research

Algebraic Problems Equivalent to Beating Exponent 3/2 for Polynomial Factorization over Finite Fields

Abstract

The fastest known algorithm for factoring univariate polynomials over finite fields is the Kedlaya-Umans (fast modular composition) implementation of the Kaltofen-Shoup algorithm. It is randomized and takes O~(n3/2logq+nlog2q)\widetilde{O}(n^{3/2}\log q + n \log^2 q) time to factor polynomials of degree nn over the finite field Fq\mathbb{F}_q with qq elements. A significant open problem is if the 3/23/2 exponent can be improved. We study a collection of algebraic problems and establish a web of reductions between them. A consequence is that an algorithm for any one of these problems with exponent better than 3/23/2 would yield an algorithm for polynomial factorization with exponent better than 3/23/2

    Similar works