which will be explained later in Section 4.1. If φ : A → B is a homomorphism of rings, we write
again φ↑w : A[w] → B[w] for its lifting to the corresponding polynomial rings by coefficientwise
application andmapφ : 2A → 2B for the function on subsets defined by elementwise application.
Let X ⊂ P3E be a closed hypersurface. Following Section 3.1.1, we first have to produce a ramified

covering. This is done in algorithm DesingGlobal. By E (resp. E(s)) we denote the algebraic closure
of E (resp. of the rational function field). If it shows up in the return type of a signature we actually
mean that the result involves some finite field extension (of transcendence degree 1), i.e., we do not
rely on a system for computing with algebraic closures.
The algorithm will be formulated for reduced surfaces; see Remark 10. This is due to the fact that

we will transform our surface by extending the base field in certain steps and cannot assure that the
transformed surface remains integral, even when the original surface was; see Remark 24.

Algorithm 1 DesingGlobal(F : E[x0, . . . , x3]) : 2E[x0,...,x3]→E(s)JtK

Require: A squarefree homogeneous polynomial F 6= 0.
Ensure: A finite set of homomorphisms E[x0, . . . , x3] → FJtK factoring through E[x0, . . . , x3]/〈F〉
s.t. the induced morphisms Spec FJtK→ ProjE[x0, . . . , x3]/〈F〉 are a formal desingularization.

1: Let φ : E[x0, . . . , x3] → E[x0, . . . , x3] be a linear automorphism s.t. φ(F)(1, 0, 0, 0) 6= 0;
2: ψ1 : E[x0, . . . , x3] → E[u, v][w] : x0 7→ w, x1 7→ 1, x2 7→ u, x3 7→ v;
3: S := mapρ 7→ρψ1φDesingLocal(ψ1φ(F), 〈0〉);
4: ψ2 : E[x0, . . . , x3] → E[u, v][w] : x0 7→ w, x1 7→ v, x2 7→ 1, x3 7→ u;
5: S := S ∪mapρ 7→ρψ2φDesingLocal(ψ2φ(F), 〈v〉);
6: ψ3 : E[x0, . . . , x3] → E[u, v][w] : x0 7→ w, x1 7→ u, x2 7→ v, x3 7→ 1;
7: S := S ∪mapρ 7→ρψ3φDesingLocal(ψ3φ(F), 〈u, v〉);
8: return S;
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In line 1 we choose a linear automorphism of P3E (represented by φ) s.t. the preimage of X under
this automorphism is Noether normalized by a projection onto the plane x0 = 0.

Remark 23. The automorphism maps (1, 0, 0, 0) to a point p 6∈ X . In an actual implementation one
should find p s.t. most of its coordinates are zero and the rest are small integers. This preserves sparsity
in φ(F) and keeps coefficients small.

For convenience of description, we will actually assume that φ is the identity. Then the ramified
covering (π : W → V , X) is given as follows: We set W := P3E \ {(1 : 0 : 0 : 0)}, V is the plane
x0 = 0, π is the corresponding linear projection and X is defined by the vanishing of F monic in x0.
The algorithm produces a set of homomorphisms S representing a formal desingularization.

Therefore we cover V by open subsets xi 6= 0 (given by the ψi) for 1 ≤ i ≤ 3 and call algorithm
DesingLocal for each of those in lines 2 to 7. The latter algorithmproduces formal desingularizations
of the respective affine subsets. Because of the huge overlaps we add focus ideals to each call. Thereby
we restrict our considerations to points lying in the zero set of these ideals; formore details see Bodnár
and Schicho (2001).

Algorithm 2 DesingLocal(f : E[u, v][w],F : 2E[u,v]) : 2E[u,v][w]→E(s)JtK

Require: A squarefree polynomial f 6= 0, monic inw, and a focus ideal F .
Ensure: A finite set of homomorphisms E[u, v][w] → FJtK factoring through E[u, v][w]/〈f 〉
s.t. the induced morphisms Spec FJtK → SpecE[u, v][w]/〈f 〉 form the subset of a formal
desingularization which is centered above the closed subset defined by F .

1: d := SquareFreePart(discw(f )); E := IrredFactors(d);
2: S :=

⋃
e∈E with F⊆〈e〉 DivisorsAboveCurve(f , e);

3: for (u0, v0) ∈ ZeroSet(F + 〈d, ∂d/∂u, ∂d/∂v〉) do
4: ψ : E[u, v] → E′[u, v] : u 7→ u+ u0, v 7→ v + v0;
5: S := S ∪mapρ 7→ρψ↑wDesingRecursive(ψ↑w(f ), {ψ(e) | e ∈ E and

ψ(e)(0, 0) = 0});
6: return S;

In line 1 we compute the defining equation d of the reduced discriminant curve and its factors E.
For all e ∈ E the prime ideal 〈e〉 corresponds to the generic point p ∈ V of an irreducible component
of the discriminant curve.
No matter what the desingularization ρ : Vρ → V of the discriminant curve looks like, it is always

a succession of point blow ups. Therefore pwill be isomorphically contained in Vρ . The same holds for
points in the normalization of X lying above p. According to our paradigm in Remark 22 we compute
the formal prime divisors centered above these p already at this stage of the algorithm (see line 2) by
calling algorithm DivisorsAboveCurve (see Algorithm 4) for each e ∈ E which is in focus.
In line 3we compute the singular locus of the reduced discriminant curve,more precisely, that part

which is in focus. For each of its closed points p we want to find the formal prime divisors centered
above p. Therefore we apply the homomorphism ψ of line 4 (which corresponds to moving p to the
origin) and then call algorithm DesingRecursive in line 5.

Remark 24 (Exploiting Formal Isomorphisms). At this point we would like to mention that ψ may
involve an algebraic field extension, namely, by the residue field E′ of p. Therefore ψ , which looks
like a mere translation, is not an isomorphism. Nevertheless the induced morphism of schemes
SpecE′[u, v] → SpecE[u, v] is formally isomorphic at p by Corollary 44. (Note that we can choose
a system f1, f2 ∈ E[u, v] of generators of the maximal ideal corresponding to p s.t. f1 ∈ E[u]
is irreducible and the image of f2 in (E[u]/〈f1〉)[v] is also irreducible.) But for computing a formal
desingularization, we may well pass to a formally isomorphic scheme as a consequence of Lemma 45
and Lemma 46. Note that the introduction of a field extensionmay further split the defining equation,
i.e.,ψ↑w(f )may be reducible even though f is not. Also the discriminant factorsmight split again. This
is another (more important) reason for computing the formal prime divisors above the components
of the discriminant already in line 2.
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Remark 25 (Auxiliary Functions). The above algorithm depends on a couple of auxiliary functions
which we are not giving in detail; their names are mainly self-explanatory: SquareFreePart should
compute the squarefree part of a polynomial and IrredFactors is supposed to produce the set of
irreducible factors of a polynomial. A comment on ZeroSet is in order. It expects a zero-dimensional
idealF ⊆ E[x1, . . . , xn]. It should return a finite set of n-tuples s.t. for eachmaximal ideal f containing
F there is exactly one tuple (ξ1, . . . , ξn) ∈ (E′)n s.t. E ⊆ E′ and the induced homomorphism
E[x1, . . . , xn] → E′ : xi 7→ ξi lifts to an isomorphism from E[x1, . . . , xn]/f.
Remark 26. Computing the squarefree part and factorization was done in Algorithm 2 to keep the
number of parameters small. Of course it would fit more naturally in Algorithm 1 to avoid multiple
computations.
The recursive algorithm DesingRecursive now implements the divide and conquer paradigm;

see again Remark 22.

Algorithm 3 DesingRecursive(f : E[u, v][w], E : 2E[u,v]) : 2E[u,v][w]→E(s)JtK

Require: A squarefree polynomial f 6= 0, monic in w, and a set of polynomials E s.t. e(0, 0) = 0 for
all e ∈ E and

∏
e∈E e is the squarefree part of discw(f ) in the local ring E[u, v]〈u,v〉.

Ensure: A finite set of homomorphisms E[u, v][w] → FJtK factoring through E[u, v][w]/〈f 〉
s.t. the induced morphisms Spec FJtK → SpecE[u, v][w]/〈f 〉 form the subset of a formal
desingularization which is centered above the origin.

1: if IsNormalCrossing(E) then
2: return DivisorsAboveCrossing(f , E);
3: φu : E[u, v] → E[u, v] : u 7→ uv, v 7→ v; φv : E[u, v] → E[u, v] : u 7→ v, v 7→ uv;
4: fu := φu↑w(f ); fv := φv↑w(f );
5: Eu := mape7→φu(e)/vord(e)(E); Ev := mape7→φv(e)/vord(e)(E);
6: S := mapρ 7→ρφu↑wDivisorsAboveCurve(fu, v);
7: for (u0, v0) ∈ ZeroSet(〈

∏
e∈Eu e, v〉) do

8: ψ : E[u, v] → E′[u, v] : u 7→ u+ u0, v 7→ v + v0;
9: S := S ∪mapρ 7→ρψ↑wφu↑wDesingRecursive(ψ

↑w(fu),
{ψ(e) | e ∈ Eu and ψ(e)(0, 0) = 0} ∪ {v});

10: if exists e ∈ Ev s.t. e(0, 0) = 0 then
11: S := S ∪mapρ 7→ρφv↑wDesingRecursive(fv,

{e | e ∈ Ev and e(0, 0) = 0} ∪ {v});
12: return S;

In line 1 we check whether the origin of the reduced discriminant curve is a normal crossing. If
this is the case we know (see Corollary 19) that the points above the origin in the normalization are
toroidal singularities that can be desingularized by a succession of blowups in isolated singular points.
The corresponding formal prime divisors are computed by algorithm DivisorsAboveCrossing (see
Algorithm 6) and returned.
Otherwise we have to modify the discriminant curve by blowing up the origin. The two charts

of the blow up are computed in lines 3 to 5: We determine the defining equations fu and fv of the
transformed surface and also modify the discriminant factors accordingly.
Note that the homomorphisms are such that the exceptional divisor is given by v = 0 in

both charts. Over this exceptional divisor there are centered a couple of formal prime divisors. By
the same reasoning as for Algorithm 2 (see Remark 24) we compute them immediately by calling
DivisorsAboveCurve in line 6.
Now we have to consider the points on the exceptional divisor which are singular. In one of the

charts they are given by the set of line 7. As in Algorithm 2 we move these points to the origin and go
into recursion; see lines 8 and 9. Now there is possibly one singular point left to consider, namely, the
origin of the other chart. It is treated in line 11.
To complete the algorithm, it remains to show how to compute the formal prime divisors which

are centered above irreducible components or normal crossings of the reduced discriminant curve.
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3.3.1. Divisors above generic points of the discriminant curve
We now give an algorithm for computing the formal prime divisors which are centered above

generic points of the discriminant curve. This is easy by what we have developed so far.

Algorithm 4 DivisorsAboveCurve(f : E[u, v][w], e : E[u, v]) : 2E[u,v][w]→E(s)JtK

Require: A squarefree polynomial f 6= 0, monic inw, and an irreducible factor e of discw(f ).
Ensure: A finite set of homomorphisms E[u, v][w] → FJtK factoring through E[u, v][w]/〈f 〉
s.t. the induced morphisms Spec FJtK → SpecE[u, v][w]/〈f 〉 form the subset of a formal
desingularization which is centered above 〈e〉.

1: F0 := QF(E[u, v]/e); Let u0, v0 ∈ F0 be the natural images of u, v;
2: if ∂e/∂v 6= 0 then
3: φ : E[u, v] → F0[t] : u→ u0, v→ v0 + t;
4: else
5: φ : E[u, v] → F0[t] : u→ u0 + t, v→ v0;
6: S := ∅;
7: for (σ , α) ∈ Param(φ↑w(f )) do
8: ψ : FJt(1/d)ZK→ FJtK : γ 7→ Evaluate(γ , (d), t); {assuming α ∈ FJt(1/d)ZK}
9: S := S ∪ {E[u, v][w] → FJtK : u 7→ ψσφ(u), v 7→ ψσφ(v),w 7→ ψ(α)};
10: return S;

In lines 1 to 5 we construct a homomorphism φ : E[u, v] → F0[t] inducing an isomorphism
from the completed localization at 〈e〉 to F0JtK; see Corollary 44. Therefore the completions
of the localizations of IC(E[u, v][w]/〈f 〉) at prime ideals above 〈e〉 are isomorphic to those of
IC(F0JtK/〈φ↑w(f )〉) above 〈t〉 by Lemma 45. Lemma 18 tells us how these completions can be
computed using a complete set of rational parametrizations. This is done in lines 7 to 9 using the
results of a call to Param (see Algorithm 11 in Section 4.3). The homomorphism ψ defined via
Evaluate (see Algorithm 8) is just mapping t1/d 7→ t for cosmetic reasons, i.e., getting rid of
denominators.

3.3.2. Divisors above normal crossings of the discriminant curve
First we fill a gap in Algorithm 3 and show how to test the normal crossing property for a set of

curves.

Algorithm 5 IsNormalCrossing(E : 2E[u,v]) : Boolean
Require: A set of squarefree polynomials E s.t. e(0, 0) = 0 for all e ∈ E.
Ensure: true iff the curves defined by E are considered normal crossing at the origin.
1: if E is not of the form {v, e} then
2: return false;
3: else
4: return ∂e/∂u(0, 0) 6= 0;

Note that in general E describes a set of curveswith normal crossing at the originwhen E = {e1, e2}
and det(∂(e1, e2)/∂(u, v))(0, 0) 6= 0. But this algorithm returns true only for the special situation
that one of the curves is actually v = 0.

Remark 27 (Almost Minimal Jung Desingularizations). Although Algorithm 5 does in fact test for
normal crossings of a special form the overall algorithm will eventually terminate; computing the
point blow ups as in Algorithm 3 guarantees that the exceptional divisor is always of the form
v = 0 in both charts. It is known (see Kollár (2007, Thm. 1.47)) that one can compute an embedded
desingularization by a finite number of point blow ups. If one of the normal crossings is not of
the above form, then our algorithm computes an additional blow up but terminates at the next
level. In other words, the computed Jung desingularization belongs to an almost minimal embedded
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desingularization of the discriminant curve. The benefit is that the homomorphism in line 2 of the
next algorithm is so easy to compute. One could also use usual normal crossings and compute more
complicated homomorphisms.

Algorithm 6 DivisorsAboveCrossing(f : E[u, v][w], E : 2E[u,v]) : 2E[u,v][w]→E(s)JtK

Require: A squarefree polynomial f 6= 0, monic in w, and a set of polynomials E = {v, e} s.t.
e(0, 0) = 0, ∂e/∂u(0, 0) 6= 0 and ve is the squarefree part of discw(f ) in the local ring E[u, v]〈u,v〉.

Ensure: A finite set of homomorphisms E[u, v][w] → FJtK factoring through E[u, v][w]/〈f 〉
s.t. the induced morphisms Spec FJtK → SpecE[u, v][w]/〈f 〉 form the subset of a formal
desingularization which is centered above the origin.

1: Let g := e(z, v′)− u′ ∈ E[u′, v′][z];
2: φ : E[u, v] → EJu′, v′K : v 7→ v′, u 7→ ImplicitFunction(g);
3: S := ∅;
4: for (σ , α) ∈ Param(φ↑w(f )) do
5: Let n1, . . . , nl ∈ Z2 be the sequence of generators of Γ ∨ ∩ R2

≥0;
{assuming α ∈ E′J(u′, v′)Γ K and ordering generators as in Fig. 2}

6: for 1 ≤ i ≤ l− 2 do
7: ψ : E′J(u′, v′)Γ K→ E′(s)JtK : γ 7→ Evaluate(γ , (ni, ni+1), (s, t));

{where s, t ∈ E′(s)JtK}
8: S := S ∪ {E[u, v][w] → FJtK : u 7→ ψσφ(u), v 7→ ψσφ(v),w 7→ ψ(α)};
9: return S;

This algorithm expects that the discriminant curve of the input surface has a normal crossing at the
origin, more precisely, the discriminant of the defining equation is vd1ed2 times a local unit. We want
to compute bivariate parametrizations above the origin, but f is not yet normal crossing.We first have
to apply a formal isomorphism φ (see line 2) that maps v 7→ v′ and e 7→ u′, because then the discrim-
inant becomes v′d1u′d2 up to a unit and the defining equation φ↑w(f ) is quasi-ordinary. To this end the
image of umust fulfill the equation e(φ(u), v′)− u′ = 0 which has a unique solution by the implicit
function theorem and is computed by a call to ImplicitFunction (see Algorithm 9 in Section 4.2).
By the same reasoning as for Algorithm 6 the completions of the localizations of IC(E[u, v][w]/〈f 〉)

at prime ideals above the origin can be computed by bivariate rational parametrizations using a call
to Param; see line 4. Now assume that such a completion is given by E′J(u′, v′)Γ K.
We know how to compute a formal description of a special desingularization of SpecE′[(u′, v′)Γ ],

namely, the one obtained by a minimal number of point blow ups; see Lemma 20 and Remark 21. We
compute the corresponding homomorphisms E′J(u′, v′)Γ K → E′(s)JtK : (u′, v′)m 7→ sni(m)tni+1(m) by
calls to Evaluate in line 7. This desingularization commutes with completion by Lemma 46; hence,
we get a formal desingularization of the toroidal singularity by composing these homomorphisms
with the one given by the parametrization; compare line 8.

4. Computing with multivariate algebraic power series

In order to implement the above algorithms we have to represent multivariate, fractionary,
algebraic power series, i.e., power series with coefficients in a field E, variables x1, . . . , xn and
exponents in Γ ∩ Rn

≥0 (the non-negative orthant of a full rational lattice) that are roots of non-zero
polynomials in E[x1, . . . , xn][z]. In the sequel we denote this ring by EJxΓ K (hence, this notation from
now onmeans algebraic, not formal power series).Wemust be able to perform a couple of operations:

(1) We have to expand power series up to arbitrary order.
(2) We have to compute the power series arising in complete sets of rational parametrizations for
quasi-ordinary polynomials and solve equations fulfilling the conditions of the implicit function
theorem.

(3) Let hom(Γ ,E∗) denote the (commutative, multiplicative) group of homomorphisms from the
lattice Γ to the multiplicative group E∗ with group operation given by multiplication in the
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codomain. With σ ∈ hom(Γ ,E∗) we associate the automorphism EJxΓ K → EJxΓ K mapping
xm 7→ σ(m)xm and c 7→ c for c ∈ E. This action of hom(Γ ,E∗) on EJxΓ K should be computable.

(4) If α ∈ E1JxΓ1K is a power series, n1, . . . , nl are vectors in Γ ∨1 ∩ Rm
≥0 and (ξ1, . . . , ξl) are power

series in E2JxΓ2Kwhere E2 is a field extension of E1, we want to compute the image of α under the
homomorphism φ : E1JxΓ1K→ E2JxΓ2K which maps xm 7→

∏
1≤i≤l ξ

ni(m)
i and c 7→ c for c ∈ E1 if

such φ is well defined.

Remark 28 (Origin of Requirements). Requirement (1) just means that (in order to return values) we
need a representation in finite terms of series which a priori are infinite objects.
Requirement (2) is obvious. We have to compute rational parametrizations in Algorithms 4 and 6

in order to compute formal prime divisors in the case of nicely ramified coverings. The first line of the
latter algorithm also implies solving an equation that fulfills the conditions of the implicit function
theorem.
Further it would be nice to express certain homomorphisms E1JxΓ1K → E2JxΓ2K. In general

these are given by specifying the images of generators xm in a consistent way. But such general
homomorphisms are not easy to compute. Insteadwe concentrate on the two special cases (3) and (4).
Computing the action induced by lattice homomorphisms becomes relevant when computing

rational parametrizations. So we need (3) to accomplish (2).
In line 7 of Algorithm6,we find a transformationwhich is a special case of requirement (4). Another

special case of that requirement is substitution of power series ξi ∈ E2JxΓ2K into a polynomial or power
series g ∈ E1Jx1, . . . , xnKwhich is an instance with Γ1 = Γ ∨1 = Zn and ni the standard basis vectors.
Such substitutions occur when we compute the composite of two homomorphisms, e.g., in line 9 of
Algorithm 4.
Also note that an even more special case of the last requirement is effectivity of addition and

multiplication (with g = x1 + x2 and g = x1x2 respectively).

Computations with algebraic power series usually involve studying the support and the Newton
Polygon of the defining equation (see Walker (1978), McDonald (1995), Beringer and Richard-Jung
(2003) and van der Hoeven (2006)), which live in Qn × Z and Rn+1 respectively. In order to allow for
a nice implementation, we will consider a flattened support by assuming thatQn is ordered as a group
and considering Qn × Z a ‘‘plane’’. In this setting, one can do a fair amount of ‘‘convex geometry’’.
In fact we will work with two different orderings. Let q1, q2 ∈ Qn. We have a partial ordering on

Qn by comparing the total degrees |q1| and |q2| (i.e., the sum of their components) via ≤ as rational
numbers. Further we assume a total ordering 4 which is a refinement of it, i.e., |q1| ≤ |q2| implies
q1 4 q2. For a power series 0 6= α =

∑
m αmxm ∈ EJxΓ K we can therefore define two supports

and two orders, namely, supp≤(α) := {|m| ∈ Q | αm 6= 0}, supp4(α) := {m ∈ Qn | αm 6= 0},
ord≤(α) := min≤(supp≤(α)) and ord4(α) := min4(supp4(α)). W.r.t. the finer ordering, we will
also need the initial term it4(α) := αord4(α)x

ord4(α). The degree compatibility is important because it
implies that we can easily expand series up to an arbitrary order w.r.t the fine ordering if and only if
we can expand up to arbitrary total degree.
We also have to study polynomials with power series coefficients. Consider

0 6= g =
∑
0≤i≤d

(∑
m

gm,ixm
)
z i ∈ E0JxΓ0K[z].

Its support is supp4(g) := {(m, i) ∈ Qn × Z | gm,i 6= 0}. We define linear maps

ϕn : Qn × Z→ Qn : (m, i) 7→ m+ in

for all n ∈ Qn
≥0 and set ord4,n(g) := min4{ϕn(m, i) | (m, i) ∈ supp4(g)}. We say that supp4(g) has a

non-trivial edge of slope n iff ϕn attains its minimum for at least two arguments in supp4(g). Further
we define the n-th edge equation as

edge4,n(g) :=
∑

(m,i)∈supp4(g) and
ϕn(m,i)=ord4,n(g)

gm,ixmz i.
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Then supp4(g) has a non-trivial edge of slope n iff the n-th edge equation is not a single term, i.e., it is
also non-trivial.
Note that supp4(g) has at most finitely many non-trivial edges. Indeed, assume g =

∑
l≤i≤k γiz

i

with γl 6= 0 and γk 6= 0 and let oi := ord4(γi) whenever γi 6= 0. Then the only possible slopes are
(i − j)−1(oj − oi) for i > j and oj � oi with γi 6= 0, γj 6= 0. Denoting the slopes that occur by nm
we could define the ‘‘Newton Polygon’’ of g as the set {(m, i) ∈ Qn × Z | l ≤ i ≤ k and ϕnm(m) <
ord4,nm(g) for allm}.

4.1. Representing algebraic power series

In the sequel we suggest a representationwhich is suitable for the computer algebra system MAGMA
(Bosma et al., 1997) and facilitates all of the above operations. We only highlight the essential points.
MAGMA, like most other computer algebra systems, does not provide polynomials f ∈ E[xΓ ] with
fractionary exponents directly. For simplicity of reading, we nevertheless use such polynomials, an
implementation being straightforward.We also assume that given f we can ask for its coefficient field
E and exponent latticeΓ and that an implicit conversionmechanism is provided forE1[xΓ1 ] ⊆ E2[xΓ2 ]
whenever E1 ⊆ E2 and Γ1 ⊆ Γ2. Further it should be understood that a tuple defining a series
may recursively depend on other series or even on polynomials with series coefficients. We represent
algebraic power series using a hybrid lazy–exact approach by finite, acyclic, directed and rooted graphs
with nodes of two types:

Type A We represent an algebraic power series α ∈ E2JxΓ2K by a tuple

(α0, f ) (4.1)

where α0 ∈ E2[xΓ2 ] is an initial segment of α w.r.t. 4 and f =
∑
0≤i≤d ϕiz

i
∈ E1JxΓ1K[z] are

such that E1 ⊆ E2, Γ1 ⊆ Γ2 and f 6= 0 is squarefree (when considered as a polynomial over
QF(E1JxΓ1K)) and vanishing on α.
Such a node in general has as d+ 1 descendants, namely, the coefficients ϕi. As a special

case we allow f ∈ E1[xΓ1 ][z]. In this case we store f itself, there are no descendants and the
node is terminal.
We also need a technical condition to ensure that α0 identifies α uniquely amongst the

roots of f .

Algorithm 7 Series(α0 : E2[xΓ2 ], f : E1JxΓ1K[z]) : E2JxΓ2K
Require: A tuple as in (4.1) fulfilling Condition 30.
Ensure: The power series α defined by it.
1: Encapsulate data and return object of type ‘‘algebraic power series’’;

Type B The second type of node is given by a tuple

(α, n, ξ) (4.2)

and represents the image β := φ(α) under the homomorphism described in the fourth
requirement. It has l + 1 descendants, namely, the ξi and α. Also in this case we need a
technical condition necessary for φ being well defined.

Algorithm 8 Evaluate(α : E1JxΓ1K, n : (Γ ∨1 ∩ Rn
≥0)

l, ξ : E2JxΓ2K) : E2JxΓ2K

Require: A tuple as in (4.2) fulfilling Condition 33.
Ensure: The power series β defined by it.
1: Encapsulate data and return object of type ‘‘algebraic power series’’;
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Nodes of type B facilitate explicitly the operation of requirement (4) from our list. The following
sections describe how to implement the remaining requirements using algorithms based on an idea
in Beck and Schicho (2005) which is similar in spirit to van der Hoeven (2006).

Remark 29 (Representation Paradigm). The reason for calling this representation lazy–exact is the
following: In order to expand a series up to some order, we will recursively expand its descendants
(maybe storing precomputed values) and then compute the approximation of the series under
consideration in a lazy fashion. On the other hand, using elimination theory and traversing the
representation graph recursively, one can compute a (minimal) defining polynomial for any series
represented as above. Therefore zero-equality and polynomiality/rationality are decidable. In this
sense we speak of an exact representation. Since in particular all polynomials (including 0 and 1) are
representable we get a computationally effective ring. All this (and a little bit more) is included in the
MAGMA implementation. Note, however, that it is advisable to avoid the effective decision algorithms
because they depend on nested resultant computations and can be very expensive.

4.2. Expanding algebraic power series

Nowwe show how to expand power series in a lazy fashion. For more efficient computations with
lazy power series, see van der Hoeven (2002). For expanding a power series α given by a tuple (4.1),
we consider

g := f (z + α0) =
d∑
i=0

γiz i, α1 := α − α0, n := ord4(α1) and c := ord4(γ1). (4.3)

First we want to find implications of the fact that g(α1) = 0. The case α1 = 0 happens if and
only if g(0) = 0 or, equivalently, γ0 = 0. Let’s assume α1 6= 0 and set α′ := it4(α1). Next we study
the contribution of the terms γiz i to the result under the substitution z 7→ α1. Whenever γi 6= 0 we
find

γiα
i
1 = γi(α

′
+ (α1 − α

′))i = it4(γi)α′i + · · · (higher order terms).

The minimal order of these expressions is

min
4
{ord4(it4(γi)α′i)︸ ︷︷ ︸

ord4(γi)+in

| 0 ≤ i ≤ d and γi 6= 0} = ord4,n(g).

Since g(α1) = 0 and α′ 6= 0 it follows that the terms of order ord4,n(g) must sum up to zero. In
particular, there have to be at least two indices i s.t. the terms it4(γi)α′i are of order ord4,n(g). In other
words, the n-th edge equation of g must be non-trivial and α′ must be a root of it.
If we can make sure that the data in (4.1) imply that the n-th edge is linear of the form it4(γ1)z +

it4(γ0) = 0 then α′ is uniquely determined and easy to compute.

Condition 30 (Valid Representations of Type A). With definitions as in (4.3) we require for valid
representations of type A that either γ0 = 0 or edge4,n(g) is linear.

Now substitute α0 7→ α0 + α
′, α1 7→ α1 − α

′ and g 7→ g(z + α′). A careful analysis of the
exponent structure shows that under the above condition it4(γ1) doesn’t change and Condition 30
remains valid. Hence we can repeat the argument and compute successively as many terms as are
needed.

Example 31. Let f := z6−3x2z4− 1
64x

2
1x
3
2z
3
+3x22z

2
−x32. Then f has a power series rootα startingwith

α0 = x
1/2
2 +

1
8x
2/3
1 x2. We work with the degree graded lexicographical ordering 4. First we translate

f as in (4.3):
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f (z + α0) = z6 +
(
−6x1/22 +

3
4
x2/31 x2

)
z5 +

(
+12x2 −

15
4
x2/31 x

3/2
2 +

15
64
x4/31 x

2
2

)
z4

+

(
−8x3/22 + 6x

2/3
1 x

2
2 −

15
16
x4/31 x

5/2
2 +

3
128
x21x

3
2

)
z3

+

(
−3x2/31 x

5/2
2 +

9
8
x4/31 x

3
2 −

9
128
x21x

7/2
2 −

9
4096

x8/31 x
4
2

)
z2

+

(
−
3
8
x4/31 x

7/2
2 +

3
64
x21x

4
2 +

9
2048

x8/31 x
9/2
2 −

9
16 384

x10/31 x52

)
z

+

(
−
3
1024

x8/31 x
5
2 +

9
16 384

x10/31 x11/22 −
7

262 144
x41x

6
2

)
.

We find that f (z + α0) has a linear edge of slope ( 43 ,
3
2 ) and extract the edge equation−

3
8x
4/3
1 x

7/2
2 z −

3
1024x

8/3
1 x

5
2 = 0. The solution is the next term −

1
128x

4/3
1 x

3/2
2 in the expansion of α. Next we consider

f (z + α0 − 1
128x

4/3
1 x

3/2
2 ) and find that it has a linear edge of slope ( 83 ,

5
2 ). Solving the edge equation

−
3
8x
4/3
1 x

7/2
2 +

3
26 2144x

4
1x
6
2 = 0 we find the next term

1
32 768x

8/3
1 x

5/2
2 , and so on:

α = −x1/22 +
1
8
x2/31 x2 −

1
128
x4/31 x

3/2
2 +

1
32 768

x8/31 x
5/2
2 −

1
4194 304

x41x
7/2
2 + · · · .

Obviously we do not need to know g completely to do this computation. More precisely, we can
expand α up to order less than o, if we have approximated g sufficiently well. All the terms of order
less than o are determined by a linear edge equation of the form it4(γ1)z + · · · = 0. Therefore, it is
sufficient to know the constant term up to order less than ord4,o(it4(γ1)z) = c+ o with c as in (4.3).
Hence, for approximating g it is sufficient to expand the coefficients of f up to order less than c+ o.
For example, Condition 30 is truewhen considering a power series defined by the implicit function

theorem. Therefore solving such equations is trivial:

Algorithm 9 ImplicitFunction(g : E1JxΓ1K[z]) : E1JxΓ1K
Require: A polynomial g s.t. g(0, . . . , 0, 0) = 0 and ∂g/∂z(0, . . . , 0, 0) 6= 0.
Ensure: The unique root α of g s.t. α(0, . . . , 0) = 0.
1: return Series(0, g);

Indeed, if g is equal to
∑d
i=0 γiz

i, g(0, . . . , 0, 0) = 0 and ∂g/∂z(0, . . . , 0, 0) 6= 0 then ord4(γ0) � 0
(or γ0 = 0) and ord4(γ1) = 0. If γ0 6= 0 then edge4,n(g) must be linear where n = ord4(γ0) =
ord4(α).

Remark 32 (Universality of Type A). Note that for any algebraic power series α there is, by definition,
a polynomial f with polynomial coefficients vanishing on it. Since we are working in characteristic
zero, we can choose f squarefree. This implies that f (z + α) vanishes at z = 0 with multiplicity one
or that the constant coefficient of f (z + α) is zero whereas its linear coefficient does not vanish. This
means that the initial term of the linear coefficient is fixed if we consider translations f (z + α0) by
sufficiently large initial segments α0 of α. As a consequence we can always find an initial segment
α0 s.t. Condition 30 is fulfilled and every algebraic power series is representable by a single node of
type A.
So our representation is already universal. But computing efficiently the last operation of our

requirement list is not easy in this representation. So for algorithmic purposes we also allow the
second type of node.

The previous discussion showed how to expand power series represented by a graph consisting of
nodes of type A. Since 4 is compatible with total degree this implies that we can expand such series
up to arbitrary total degree. Now we consider a power series β represented by a tuple (4.2). Indeed
what comes next is best explained in the total degree ordering.
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Assume we want to expand β up to order less than o ∈ Q. Therefore we first compute
approximations ξ̃i of the descendants ξi up to order less than o. Then we apply the map xm 7→∏
1≤i≤l ξ̃

ni(m)
i to each term in an expansion of α, sum up the intermediate results and finally truncate

at order o. For this truncation to be correct, we have to use a sufficiently large expansion of α, say, up
to order less than o′. The only remaining question is how to determine o′ from o.
To this end let

ñ :=

(∑
1≤i≤l

ord≤(ξi) ni

)
= ( ñ1, . . . , ñn) and c := min

≤
{̃nj | 1 ≤ j ≤ n} (4.4)

where ord≤(0) := ∞. Let φ denote the homomorphism xm 7→
∏
1≤i≤l ξ

ni(m)
i ; then

ord≤(φ(xm)) = ord≤

(∏
1≤i≤l

ξ
ni(m)
i

)
=

(∑
1≤i≤l

ord≤(ξi) ni(m)

)
= ñ(m)

=

∑
1≤j≤n

ñjmj ≥
∑
1≤j≤n

cmj = c|m|.

This calculation shows two things: First, if c > 0 then for any γ =
∑

m γmxm the sum
∑

m γmφ(xm)
converges, soφ(γ ) is well defined. This is an analogue to the usual conditionwhen substituting formal
power series into each other.

Condition 33 (Valid Representations of Type B). For valid representations of type B we require c > 0 for
c defined as in (4.4).

Second, under this condition, if α =
∑

m αmxm then the terms αmxm with |m| ≥ o/c contribute
terms to φ(α) of order greater or equal o, so we can choose o′ := o/c .

Remark 34 (Contraction Constants). We can give a nice theoretical meaning to the two technical
conditions and the deduced algorithms. Namely, the values c and c may be understood as additive
and multiplicative contraction constants respectively for certain continuous maps between power
series domains with the usual metrics. In the case of Condition 30 this map is contractive only in a
small enough neighborhood (determined by ord4(α − α0)) of the root α. Contractivity makes the
represented series well defined.
In both cases the constants determine how far the descendants of a node have to be expanded. An

implementation could store them togetherwith the representing tuples (4.1) and (4.2).Wewould also
like to mention that for an efficient implementation it is crucial to truncate intermediate results (e.g.
defining polynomials or approximations of descendants) as often as possible to a sufficient precision.
The bounds are computed by calculations similar to those above.We omit them from the presentation
and show only the essentials of the algorithm.

4.3. Rational parametrizations for quasi-ordinary polynomials

A quite intricate thing is the computation of complete sets of rational parametrizations. In
requirement (3) we have introduced the action of the group hom(Γ ,E∗) on EJxΓ K. We write
this as a left action using again functional notation, i.e., for σ ∈ hom(Γ ,E∗) and α ∈ EJxΓ K
we simply write σ(α). This is an exponent structure preserving automorphism in the sense that
supp4(α) = supp4(σ (α)). Let’s convince ourselves that this action can effectively be carried out
in our representation.

Remark 35 (Effectivity of Actions Induced by Lattice Homomorphisms). Since such an automorphism is
structure preserving, it is easily computed in our representation: If a power series is represented by
a tuple (4.1), then we apply the automorphism to the initial segment α0 and to the coefficients of the
defining equation f , possibly recursing to the descendants. If a power series is represented by a tuple
(4.2), we apply the automorphism recursively to the ξi.
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Definition 36 (Rational Parametrizations). We call (σ , α) with α ∈ E1JxΓ1K and σ ∈ hom(Γ0,E∗1) a
parametrization of a monic polynomial f ∈ E0JxΓ0K[z] iff E0 ⊆ E1, Γ0 ⊆ Γ1 and σ ↑z(f )(α) = 0. The
order of the parametrization is defined to be ord4(α).
Let g|f be an irreducible factor s.t. σ ↑z(g)(α) = 0. We call (σ , α) rational if the induced

homomorphism IC(E0JxΓ0K[z]/〈g〉) → E1JxΓ1K which maps z 7→ α and γ 7→ σ(γ ) for γ ∈ E0JxΓ0K
is an isomorphism.

Intuitively, rational parametrizations are distinguished by minimal field and lattice extensions.
The induced homomorphism exists due to the universal property of integrally closed domains. If this
homomorphism is an isomorphism then the irreducible polynomial g from above at least has to be
prime. (Note that E0JxΓ0K is in general no UFD!)

Remark 37 (Irreducible Monic Polynomials). Let g ∈ E0JxΓ0K[z] be a monic irreducible polynomial.
We want to prove that g is prime. The following arguments are taken from McAdam (2001).
It is sufficient to show primality in QF(E0JxΓ0K)[z]; indeed, if hg ∈ E0JxΓ0K[z] for some h ∈
QF(E0JxΓ0K)[z] then a Gaussian style inductive argument shows that h ∈ E0JxΓ0K[z]. So g E0JxΓ0K[z] =
(g QF(E0JxΓ0K)[z]) ∩ E0JxΓ0K[z], i.e., it is the preimage of a prime ideal and therefore prime
itself.
Let g ′ ∈ QF(E0JxΓ0K)[z] be an irreducible (and hence prime) monic polynomial factor of g . We

show g ′ = g . Being also roots of g , all roots of g ′ (in some splitting field) are integral over E0JxΓ0K.
The coefficients of g ′ (being polynomials in these roots) are also integral over E0JxΓ0K and elements
of QF(E0JxΓ0K). Then g ′ ∈ E0JxΓ0K[z] because E0JxΓ0K is integrally closed. By the above argument g ′|g
also in E0JxΓ0K[z] and so g ′ = g because g is irreducible.
This also implies that a monic polynomial f ∈ E0JxΓ0K[z] has a unique (up to permutation)

factorization into monic irreducibles.

Let now f ∈ E0JxΓ0K[z] be quasi-ordinary and assume that we want to compute a complete set of
rational parametrizations. Let’s bemore general and saywewant to compute a complete set of rational
parametrizations of order greater than some value n0 ∈ Qn. (With the choice n0 := (−1, . . . ,−1) this
includes the original task.)
First assume we are given a parametrization (σ , α) of f s.t. α 6= 0 and n := ord4(α) � n0. Write

g := σ ↑z(f ) and α′ := it4(α). By the same reasoning as at the beginning of Section 4.2 (with α in
place of α1), we find that the n-th edge equation of g must be non-trivial and α′ must be a root of it.
Now assume we have to find (σ , α) as above using a recursive approach. As a first step we have to

determine the initial term ofα (up to some isomorphism). From the previous discussion it follows that
its slope will be n � n0 s.t. f has a non-trivial n-th edge equation. If the tuple (σ , α) is meant to be a
rational parametrization, thenwe have to solve this equation economically, i.e., using a field extension
of least degree, and at the same time determine σ partially. Duval’s trick (Duval, 1989) adapted to the
multivariate case gives an optimal choice.
To this end let mi for 1 ≤ i ≤ n be a basis of Γ0. Let b ∈ Z>0 be the size of Γ ′/Γ0 where

Γ ′ := Γ0 + Zn, i.e., b is minimal s.t. bn ∈ Γ0. Now we can write

edge4,n(f ) =
∑
l≤i≤k

fixmiz i = xmlz l
∑

0≤j≤(k−l)/b

fl+jbx−jbnz jb

with fl 6= 0 and fk 6= 0. Further we can express bn =
∑
1≤i≤n cimi, where necessarily

gcd(b, c1, . . . , cn) = 1 since b was chosen minimally, and compute Bézout coefficients u and vi s.t.
ub +

∑
1≤i≤n vici = 1. (Note that this choice is not unique.) If r is a non-zero root in a minimal field

extension E′ s.t.∑
0≤j≤(k−l)/b

fl+jbr j = 0
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then we can define the homomorphism σ ′ : Γ0 → E′∗ : mi 7→ r−vi and the initial term α′ := ruxn.
With these definitions one checks

edge4,n(σ
′↑z(f ))(α′) = σ ′↑z(edge4,n(f ))(r

uxn)

= σ ′(xml)z l
∑

0≤j≤(k−l)/b

fl+jbσ ′(x−jbn)(ruxn)jb

= (. . . )
∑

0≤j≤(k−l)/b

fl+jb
(
σ ′(x−

∑
1≤i≤n cimi)rubxbn

)j
= (. . . )

∑
0≤j≤(k−l)/b

fl+jb
(
r
∑
1≤i≤n vicix−bnrubxbn

)j
= (. . . )

∑
0≤j≤(k−l)/b

fl+jb
(
rub+

∑
1≤i≤n vicix−bn+bn

)j
= (. . . )

∑
0≤j≤(k−l)/b

fl+jbr j = 0.

This finishes the description of how to choose the first term (up to isomorphism) and part of the
structure preserving automorphism. The remainder of course has to be chosen via recursion. More
precisely, define f ′ := σ ′↑z(f )(z + α′) and compute a parametrization (σ ′′, α′′) ∈ hom(Γ ′,E∗1) ×
E1JxΓ1K of f ′ with ord4(α′′) � n. Then we may just set α := σ ′′(α′) + α′′ ∈ E1JxΓ1K and σ :=
σ ′′σ ′ ∈ hom(Γ0,E∗1). (Note that we have an inclusion hom(Γ0,E

′∗)→ hom(Γ0,E∗1) and a surjection
hom(Γ ′,E∗1)→ hom(Γ0,E∗1); hence, we can build σ

′′σ ′ ∈ hom(Γ0,E∗1).) Now trivially

0 = σ ′′↑z(f ′)(α′′) = σ ′′↑z(σ ′↑z(f )(z + α′))(α′′)
= σ ′′↑z(σ ′↑z(f ))(z + σ ′′(α′))(α′′) = σ ′′↑z(σ ′↑z(f ))(σ ′′(α′)+ α′′) = σ ↑z(f )(α).

Example 38. Let f0 := z6+3x2z4+x21x
3
2z
3
+3x22z

2
+x32. Its discriminant is discz(f0) = 729x

8
1x
21
2 (x

4
1x
3
2−

64) and, hence, it is quasi-ordinary. We again use the degree graded lexicographical ordering 4.
The only rational slope of a non-trivial edge is n1 := (0, 12 )with edge equation z

6
+3x2z4+3x22z

2
+

x32 = 0. We see that only even powers of z have a non-vanishing coefficient which corresponds to the
fact that 2n1 ∈ Z2, i.e., b1 = 2. Let r1 be a solution of 0 = r3+3r2+3r+1 = (r+1)3; hence, r1 = −1.
The standard lattice has basis m1,1 = (1, 0) and m1,2 = (0, 1). Then 2n1,1 = 0m1,1 + 1m1,2; hence,
c1,1 = 0 and c1,2 = 1. One verifies the Bézout relation 0b1 + 0c1,1 + 1c1,2 = 1 and we have u1 = 0,
v1,1 = 0 and v1,2 = 1. Thereforewe define the first termα1 := r

u1
1 x

1/2
2 = x

1/2
2 and the homomorphism

to be σ1 : m1,1 7→ r−v1,11 = 1,m1,2 7→ r−v1,21 = −1 with corresponding action x1 7→ x1, x2 7→ −x2.
We set

f1 := σ1↑z(f0)(z + x
1
2
2 )

= z6 + 6x
1
2
2 z
5
+ 12x2z4 + (8x

3
2
2 − x

2
1x
3
2)z

3
− 3x21x

7
2
2 z
2
− 3x21x

8
2
2 z − x

2
1x
9
2
2 .

For f1 we now find two rational slopes of non-trivial edges, namely, n1 from above and n2 = (
2
3 , 1).

The extended exponent lattice at this point is Zm2,1 + Zm2,2 where m2,1 = (1, 0) and m2,2 = (0, 12 ).
We have 3n2 = 2m2,1+6m2,2, i.e., b2 = 3, c2,1 = 2 and c2,2 = 6. From a Bézout relationwe get u2 = 1,
v2,1 = −1 and v2,2 = 0. The edge equation is 8x

3/2
2 z

3
− x21x

9/2
2 = 0. Let r2 be the root of 8r − 1 = 0,

i.e., r2 = 1
8 . Hence, we define a new homomorphism σ2 : m2,1 7→ r−v2,12 =

1
8 ,m2,2 7→ r−v2,22 = 1

with action x1 7→ 1
8x1, x

1/2
2 7→ x1/22 . We also define a new initial segment α2 := σ2(α1)+ r

u2
2 x

2/3
1 x2 =

x1/22 −
1
8x
2/3
1 x2 and set f2 := σ2

↑z(f1)(z − 1
8x
2/3
1 x2).

From now on the edge equation will always be linear and we have determined a parametrization.
More precisely, the overall automorphism is σ2σ1 and acts by x1 7→ 1

8x1, x2 7→ −x2. The power series
starts with α2 and is a root of σ2σ1↑z(f0). We have seen its expansion in Example 31.
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This discussion yields the following algorithm. The return type E0JxQ
n
K means algebraic power

series with coefficients in some finite algebraic extension E0 and exponents in some rational lattice
containing Zn.

Algorithm 10 ParamRec(f : E0JxΓ0K[z], n0 ∈ Qn) : 2hom(Γ0,E0
∗
)×E0JxQ

n
K

Require: A quasi-ordinary polynomial f and an order n0.
Ensure: A set of rational parametrizations of f of order greater n0.
1: S := {n ∈ Qn

≥0 | n � n0 and edge4,n(f ) is non-trivial}; P := ∅;
2: if (∀n ∈ S : ordz(edge4,n(f )) ≥ 1) or (∃n ∈ S : degz(edge4,n(f )) = 1) then
3: S := S \ {n ∈ S | degz(edge4,n(f )) = 1}; P := P ∪ {(1, Series(0, f ))};
4: for n ∈ S do
5: Let b ∈ Z>0 be minimal s.t. bn ∈ Γ0; Let mi for 1 ≤ i ≤ n be a basis of Γ0;
6: Write bn =

∑
1≤i≤n cimi and compute u, vi ∈ Z s.t. ub+

∑
1≤i≤n vici = 1;

7: Write edge4,n(f ) = xmlz l
∑
0≤j≤k fjx

−jbnz jb with f0 6= 0 and fk 6= 0;
8: R := ZeroSet(〈

∑
0≤j≤k fjz

j
〉);

9: for r ∈ R do
10: α′ := ruxn; σ ′ : Γ0 → E′∗ : mi 7→ r−vi ; {assuming r ∈ E′∗}
11: P := P ∪map(σ ′′,α′′)7→(σ ′′σ ′,σ ′′(α′)+α′′)ParamRec(σ ′↑z(f )(z + α′), n);
12: return P ;

For the definition of the auxiliary function ZeroSet see Remark 25. Applying structure preserving
automorphisms and translating the defining polynomial in z preserves quasi-ordinariness. Therefore
the arguments to the recursive call always fit to the input description. Although the algorithm never
makes explicit use of Theorem 47 (the Theorem of Jung–Abhyankar) it depends crucially on it and,
hence, on f being quasi-ordinary. For example, the power series constructed in line 3 are well defined
only in that case; otherwise there might not be any power series root of f which is supported on
the positive orthant and whose initial term is a root of the linear edge of f . Therefore this algorithm
can be seen as a constructive extension of Theorem 47, but unfortunately does not by itself provide
a proof for it. Recursion in this algorithm ends when the set S is empty when entering line 4. The
input f is in particular squarefree, and therefore termination is assured by the very argument of
Remark 32. Note that we could also apply the algorithm to compute rational parametrizations for
a squarefree polynomial f of positive characteristic, provided that we knew for some reason (other
than the Theorem of Jung–Abhyankar) that a complete set of rational parametrizations exists.

Remark 39 (And a Little Bit of Engineering . . .). In line 1 of the above algorithm we compute the
‘‘Newton Polygon’’ of f =

∑
i ϕiz

i. Since f is monic, one of the non-trivial edges contains the point
((0, . . . , 0), degz(f )). Now z divides f either with multiplicity 0 or with multiplicity 1 (because of
squarefreeness). So for computing the non-trivial edges it will be enough to expand the coefficients
ϕi until the initial term of ϕ1 or ϕ0 appears depending on whether z divides f or not. In other words
we would have to check whether ϕ0 = 0. In principle this is possible (see Remark 29), but from the
viewpoint of efficiency it is not advisable.
On the other hand it doesn’t matter whether z divides f or f has a linear edge equation (compare to

the condition in line 2). In both cases we return Series(0, f )which might be zero. So an engineering
solutionmight be to compute either all non-trivial edges or only a set of non-trivial edges with lowest
vertex at linear level and make sure that the constant term (if it exists) has large enough order.
Another approach would be to modify the above algorithm to allow approximate input with

polynomial coefficients only but also include error reportingwhen an approximationwas not accurate
enough.
Further it is advisable to choose a short vector (u, v1, . . . , vn) ∈ Zn+1 using for example the LLL

algorithm. For practical purposes the additional complexity is negligible compared to the growth of
coefficients if a larger vector is chosen.
We didn’t include the technical tricks in the description because the algorithm is easier to read and

to argue about when written up as above.
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Setting now n0 := (−1, . . . ,−1)we get a set of parametrizations of f :

Algorithm 11 Param(f : E0JxΓ0K[z]) : 2hom(Γ0,E0
∗
)×E0JxQ

n
K

Require: A quasi-ordinary polynomial f .
Ensure: A complete set of rational parametrizations of f .
1: return ParamRec(f , (−1, . . . ,−1));

We have to show that the computed parametrizations are rational and complete.

Lemma 40 (Bounding Extensions). Let Algorithm 10 be called with a quasi-ordinary polynomial f ∈
E0JxΓ0K[z] and n0 ∈ Qn and write (σi, αi) ∈ hom(Γ0,E∗i )× EiJxΓiK for the computed parametrizations.
Then we may bound the extensions from above by∑

i

[Ei : E0] #(Γi/Γ0) ≤ max{degz(edge4,n(f )) | n � n0}.

Proof. Assume the condition in line 2 holds. Then either f has a zero root, i.e., z|f , or we have found
a linear edge equation. In both cases we construct one parametrization of f as in line 3. The series
involved is an element ofE0JxΓ0K and the lattice remains unchanged. This parametrization contributes
a summand 1 to the left-hand side of the inequality.
Now set d := max{degz(edge4,n(f )) | n � n0} − 1 if the condition in line 2 was true, d :=

max{degz(edge4,n(f )) | n � n0} otherwise. We have to ensure that the summodified by running only
over the parametrizations constructed in the loop is bounded from above by d. To this end assume
that S contains o slopes nj when entering line 4. Let `j denote the height of the edge equation of slope
nj, i.e., the difference of its z-degree and its z-order. Then

∑
1≤j≤o `j ≤ d.

Fix an edge, i.e., a value of j. Thenwe compute an integer bj in line 5 and a number of roots rj,k ∈ Ej,k
with multiplicities, say,mj,k for 1 ≤ k ≤ sj in line 8. It follows that bj = #(Γj/Γ0)with Γj := Γ0+Znj
measures the extension of the exponent lattice and `j = bj(

∑
1≤k≤sj

[Ej,k : E0]mj,k).
Fix a root, i.e., a value of k, and let fj,k be thepolynomial used as parameter in the recursive call in line

11. Now mj,k is also the multiplicity of the root of the corresponding edge equation. After translation
zero becomes anmj,k-fold root; hence, the z-order of edge4,nj(fj,k) is equal tomj,k. This can serve as an
upper bound in the statement for the recursive call, which returns, say, tj,k different parametrizations.
Assuming that the lemma is true for recursive calls (see (∗) below) one computes

d ≥
∑
1≤j≤o

`j =
∑
1≤j≤o

bj
∑
1≤k≤sj

[Ej,k : E0]mj,k

(∗)

≥

∑
1≤j≤o

#(Γj/Γ0)
∑
1≤k≤sj

[Ej,k : E0]
∑
1≤l≤tj,k

[Ej,k,l : Ej,k] #(Γj,k,l/Γj)

=

∑
1≤j≤o

∑
1≤k≤sj

∑
1≤l≤tj,k

[Ej,k,l : Ej,k][Ej,k : E0] #(Γj,k,l/Γj)#(Γj/Γ0)

=

∑
1≤j≤o

∑
1≤k≤sj

∑
1≤l≤tj,k

[Ej,k,l : E0] #(Γj,k,l/Γ0).

For each tuple of indices (j, k, l) appearing in that sum, the loop now produces exactly one
parametrization with coefficient field Ej,k,l and exponent lattice Γj,k,l. �

Forwhat followswe assume thatE0 ⊆ Ei ⊆ E0. A parametrization (σi, αi) ∈ hom(Γ0,E∗i )×EiJxΓiK
is very close to a root of f inE0JxΓiK. It provided a root if we could reverse the effects ofσi. To be precise,
let τ ∈ hom(Γi,E0) be an extension of the inverse of σi to Γi, in other words, τ |Γ0 = σ

−1
i . Then we

call β := τ(αi) an associated root of (σi, αi), because applying τ to the equation 0 = σi↑z(f )(αi) yields
0 = (τσi)

↑z(f )(τ (αi)) = (σ−1i σi)
↑z(f )(β) = f (β). It is not hard to show that σ−1i can always be

extended to hom(Γi,E0) because E0 is algebraically closed.
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The next lemma says that we do not miss any associated roots.
Lemma 41 (Completeness). Let Algorithm 10 be called with a quasi-ordinary polynomial f ∈ E0JxΓ0K[z]
and n0 ∈ Qn and write (σi, αi) ∈ hom(Γ0,E∗i ) × EiJxΓiK for the computed parametrizations. Then each
root β ∈ E0JxQ

n
K of f with ord4(β) � n0 is associated with at least one (σi, αi).

Proof. Let β be a root of f of order n � n0. If β = 0 or if β 6= 0 and edge4,n(f ) is a linear equation
then we consider the parametrization constructed in line 3: The series involved is already β and the
automorphism involved is the identity.
Otherwise assume the outer loop is processing slope n, set Γ ′ := Γ0 + Zn and write β = β ′ + β ′′

where β ′ := it4(β). Then β ′ must be a root of edge4,n(f ). Setting β ′ = oxn for some o ∈ E0 we have
that r := ob is a root of

∑
0≤j≤k fjz

j; compare line 8.
Assume now we are in the inner loop processing this r ∈ E′∗ and let f ′ := σ ′↑z(f )(z + α′) be

the polynomial in the arguments to the recursive call in line 11. Let τ ′ ∈ hom(Γ ′,E0) be defined via
τ ′|Γ0 = σ

′−1 and n 7→ r−uo. We have to check that this is well defined; more precisely, since bn ∈ Γ0
(with bminimal) we must have that (r−uo)b coincides with σ ′−1(bn); indeed

(r−uo)b = r1−bu = r
∑
1≤i≤n vici =

∏
1≤i≤n

(rvi)ci = σ ′−1
(∑
1≤i≤n

cimi

)
= σ ′−1(bn).

In particular τ ′(α′) = τ ′(ruxn) = oxn = β ′ and applying τ ′−1 to 0 = f (β) we get 0 =
(τ ′−1)↑z(f )(τ ′−1(β ′)+ τ ′−1(β ′′)) = (σ ′)↑z(f )(α′ + τ ′−1(β ′′)) = f ′(τ ′−1(β ′′)). So τ ′−1(β ′′) is a root of
f ′ of order greater n.
Assuming that the statement holds for the recursive call, we get a parametrization (σ ′′, α′′) ∈

hom(Γ0,E′′∗) × E′′JxΓ
′′

K which is associated with τ ′−1(β ′′) via, say, τ ′′ with τ ′′|Γ ′ = σ ′′−1. This is
combined to a returned parametrization (σ ′′σ ′, σ ′′(α′) + α′′). We claim that this parametrization is
associated with β via τ ′τ ′′. Indeed τ ′τ ′′ restricts to the inverse of σ ′′σ ′:

(τ ′τ ′′)|Γ0 = (τ
′
|Γ0)(τ

′′
|Γ0) = σ

′−1(σ ′′−1|Γ0) = (σ
′′σ ′)−1.

It remains to show that it maps σ ′′(α′)+ α′′ to β:

τ ′τ ′′(σ ′′(α′)+ α′′) = τ ′(τ ′′σ ′′)(α′)+ τ ′(τ ′′(α′′))

= τ ′(σ ′′−1σ ′′)(α′)+ τ ′(τ ′−1(β ′′)) = τ ′(α′)+ β ′′ = β ′ + β ′′ = β. �

Now if β1 and β2 are roots of f associated with (σi, αi) via τ1 and τ2, then τ1τ−12 restricts to the
identity in hom(Γ0,E0) and, hence, maps Γ0 to 1. In other words τ1τ−12 acts as an automorphism
on E0JxΓiK fixing E0JxΓ0K. Therefore, the roots which are associated with one and the same
parametrization are all conjugate and, hence, roots of the same irreducible factor. This gives an
injection from the irreducible factors (with roots of order greater n0) to parametrizations (of order
greater n0).
Corollary 42 (Complete Sets of Rational Parametrizations). Let Algorithm 11 be called with a quasi-
ordinary polynomial f ∈ E0JxΓ0K[z] and write (σi, αi) ∈ hom(Γ0,E∗i ) × EiJxΓiK for the computed
parametrizations; then:

• degz(f ) =
∑
i[Ei : E0] #(Γi/Γ0).

• All computed parametrizations are rational and in bijective correspondence with the irreducible factors
of f .

Proof. To show this, we apply the above two lemmata with n0 := (−1, . . . ,−1) each. In Lemma 40,
clearly, degz(f ) is an upper bound for the right-hand side of the inequality, so degz(f ) ≥

∑
i[Ei :

E0] #(Γi/Γ0).
Now let fj|f be the irreducible factors. By Lemma 41 and the previous discussion we may assume

that there is an injection j 7→ ij s.t. fj is parametrized by (σij , αij). Then we have chains of field
inclusions

QF(E0JxΓ0K) ⊆ QF(E0JxΓ0K[z]/〈fj〉) ⊆ QF(EijJx
Γij K),
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where the second inclusion is given by (σij , αij). The extensions are algebraic of degrees

[QF(E0JxΓ0K[z]/〈fj〉) : QF(E0JxΓ0K)] = degz(fj) and [QF(EijJx
Γij K) : QF(E0JxΓ0K)] = [Eij : E0]#(Γij/Γ0)

respectively and therefore

degz(f ) =
∑
j

degz(fj) ≤
∑
j

[Eij : E0] #(Γij/Γ0) ≤
∑
i

[Ei : E0] #(Γi/Γ0).

Combining, we have proven equality. In fact, since all summands are positive we find that the map
j 7→ ij is a bijection and for each chain of inclusions as above equality of degrees must hold. This gives
the second statement. �

5. Conclusion

Wehave introduced the concept of formal desingularizations and shown how to compute them for
hypersurfaces ofP3E. The algorithmhas been implemented and found to run verywell.We can compute
formal desingularizations faster bymagnitudes than the general algorithms for desingularization. The
reason is that our algorithm doesn’t depend on Groebner basis computations. It relies only on linear
algebra and polynomial factorization.
Here,wewould like to point out an application of our algorithm.Namely, formal desingularizations

can be used to compute adjoint sheaves. We will describe how to do that in another paper. Adjoint
sheaves in arbitrary dimension are defined to be the direct image of the tensor powers of the
canonical sheaf w.r.t. an arbitrary desingularization. Adjoint spaces for projective schemes (i.e.,
graded components of the associated graded ring to that sheaf) are the keystone to the rational
parametrization of curves. In Schicho (1998) it has been shown that they are of equal importance for
the computation of rational surface parametrizations. For example, they facilitate the computation of
the arithmetic genus and the plurigenera of the surface. Thus, we can effectively check Castelnuovo’s
Criterion for the parametrizability of surfaces. Moreover, adjoint spaces can be used to construct
certain rationalmaps that reduce theparametrizationproblem to a set of base cases. The final goal is an
efficient implementation to rationally parametrize hypersurfaces in P3Q (with or without introducing
field extensions).
We finish with an open problem. With our current definition, a formal desingularization is just

a loosely related set of formal prime divisors. For some applications, however, it would be nice to
know the dual graph of the surface desingularization, i.e., an annotated graph with one vertex for
each exceptional divisor and edgeswhenever two divisors intersect. Such a graph could be the starting
point for an algorithm for computing theminimal formal desingularization. In ourmethod it would be
easy to keep track of the dual graph of the embedded curve desingularization and in a certain sense
the dual graph of the resolution projects to it. Such graph coverings have been studied in Némethi
(2000) and Némethi and Szilárd (2000). The problem is that we get formal prime divisors from two
sources, namely, Algorithm 4 and Algorithm 6. However, it is not clear how the corresponding prime
divisors intersect.
The algorithm of this paper together with the method for the computation of adjoint spaces is

available as a Magma-package and can be downloaded via this link: http://www.ricam.oeaw.ac.at/
software/symcomp/adjoints.tar.gz. It will probably become part of the next major Magma-release.
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Appendix. Some local algebra

In this appendixwegather a few results from local commutative algebra andpresent them in a form
suitable for our needs. Again E denotes a field of characteristic zero which needs not be algebraically
closed. We are dealing with completions of stalks of regular schemes of finite type over E. Therefore
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we first give a famous structure theorem in this setting. Recall that an essentially finite local E-algebra
is the localization of a finitely generated E-algebra at a prime ideal.
Theorem 43 (Cohen Structure Theorem). Let (̂A,m) be the completion of an essentially finite, regular,
local E-algebra of Krull dimension s. Set F0 := Â/m with canonic projection π : Â→ F0. Further let

• {ui}1≤i≤r ⊂ Â be a set projecting to a transcendence basis of F0 over E and
• {vj}1≤j≤s ⊂ m, a minimal set of generators.

Then there is a unique coefficient field F ⊆ Â containing E and {ui}1≤i≤r s.t. π restricts to an isomorphism
F→ F0 and

FJx1, . . . , xsK→ Â :
{
f 7→ f for f ∈ F,
xj 7→ vj for 1 ≤ j ≤ s

is also an isomorphism.

Proof. The existence of a unique fieldF fulfilling the first assertion is the content ofMatsumura (1989,
Thm. 28.3) and its proof (where references to differential bases can be substituted by transcendence
bases in characteristic zero). Since {vj}1≤j≤s is a set of generators for m one easily sees that the
homomorphism in the second assertion is surjective; cf. Atiyah and Macdonald (1969, Lem. 10.23).
The rings on both sides have the same dimension. Therefore the kernel must be trivial by Atiyah and
Macdonald (1969, Cor. 11.18). �

We actually need a constructive version of a kind of inverse of the above isomorphism in a special
case.

Corollary 44 (Completion at Points in Affine n-Space). Let p := 〈f1, . . . , fr〉 ⊂ E[x1, . . . , xn] be a prime
ideal of height l ≤ min(r, n),

J :=
∂(f1, . . . , fr)
∂(x1, . . . , xn)

∈ E[x1, . . . , xn]r×n

the Jacobian matrix, F0 := QF(E[x1, . . . , xn]/p) the residue field, π : E[x1, . . . , xn] → F0 the canonic
projection and

φ : E[x1, . . . , xn] → F0[t1, . . . , tl] : xi 7→ π(xi)+Mi (t1, . . . , tl)T,

where Mi are row vectors with entries in {0, 1}. Write M := (Mi)1≤i≤n.
Then φ extends uniquely to a homomorphism ̂E[x1, . . . , xn]p → F0Jt1, . . . , tlK. Moreover we can

choose M s.t. π(J)M ∈ Fr×l0 has rank l and then the extended homomorphism becomes an isomorphism.

Proof. The homomorphism φ trivially extends to F0Jt1, . . . , tlK. Then for any g ∈ E[x1, . . . , xn] one
computes for the image

φ(g) ∈ π(g)+ π(∂g/∂(x1, . . . , xn))M(t1, . . . , tl)T + m2

where m := 〈t1, . . . , tl〉. Now the above equation shows that if g ∈ E[x1, . . . , xn] \ p then we have
π(g) 6= 0 for the constant part. Therefore the image is a unit and the homomorphism lifts uniquely to
E[x1, . . . , xn]p. Impose the p-adic topology on the domain and the m-adic topology on the codomain.
Writing down the long expansion one sees that the homomorphism is even uniformly continuous.
Since the codomain is already complete we have a unique lifting to ̂E[x1, . . . , xn]p.
Since E[x1, . . . , xn] is regular the Jacobian image π(J) has rank l equal to the height of the prime.

Let (j1, . . . , jl) be the column indices of a non-vanishing l × l-minor and choose M := (ej1 , . . . , ejl).
Here ej denotes the column vector with 1 in position j and 0 otherwise. Since multiplication by M
extracts exactly the columns of this minor, also π(J)M has rank l.
Applying the above formula to the components of the vector (f1, . . . , fr)T of generators of pwe find

that its π-image is of the form

(π(f1), . . . , π(fr))T︸ ︷︷ ︸
=(0,...,0)

+π(J)M(t1, . . . , tl)T︸ ︷︷ ︸
=:L(f1,...,fr )

+ (higher order terms).
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The rank condition assures that the components of L(f1, . . . , fr) generatem/m2 as an F0-vector space.
Hence m = 〈φ(f1), . . . , φ(fr)〉 by Nakayama’s lemma.
Now let F ⊆ ̂E[x1, . . . , xn]p be a coefficient field in the sense of Theorem 43., i.e., restricting the

canonic projection to F gives an isomorphism

F ∼= ̂E[x1, . . . , xn]p/p ̂E[x1, . . . , xn]p ∼= F0.

But then alsoφ(F) is a coefficient field ofF0Jt1, . . . , tlK. Nowwe proceed as in the proof of Theorem43.
The paragraph above shows that φ is surjective and comparing dimensions one proves injectivity. �

To show correctness of our algorithms we need that completion commutes with two common
operations, namely, building the integral closure and computing the blow up algebra.

Lemma 45 (Integral Closure and Completion). Let A be a finitely generated E-algebra, f ∈ A[z] a monic
polynomial, p ⊂ A a prime ideal and consider the following diagram:

IC(A[z]/〈f 〉) // IC(Âp[z]/〈f 〉)

A //

OO

Âp

OO

Then q 7→ q′ := q IC(Âp[z]/〈f 〉) gives a bijective correspondence between prime ideals q ⊂

IC(A[z]/〈f 〉) above p and prime ideals q′ ⊂ IC(Âp[z]/〈f 〉) above pÂp, and the induced homomorphisms
̂IC(A[z]/〈f 〉)q →

̂IC(Âp[z]/〈f 〉)q′ are isomorphisms.

Proof. The fact that building the integral closure and completion commutes is knownas Zariski’sMain
Theorem; see, e.g., Zariski and Samuel (1975, Thm. VIII.33). �

Lemma 46 (Blowing up and Completion). Let A be a finitely generated E-algebra, p ⊂ A a prime ideal
and consider the diagram

B // B′ := Âp ⊗A B

A //

OO

Âp

OO

where B is a coordinate ring of an affine chart of the blow up of Spec A at p.
Then B′ is a coordinate ring of an affine chart of the blow up of Spec Âp at mÂp. Further q 7→ q′ := qB′

gives a bijective correspondence between prime ideals q ⊂ B above p and prime ideals q′ ⊂ B′ above mÂp,
and the induced homomorphisms B̂q → B̂′

q′
are isomorphisms.

Proof. This is an algebraic transcription of Kiyek and Vicente (2004a, Prop. A.14.7) which holds
analogously for ground fields which are not algebraically closed. �

Finally we state the theorem which provides the theoretical basis for the whole formal
desingularization procedure.

Theorem 47 (Theorem of Jung–Abhyankar). Let f ∈ EJx1, . . . , xnK[z] be a monic, squarefree polyno-
mial s.t. discz(f ) = x

e1
1 · · · x

em
m u(x1, . . . , xn) where m ≤ n and u(0, . . . , 0) 6= 0. Then there is a natural

number d ≥ 1 and there are degz(f ) distinct power series αi ∈ EJx1/d1 , . . . , x1/dm , xm+1, . . . , xnK solving f ,
i.e., f (x1, . . . , xn, αi) = 0 for 1 ≤ i ≤ degz(f ).

Proof. An irreducible factor of f must again bemonic and its discriminant must be a factor of discz(f )
and, hence, can also bewritten as above. Now the statement can be found in Kiyek and Vicente (2004a,
Prop. 3.2.5). �
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